freealg 0.1.15__py3-none-any.whl → 0.3.0__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- freealg/__init__.py +3 -2
- freealg/__version__.py +1 -1
- freealg/_decompress.py +6 -4
- freealg/_pade.py +0 -1
- freealg/_support.py +11 -0
- freealg/_util.py +4 -0
- freealg/eigh.py +426 -0
- freealg/freeform.py +8 -103
- {freealg-0.1.15.dist-info → freealg-0.3.0.dist-info}/METADATA +1 -1
- freealg-0.3.0.dist-info/RECORD +25 -0
- freealg/eigfree.py +0 -170
- freealg-0.1.15.dist-info/RECORD +0 -25
- {freealg-0.1.15.dist-info → freealg-0.3.0.dist-info}/WHEEL +0 -0
- {freealg-0.1.15.dist-info → freealg-0.3.0.dist-info}/licenses/AUTHORS.txt +0 -0
- {freealg-0.1.15.dist-info → freealg-0.3.0.dist-info}/licenses/LICENSE.txt +0 -0
- {freealg-0.1.15.dist-info → freealg-0.3.0.dist-info}/top_level.txt +0 -0
freealg/__init__.py
CHANGED
|
@@ -7,9 +7,10 @@
|
|
|
7
7
|
# directory of this source tree.
|
|
8
8
|
|
|
9
9
|
from .freeform import FreeForm
|
|
10
|
-
from .
|
|
10
|
+
from .eigh import eigh, cond, norm, trace, slogdet
|
|
11
11
|
from . import distributions
|
|
12
12
|
|
|
13
|
-
__all__ = ['FreeForm', 'distributions', '
|
|
13
|
+
__all__ = ['FreeForm', 'distributions', 'eigh', 'cond', 'norm', 'trace',
|
|
14
|
+
'slogdet']
|
|
14
15
|
|
|
15
16
|
from .__version__ import __version__ # noqa: F401 E402
|
freealg/__version__.py
CHANGED
|
@@ -1 +1 @@
|
|
|
1
|
-
__version__ = "0.
|
|
1
|
+
__version__ = "0.3.0"
|
freealg/_decompress.py
CHANGED
|
@@ -12,6 +12,10 @@
|
|
|
12
12
|
|
|
13
13
|
import numpy
|
|
14
14
|
|
|
15
|
+
# Fallback to previous API
|
|
16
|
+
if not hasattr(numpy, 'trapezoid'):
|
|
17
|
+
numpy.trapezoid = numpy.trapz
|
|
18
|
+
|
|
15
19
|
__all__ = ['decompress', 'reverse_characteristics']
|
|
16
20
|
|
|
17
21
|
|
|
@@ -19,7 +23,6 @@ __all__ = ['decompress', 'reverse_characteristics']
|
|
|
19
23
|
# secant method
|
|
20
24
|
# =============
|
|
21
25
|
|
|
22
|
-
|
|
23
26
|
def secant_complex(f, z0, z1, a=0+0j, tol=1e-12, max_iter=100,
|
|
24
27
|
alpha=0.5, max_bt=1, eps=1e-30, step_factor=5.0,
|
|
25
28
|
post_smooth=True, jump_tol=10.0, verbose=False):
|
|
@@ -200,7 +203,6 @@ def secant_complex(f, z0, z1, a=0+0j, tol=1e-12, max_iter=100,
|
|
|
200
203
|
# decompress
|
|
201
204
|
# ==========
|
|
202
205
|
|
|
203
|
-
|
|
204
206
|
def decompress(freeform, size, x=None, delta=1e-4, max_iter=500,
|
|
205
207
|
tolerance=1e-8):
|
|
206
208
|
"""
|
|
@@ -287,9 +289,9 @@ def decompress(freeform, size, x=None, delta=1e-4, max_iter=500,
|
|
|
287
289
|
def _char_z(z):
|
|
288
290
|
return z + (1 / m(z)) * (1 - alpha)
|
|
289
291
|
|
|
290
|
-
z0 = numpy.full(target.shape, numpy.mean(freeform.support) + .1j,
|
|
292
|
+
z0 = numpy.full(target.shape, numpy.mean(freeform.support) + 0.1j,
|
|
291
293
|
dtype=numpy.complex128)
|
|
292
|
-
z1 = z0 - .2j
|
|
294
|
+
z1 = z0 - 0.2j
|
|
293
295
|
|
|
294
296
|
roots, _, _ = secant_complex(
|
|
295
297
|
_char_z, z0, z1,
|
freealg/_pade.py
CHANGED
freealg/_support.py
CHANGED
|
@@ -14,6 +14,12 @@ import numpy
|
|
|
14
14
|
import numba
|
|
15
15
|
from scipy.stats import gaussian_kde
|
|
16
16
|
|
|
17
|
+
__all__ = ['support_from_density', 'detect_support']
|
|
18
|
+
|
|
19
|
+
|
|
20
|
+
# ====================
|
|
21
|
+
# support from density
|
|
22
|
+
# ====================
|
|
17
23
|
|
|
18
24
|
@numba.njit(numba.types.UniTuple(numba.types.int64, 2)(
|
|
19
25
|
numba.types.float64,
|
|
@@ -24,6 +30,7 @@ def support_from_density(dx, density):
|
|
|
24
30
|
Estimates the support from a collection of noisy observations of a
|
|
25
31
|
density over a grid of x-values with mesh spacing dx.
|
|
26
32
|
"""
|
|
33
|
+
|
|
27
34
|
n = density.shape[0]
|
|
28
35
|
target = 1.0 / dx
|
|
29
36
|
|
|
@@ -92,6 +99,10 @@ def support_from_density(dx, density):
|
|
|
92
99
|
return optimal_i, optimal_j
|
|
93
100
|
|
|
94
101
|
|
|
102
|
+
# ==============
|
|
103
|
+
# detect support
|
|
104
|
+
# ==============
|
|
105
|
+
|
|
95
106
|
def detect_support(eigs, method='asymp', k=None, p=0.001, **kwargs):
|
|
96
107
|
"""
|
|
97
108
|
Estimates the support of the eigenvalue density.
|
freealg/_util.py
CHANGED
|
@@ -16,6 +16,10 @@ import scipy
|
|
|
16
16
|
from scipy.stats import beta
|
|
17
17
|
from scipy.optimize import minimize
|
|
18
18
|
|
|
19
|
+
# Fallback to previous API
|
|
20
|
+
if not hasattr(numpy, 'trapezoid'):
|
|
21
|
+
numpy.trapezoid = numpy.trapz
|
|
22
|
+
|
|
19
23
|
__all__ = ['compute_eig', 'beta_kde', 'force_density']
|
|
20
24
|
|
|
21
25
|
|
freealg/eigh.py
ADDED
|
@@ -0,0 +1,426 @@
|
|
|
1
|
+
# SPDX-License-Identifier: BSD-3-Clause
|
|
2
|
+
# SPDX-FileType: SOURCE
|
|
3
|
+
#
|
|
4
|
+
# This program is free software: you can redistribute it and/or modify it under
|
|
5
|
+
# the terms of the license found in the LICENSE.txt file in the root directory
|
|
6
|
+
# of this source tree.
|
|
7
|
+
|
|
8
|
+
|
|
9
|
+
# =======
|
|
10
|
+
# Imports
|
|
11
|
+
# =======
|
|
12
|
+
|
|
13
|
+
import numpy
|
|
14
|
+
from ._util import compute_eig
|
|
15
|
+
from .freeform import FreeForm
|
|
16
|
+
|
|
17
|
+
__all__ = ['eigh', 'cond', 'norm', 'trace', 'slogdet']
|
|
18
|
+
|
|
19
|
+
|
|
20
|
+
# ====
|
|
21
|
+
# eigh
|
|
22
|
+
# ====
|
|
23
|
+
|
|
24
|
+
def eigh(A, N=None, psd=None, plots=False):
|
|
25
|
+
"""
|
|
26
|
+
Estimate the eigenvalues of a matrix.
|
|
27
|
+
|
|
28
|
+
This function estimates the eigenvalues of the matrix :math:`\\mathbf{A}`
|
|
29
|
+
or a larger matrix containing :math:`\\mathbf{A}` using free decompression.
|
|
30
|
+
|
|
31
|
+
Parameters
|
|
32
|
+
----------
|
|
33
|
+
|
|
34
|
+
A : numpy.ndarray
|
|
35
|
+
The symmetric real-valued matrix :math:`\\mathbf{A}` whose eigenvalues
|
|
36
|
+
(or those of a matrix containing :math:`\\mathbf{A}`) are to be
|
|
37
|
+
computed.
|
|
38
|
+
|
|
39
|
+
N : int, default=None
|
|
40
|
+
The size of the matrix containing :math:`\\mathbf{A}` to estimate
|
|
41
|
+
eigenvalues of. If None, returns estimates of the eigenvalues of
|
|
42
|
+
:math:`\\mathbf{A}` itself.
|
|
43
|
+
|
|
44
|
+
psd : bool, default=None
|
|
45
|
+
Determines whether the matrix is positive-semidefinite (PSD; all
|
|
46
|
+
eigenvalues are non-negative). If `None`, the matrix is considered PSD
|
|
47
|
+
if all sampled eigenvalues are positive.
|
|
48
|
+
|
|
49
|
+
plots : bool, default=False
|
|
50
|
+
Print out all relevant plots for diagnosing eigenvalue accuracy.
|
|
51
|
+
|
|
52
|
+
Returns
|
|
53
|
+
-------
|
|
54
|
+
|
|
55
|
+
eigs : numpy.array
|
|
56
|
+
Eigenvalues of decompressed matrix
|
|
57
|
+
|
|
58
|
+
See Also
|
|
59
|
+
--------
|
|
60
|
+
|
|
61
|
+
cond
|
|
62
|
+
|
|
63
|
+
Notes
|
|
64
|
+
-----
|
|
65
|
+
|
|
66
|
+
This is a convenience function for the :class:`freealg.FreeForm` class with
|
|
67
|
+
some effective defaults that work well for common random matrix ensembles.
|
|
68
|
+
For improved performance and plotting utilites, consider fine-tuning
|
|
69
|
+
parameters using the FreeForm class.
|
|
70
|
+
|
|
71
|
+
References
|
|
72
|
+
----------
|
|
73
|
+
|
|
74
|
+
.. [1] Reference.
|
|
75
|
+
|
|
76
|
+
Examples
|
|
77
|
+
--------
|
|
78
|
+
|
|
79
|
+
.. code-block:: python
|
|
80
|
+
:emphasize-lines: 6
|
|
81
|
+
|
|
82
|
+
>>> from freealg import cond
|
|
83
|
+
>>> from freealg.distributions import MarchenkoPastur
|
|
84
|
+
|
|
85
|
+
>>> mp = MarchenkoPastur(1/50)
|
|
86
|
+
>>> A = mp.matrix(3000)
|
|
87
|
+
>>> eigs = eigh(A)
|
|
88
|
+
"""
|
|
89
|
+
|
|
90
|
+
if A.ndim != 2 or A.shape[0] != A.shape[1]:
|
|
91
|
+
raise RuntimeError("Only square matrices are permitted.")
|
|
92
|
+
n = A.shape[0]
|
|
93
|
+
|
|
94
|
+
if N is None:
|
|
95
|
+
N = n
|
|
96
|
+
|
|
97
|
+
# Size of sample matrix
|
|
98
|
+
n_s = int(80*(1 + numpy.log(n)))
|
|
99
|
+
# If matrix is not large enough, return eigenvalues
|
|
100
|
+
if n < n_s:
|
|
101
|
+
return compute_eig(A)
|
|
102
|
+
# Number of samples
|
|
103
|
+
num_samples = int(10 * (n / n_s)**0.5)
|
|
104
|
+
|
|
105
|
+
# Collect eigenvalue samples
|
|
106
|
+
samples = []
|
|
107
|
+
for _ in range(num_samples):
|
|
108
|
+
indices = numpy.random.choice(n, n_s, replace=False)
|
|
109
|
+
samples.append(compute_eig(A[numpy.ix_(indices, indices)]))
|
|
110
|
+
samples = numpy.concatenate(samples).ravel()
|
|
111
|
+
|
|
112
|
+
# If all eigenvalues are positive, set PSD flag
|
|
113
|
+
if psd is None:
|
|
114
|
+
psd = samples.min() > 0
|
|
115
|
+
|
|
116
|
+
ff = FreeForm(samples)
|
|
117
|
+
# Since we are resampling, we need to provide the correct matrix size
|
|
118
|
+
ff.n = n_s
|
|
119
|
+
|
|
120
|
+
# Perform fit and estimate eigenvalues
|
|
121
|
+
order = 1 + int(len(samples)**.2)
|
|
122
|
+
ff.fit(method='chebyshev', K=order, projection='sample',
|
|
123
|
+
force=True, plot=False, latex=False, save=False)
|
|
124
|
+
|
|
125
|
+
if plots:
|
|
126
|
+
ff.density(plot=True)
|
|
127
|
+
ff.stieltjes(plot=True)
|
|
128
|
+
|
|
129
|
+
_, _, eigs = ff.decompress(N, plot=plots)
|
|
130
|
+
|
|
131
|
+
if psd:
|
|
132
|
+
eigs = numpy.abs(eigs)
|
|
133
|
+
eigs.sort()
|
|
134
|
+
|
|
135
|
+
return eigs
|
|
136
|
+
|
|
137
|
+
|
|
138
|
+
# ====
|
|
139
|
+
# cond
|
|
140
|
+
# ====
|
|
141
|
+
|
|
142
|
+
def cond(A, N=None):
|
|
143
|
+
"""
|
|
144
|
+
Estimate the condition number of a Hermitian positive-definite matrix.
|
|
145
|
+
|
|
146
|
+
This function estimates the condition number of the matrix
|
|
147
|
+
:math:`\\mathbf{A}` or a larger matrix containing :math:`\\mathbf{A}`
|
|
148
|
+
using free decompression.
|
|
149
|
+
|
|
150
|
+
Parameters
|
|
151
|
+
----------
|
|
152
|
+
|
|
153
|
+
A : numpy.ndarray
|
|
154
|
+
The symmetric real-valued matrix :math:`\\mathbf{A}` whose condition
|
|
155
|
+
number (or that of a matrix containing :math:`\\mathbf{A}`) are to be
|
|
156
|
+
computed.
|
|
157
|
+
|
|
158
|
+
N : int, default=None
|
|
159
|
+
The size of the matrix containing :math:`\\mathbf{A}` to estimate
|
|
160
|
+
eigenvalues of. If None, returns estimates of the eigenvalues of
|
|
161
|
+
:math:`\\mathbf{A}` itself.
|
|
162
|
+
|
|
163
|
+
Returns
|
|
164
|
+
-------
|
|
165
|
+
|
|
166
|
+
c : float
|
|
167
|
+
Condition number
|
|
168
|
+
|
|
169
|
+
See Also
|
|
170
|
+
--------
|
|
171
|
+
|
|
172
|
+
eigh
|
|
173
|
+
norm
|
|
174
|
+
slogdet
|
|
175
|
+
trace
|
|
176
|
+
|
|
177
|
+
Notes
|
|
178
|
+
-----
|
|
179
|
+
|
|
180
|
+
This is a convenience function using :func:`freealg.eigh`.
|
|
181
|
+
|
|
182
|
+
Examples
|
|
183
|
+
--------
|
|
184
|
+
|
|
185
|
+
.. code-block:: python
|
|
186
|
+
:emphasize-lines: 6
|
|
187
|
+
|
|
188
|
+
>>> from freealg import cond
|
|
189
|
+
>>> from freealg.distributions import MarchenkoPastur
|
|
190
|
+
|
|
191
|
+
>>> mp = MarchenkoPastur(1/50)
|
|
192
|
+
>>> A = mp.matrix(3000)
|
|
193
|
+
>>> cond(A)
|
|
194
|
+
"""
|
|
195
|
+
|
|
196
|
+
eigs = eigh(A, N)
|
|
197
|
+
return eigs.max() / eigs.min()
|
|
198
|
+
|
|
199
|
+
|
|
200
|
+
# ====
|
|
201
|
+
# norm
|
|
202
|
+
# ====
|
|
203
|
+
|
|
204
|
+
def norm(A, N=None, order=None):
|
|
205
|
+
"""
|
|
206
|
+
Estimate the Schatten norm of a Hermitian matrix.
|
|
207
|
+
|
|
208
|
+
This function estimates the norm of the matrix :math:`\\mathbf{A}` or a
|
|
209
|
+
larger matrix containing :math:`\\mathbf{A}` using free decompression.
|
|
210
|
+
|
|
211
|
+
Parameters
|
|
212
|
+
----------
|
|
213
|
+
|
|
214
|
+
A : numpy.ndarray
|
|
215
|
+
The symmetric real-valued matrix :math:`\\mathbf{A}` whose condition
|
|
216
|
+
number (or that of a matrix containing :math:`\\mathbf{A}`) are to be
|
|
217
|
+
computed.
|
|
218
|
+
|
|
219
|
+
N : int, default=None
|
|
220
|
+
The size of the matrix containing :math:`\\mathbf{A}` to estimate
|
|
221
|
+
eigenvalues of. If None, returns estimates of the eigenvalues of
|
|
222
|
+
:math:`\\mathbf{A}` itself.
|
|
223
|
+
|
|
224
|
+
order : {float, ``''inf``, ``'-inf'``, ``'fro'``, ``'nuc'``}, default=2
|
|
225
|
+
Order of the norm.
|
|
226
|
+
|
|
227
|
+
* float :math:`p`: Schtten p-norm.
|
|
228
|
+
* ``'inf'``: Largest absolute eigenvalue
|
|
229
|
+
:math:`\\max \\vert \\lambda_i \\vert)`
|
|
230
|
+
* ``'-inf'``: Smallest absolute eigenvalue
|
|
231
|
+
:math:`\\min \\vert \\lambda_i \\vert)`
|
|
232
|
+
* ``'fro'``: Frobenius norm corresponding to :math:`p=2`
|
|
233
|
+
* ``'nuc'``: Nuclear (or trace) norm corresponding to :math:`p=1`
|
|
234
|
+
|
|
235
|
+
Returns
|
|
236
|
+
-------
|
|
237
|
+
|
|
238
|
+
norm : float
|
|
239
|
+
matrix norm
|
|
240
|
+
|
|
241
|
+
See Also
|
|
242
|
+
--------
|
|
243
|
+
|
|
244
|
+
eigh
|
|
245
|
+
cond
|
|
246
|
+
slogdet
|
|
247
|
+
trace
|
|
248
|
+
|
|
249
|
+
Notes
|
|
250
|
+
-----
|
|
251
|
+
|
|
252
|
+
Thes Schatten :math:`p`-norm is defined by
|
|
253
|
+
|
|
254
|
+
.. math::
|
|
255
|
+
|
|
256
|
+
\\Vert \\mathbf{A} \\Vert_p = \\left(
|
|
257
|
+
\\sum_{i=1}^N \\vert \\lambda_i \\vert^p \\right)^{1/p}.
|
|
258
|
+
|
|
259
|
+
Examples
|
|
260
|
+
--------
|
|
261
|
+
|
|
262
|
+
.. code-block:: python
|
|
263
|
+
:emphasize-lines: 6
|
|
264
|
+
|
|
265
|
+
>>> from freealg import norm
|
|
266
|
+
>>> from freealg.distributions import MarchenkoPastur
|
|
267
|
+
|
|
268
|
+
>>> mp = MarchenkoPastur(1/50)
|
|
269
|
+
>>> A = mp.matrix(3000)
|
|
270
|
+
>>> norm(A, 100_000, order='fro')
|
|
271
|
+
"""
|
|
272
|
+
|
|
273
|
+
eigs = eigh(A, N)
|
|
274
|
+
|
|
275
|
+
if (order == 'inf') or numpy.isinf(order):
|
|
276
|
+
norm_ = max(numpy.abs(eigs))
|
|
277
|
+
|
|
278
|
+
elif (order == '-inf') or numpy.isneginf(order):
|
|
279
|
+
norm_ = min(numpy.abs(eigs))
|
|
280
|
+
|
|
281
|
+
elif (order == 'nuc') or (order == 1.0):
|
|
282
|
+
norm_ = numpy.sum(numpy.abs(eigs))
|
|
283
|
+
|
|
284
|
+
elif (order == 'fro') or (order == 2.0):
|
|
285
|
+
norm_2 = numpy.sum(numpy.abs(eigs)**2)
|
|
286
|
+
norm_ = numpy.sqrt(norm_2)
|
|
287
|
+
|
|
288
|
+
elif isinstance(order, (int, float, numpy.integer, numpy.floating)) and \
|
|
289
|
+
not isinstance(order, (bool, numpy.bool_)):
|
|
290
|
+
norm_q = numpy.sum(numpy.abs(eigs)**order)
|
|
291
|
+
norm_ = norm_q**(1.0 / order)
|
|
292
|
+
|
|
293
|
+
else:
|
|
294
|
+
raise ValueError('"order" is invalid.')
|
|
295
|
+
|
|
296
|
+
return norm_
|
|
297
|
+
|
|
298
|
+
|
|
299
|
+
# =====
|
|
300
|
+
# trace
|
|
301
|
+
# =====
|
|
302
|
+
|
|
303
|
+
def trace(A, N=None):
|
|
304
|
+
"""
|
|
305
|
+
Estimate the trace of a Hermitian matrix.
|
|
306
|
+
|
|
307
|
+
This function estimates the trace of the matrix :math:`\\mathbf{A}` or a
|
|
308
|
+
larger matrix containing :math:`\\mathbf{A}` using free decompression.
|
|
309
|
+
|
|
310
|
+
Parameters
|
|
311
|
+
----------
|
|
312
|
+
|
|
313
|
+
A : numpy.ndarray
|
|
314
|
+
The symmetric real-valued matrix :math:`\\mathbf{A}` whose condition
|
|
315
|
+
number (or that of a matrix containing :math:`\\mathbf{A}`) are to be
|
|
316
|
+
computed.
|
|
317
|
+
|
|
318
|
+
N : int, default=None
|
|
319
|
+
The size of the matrix containing :math:`\\mathbf{A}` to estimate
|
|
320
|
+
eigenvalues of. If None, returns estimates of the eigenvalues of
|
|
321
|
+
:math:`\\mathbf{A}` itself.
|
|
322
|
+
|
|
323
|
+
Returns
|
|
324
|
+
-------
|
|
325
|
+
|
|
326
|
+
trace : float
|
|
327
|
+
matrix trace
|
|
328
|
+
|
|
329
|
+
See Also
|
|
330
|
+
--------
|
|
331
|
+
|
|
332
|
+
eigh
|
|
333
|
+
cond
|
|
334
|
+
slogdet
|
|
335
|
+
norm
|
|
336
|
+
|
|
337
|
+
Notes
|
|
338
|
+
-----
|
|
339
|
+
|
|
340
|
+
This is a convenience function using :func:`freealg.eigh`.
|
|
341
|
+
|
|
342
|
+
Examples
|
|
343
|
+
--------
|
|
344
|
+
|
|
345
|
+
.. code-block:: python
|
|
346
|
+
:emphasize-lines: 6
|
|
347
|
+
|
|
348
|
+
>>> from freealg import norm
|
|
349
|
+
>>> from freealg.distributions import MarchenkoPastur
|
|
350
|
+
|
|
351
|
+
>>> mp = MarchenkoPastur(1/50)
|
|
352
|
+
>>> A = mp.matrix(3000)
|
|
353
|
+
>>> trace(A, 100_000)
|
|
354
|
+
"""
|
|
355
|
+
|
|
356
|
+
eigs = eigh(A, N)
|
|
357
|
+
trace_ = numpy.sum(eigs)
|
|
358
|
+
|
|
359
|
+
return trace_
|
|
360
|
+
|
|
361
|
+
|
|
362
|
+
# =======
|
|
363
|
+
# slogdet
|
|
364
|
+
# =======
|
|
365
|
+
|
|
366
|
+
def slogdet(A, N=None):
|
|
367
|
+
"""
|
|
368
|
+
Estimate the sign and logarithm of the determinant of a Hermitian matrix.
|
|
369
|
+
|
|
370
|
+
This function estimates the *slogdet* of the matrix :math:`\\mathbf{A}` or
|
|
371
|
+
a larger matrix containing :math:`\\mathbf{A}` using free decompression.
|
|
372
|
+
|
|
373
|
+
Parameters
|
|
374
|
+
----------
|
|
375
|
+
|
|
376
|
+
A : numpy.ndarray
|
|
377
|
+
The symmetric real-valued matrix :math:`\\mathbf{A}` whose condition
|
|
378
|
+
number (or that of a matrix containing :math:`\\mathbf{A}`) are to be
|
|
379
|
+
computed.
|
|
380
|
+
|
|
381
|
+
N : int, default=None
|
|
382
|
+
The size of the matrix containing :math:`\\mathbf{A}` to estimate
|
|
383
|
+
eigenvalues of. If None, returns estimates of the eigenvalues of
|
|
384
|
+
:math:`\\mathbf{A}` itself.
|
|
385
|
+
|
|
386
|
+
Returns
|
|
387
|
+
-------
|
|
388
|
+
|
|
389
|
+
sign : float
|
|
390
|
+
Sign of determinant
|
|
391
|
+
|
|
392
|
+
ld : float
|
|
393
|
+
natural logarithm of the absolute value of the determinant
|
|
394
|
+
|
|
395
|
+
See Also
|
|
396
|
+
--------
|
|
397
|
+
|
|
398
|
+
eigh
|
|
399
|
+
cond
|
|
400
|
+
trace
|
|
401
|
+
norm
|
|
402
|
+
|
|
403
|
+
Notes
|
|
404
|
+
-----
|
|
405
|
+
|
|
406
|
+
This is a convenience function using :func:`freealg.eigh`.
|
|
407
|
+
|
|
408
|
+
Examples
|
|
409
|
+
--------
|
|
410
|
+
|
|
411
|
+
.. code-block:: python
|
|
412
|
+
:emphasize-lines: 6
|
|
413
|
+
|
|
414
|
+
>>> from freealg import norm
|
|
415
|
+
>>> from freealg.distributions import MarchenkoPastur
|
|
416
|
+
|
|
417
|
+
>>> mp = MarchenkoPastur(1/50)
|
|
418
|
+
>>> A = mp.matrix(3000)
|
|
419
|
+
>>> sign, ld = slogdet(A, 100_000)
|
|
420
|
+
"""
|
|
421
|
+
|
|
422
|
+
eigs = eigh(A, N)
|
|
423
|
+
sign = numpy.prod(numpy.sign(eigs))
|
|
424
|
+
ld = numpy.sum(numpy.log(numpy.abs(eigs)))
|
|
425
|
+
|
|
426
|
+
return sign, ld
|
freealg/freeform.py
CHANGED
|
@@ -28,6 +28,10 @@ from ._decompress import decompress
|
|
|
28
28
|
from ._sample import qmc_sample
|
|
29
29
|
from ._support import detect_support
|
|
30
30
|
|
|
31
|
+
# Fallback to previous API
|
|
32
|
+
if not hasattr(numpy, 'trapezoid'):
|
|
33
|
+
numpy.trapezoid = numpy.trapz
|
|
34
|
+
|
|
31
35
|
__all__ = ['FreeForm']
|
|
32
36
|
|
|
33
37
|
|
|
@@ -55,13 +59,14 @@ class FreeForm(object):
|
|
|
55
59
|
Size of perturbations into the upper half plane for Plemelj's
|
|
56
60
|
formula.
|
|
57
61
|
|
|
58
|
-
|
|
59
|
-
|
|
62
|
+
**kwargs : dict, optional
|
|
63
|
+
Parameters for the ``detect_support`` function can also be prescribed
|
|
64
|
+
here when ``support=None``.
|
|
60
65
|
|
|
61
66
|
Notes
|
|
62
67
|
-----
|
|
63
68
|
|
|
64
|
-
|
|
69
|
+
TBD
|
|
65
70
|
|
|
66
71
|
References
|
|
67
72
|
----------
|
|
@@ -890,103 +895,3 @@ class FreeForm(object):
|
|
|
890
895
|
return x, rho, eigs
|
|
891
896
|
else:
|
|
892
897
|
return x, rho
|
|
893
|
-
|
|
894
|
-
|
|
895
|
-
def eigfree(A, N=None, psd=None, plots=False):
|
|
896
|
-
"""
|
|
897
|
-
Estimate the eigenvalues of a matrix :math:`\\mathbf{A}` or a larger matrix
|
|
898
|
-
containing :math:`\\mathbf{A}` using free decompression.
|
|
899
|
-
|
|
900
|
-
This is a convenience function for the FreeForm class with some effective
|
|
901
|
-
defaults that work well for common random matrix ensembles. For improved
|
|
902
|
-
performance and plotting utilites, consider finetuning parameters using
|
|
903
|
-
the FreeForm class.
|
|
904
|
-
|
|
905
|
-
Parameters
|
|
906
|
-
----------
|
|
907
|
-
|
|
908
|
-
A : numpy.ndarray
|
|
909
|
-
The symmetric real-valued matrix :math:`\\mathbf{A}` whose eigenvalues
|
|
910
|
-
(or those of a matrix containing :math:`\\mathbf{A}`) are to be
|
|
911
|
-
computed.
|
|
912
|
-
|
|
913
|
-
N : int, default=None
|
|
914
|
-
The size of the matrix containing :math:`\\mathbf{A}` to estimate
|
|
915
|
-
eigenvalues of. If None, returns estimates of the eigenvalues of
|
|
916
|
-
:math:`\\mathbf{A}` itself.
|
|
917
|
-
|
|
918
|
-
psd : bool, default=None
|
|
919
|
-
Determines whether the matrix is positive-semidefinite (PSD; all
|
|
920
|
-
eigenvalues are non-negative). If None, the matrix is considered PSD if
|
|
921
|
-
all sampled eigenvalues are positive.
|
|
922
|
-
|
|
923
|
-
plots : bool, default=False
|
|
924
|
-
Print out all relevant plots for diagnosing eigenvalue accuracy.
|
|
925
|
-
|
|
926
|
-
Notes
|
|
927
|
-
-----
|
|
928
|
-
|
|
929
|
-
Notes.
|
|
930
|
-
|
|
931
|
-
References
|
|
932
|
-
----------
|
|
933
|
-
|
|
934
|
-
.. [1] Reference.
|
|
935
|
-
|
|
936
|
-
Examples
|
|
937
|
-
--------
|
|
938
|
-
|
|
939
|
-
.. code-block:: python
|
|
940
|
-
|
|
941
|
-
>>> from freealg import FreeForm
|
|
942
|
-
"""
|
|
943
|
-
if A.ndim != 2 or A.shape[0] != A.shape[1]:
|
|
944
|
-
raise RuntimeError("Only square matrices are permitted.")
|
|
945
|
-
n = A.shape[0]
|
|
946
|
-
|
|
947
|
-
if N is None:
|
|
948
|
-
N = n
|
|
949
|
-
|
|
950
|
-
# Size of sample matrix
|
|
951
|
-
n_s = int(80*(1 + numpy.log(n)))
|
|
952
|
-
# If matrix is not large enough, return eigenvalues
|
|
953
|
-
if n < n_s:
|
|
954
|
-
return compute_eig(A)
|
|
955
|
-
# Number of samples
|
|
956
|
-
num_samples = int(10 * (n / n_s)**0.5)
|
|
957
|
-
# else:
|
|
958
|
-
# # Use the entire matrix given
|
|
959
|
-
# n_s = n
|
|
960
|
-
# num_samples = 1
|
|
961
|
-
|
|
962
|
-
# Collect eigenvalue samples
|
|
963
|
-
samples = []
|
|
964
|
-
for _ in range(num_samples):
|
|
965
|
-
indices = numpy.random.choice(n, n_s, replace=False)
|
|
966
|
-
samples.append(compute_eig(A[numpy.ix_(indices, indices)]))
|
|
967
|
-
samples = numpy.concatenate(samples).ravel()
|
|
968
|
-
|
|
969
|
-
# If all eigenvalues are positive, set PSD flag
|
|
970
|
-
if psd is None:
|
|
971
|
-
psd = samples.min() > 0
|
|
972
|
-
|
|
973
|
-
ff = FreeForm(samples)
|
|
974
|
-
# Since we are resampling, we need to provide the correct matrix size
|
|
975
|
-
ff.n = n_s
|
|
976
|
-
|
|
977
|
-
# Perform fit and estimate eigenvalues
|
|
978
|
-
order = 1 + int(len(samples)**.2)
|
|
979
|
-
ff.fit(method='chebyshev', K=order, projection='sample',
|
|
980
|
-
force=True, plot=False, latex=False, save=False)
|
|
981
|
-
|
|
982
|
-
if plots:
|
|
983
|
-
ff.density(plot=True)
|
|
984
|
-
ff.stieltjes(plot=True)
|
|
985
|
-
|
|
986
|
-
_, _, eigs = ff.decompress(N, plot=plots)
|
|
987
|
-
|
|
988
|
-
if psd:
|
|
989
|
-
eigs = numpy.abs(eigs)
|
|
990
|
-
eigs.sort()
|
|
991
|
-
|
|
992
|
-
return eigs
|
|
@@ -0,0 +1,25 @@
|
|
|
1
|
+
freealg/__init__.py,sha256=AM0G2tX7sBgzCTcOVbWynA9NFkQZKyphL9IR1tKOoK4,614
|
|
2
|
+
freealg/__version__.py,sha256=VrXpHDu3erkzwl_WXrqINBm9xWkcyUy53IQOj042dOs,22
|
|
3
|
+
freealg/_chebyshev.py,sha256=dsAj3YEpmkzB65smluZ0Fi5IZSdpnQXBSIuKMg19grA,5523
|
|
4
|
+
freealg/_damp.py,sha256=k2vtBtWOxQBf4qXaWu_En81lQBXbEO4QbxxWpvuVhdE,1802
|
|
5
|
+
freealg/_decompress.py,sha256=0MYoO3lqwMgNYlVriaRNUqUwY3XYyZZsDAtNRBq6rhE,10470
|
|
6
|
+
freealg/_jacobi.py,sha256=AT4ONSHGGDxVKE3MGMLyMR8uDFiO-e9u3x5udYfdJJk,5635
|
|
7
|
+
freealg/_pade.py,sha256=Diw850oH2OLQeUrBR-q19TmjSBoBvXl6ogp4o1s2UIo,15184
|
|
8
|
+
freealg/_plot_util.py,sha256=U4alp7Pzg315_7jJdu1UB0tIUcxUovQgHDHsUYoa2Z0,19728
|
|
9
|
+
freealg/_sample.py,sha256=ckC75eqv-mRP1F5BnhvsjfLTaoAzHK8bebl9bCRZYDo,2561
|
|
10
|
+
freealg/_support.py,sha256=sxp867DxfmvYqyQNOyla3zlcVyxm7KL0M-fxZaRIw8E,6299
|
|
11
|
+
freealg/_util.py,sha256=8Tvz-XODtKYoU76ODmF1TBaIYLlr6-AXiyoMDwDSxVg,3779
|
|
12
|
+
freealg/eigh.py,sha256=Vm9kLiksmOhsbsxUH7vBtAAKEtwR_RHeEDJCH4Qkr28,10109
|
|
13
|
+
freealg/freeform.py,sha256=8emyCQ6AUjp_HB1gWQ-ecddlDgfxHGr3PqXSyoPxeMo,28593
|
|
14
|
+
freealg/distributions/__init__.py,sha256=t_yZyEkW_W_tSV9IvgYXtVASxD2BEdiNVXcV2ebMy8M,579
|
|
15
|
+
freealg/distributions/_kesten_mckay.py,sha256=210RF2OQEYLZBeLB6wmbdHnZPs_9ldDNHm_FMlg5tis,19881
|
|
16
|
+
freealg/distributions/_marchenko_pastur.py,sha256=kchFccRMuVF2Cus_99vdEwuRimkHzEUV8xt5kZFg7ZI,16994
|
|
17
|
+
freealg/distributions/_meixner.py,sha256=ws7t_EUa7V0s97dgMQIJLv1b6qMLqf9fLLbTJQudf_8,17512
|
|
18
|
+
freealg/distributions/_wachter.py,sha256=Hna_MXqAPjuRkeilLPMf4Xg_3C6tTu5oZLEQnA-RuE4,16897
|
|
19
|
+
freealg/distributions/_wigner.py,sha256=SxgPLtvIVBi9m4De-oBD0x6-2Je_eBqpDrpDYcoLuis,15871
|
|
20
|
+
freealg-0.3.0.dist-info/licenses/AUTHORS.txt,sha256=0b67Nz4_JgIzUupHJTAZxu5QdSUM_HRM_X_w4xCb17o,30
|
|
21
|
+
freealg-0.3.0.dist-info/licenses/LICENSE.txt,sha256=J-EEYEtxb3VVf_Bn1TYfWnpY5lMFIM15iLDDcnaDTPA,1443
|
|
22
|
+
freealg-0.3.0.dist-info/METADATA,sha256=Z9HFCclNCRzFORlR2dQ6pzvPmAJfa5-Dxpee67QxqdM,4496
|
|
23
|
+
freealg-0.3.0.dist-info/WHEEL,sha256=_zCd3N1l69ArxyTb8rzEoP9TpbYXkqRFSNOD5OuxnTs,91
|
|
24
|
+
freealg-0.3.0.dist-info/top_level.txt,sha256=eR2wrgYwDdnnJ9Zf5PruPqe4kQav0GMvRsqct6y00Q8,8
|
|
25
|
+
freealg-0.3.0.dist-info/RECORD,,
|
freealg/eigfree.py
DELETED
|
@@ -1,170 +0,0 @@
|
|
|
1
|
-
# SPDX-FileCopyrightText: Copyright 2025, Siavash Ameli <sameli@berkeley.edu>
|
|
2
|
-
# SPDX-License-Identifier: BSD-3-Clause
|
|
3
|
-
# SPDX-FileType: SOURCE
|
|
4
|
-
#
|
|
5
|
-
# This program is free software: you can redistribute it and/or modify it under
|
|
6
|
-
# the terms of the license found in the LICENSE.txt file in the root directory
|
|
7
|
-
# of this source tree.
|
|
8
|
-
|
|
9
|
-
|
|
10
|
-
# =======
|
|
11
|
-
# Imports
|
|
12
|
-
# =======
|
|
13
|
-
|
|
14
|
-
import numpy
|
|
15
|
-
from ._util import compute_eig
|
|
16
|
-
from .freeform import FreeForm
|
|
17
|
-
|
|
18
|
-
__all__ = ['eigfree', 'condfree']
|
|
19
|
-
|
|
20
|
-
|
|
21
|
-
# ========
|
|
22
|
-
# eig free
|
|
23
|
-
# ========
|
|
24
|
-
|
|
25
|
-
|
|
26
|
-
def eigfree(A, N=None, psd=None, plots=False):
|
|
27
|
-
"""
|
|
28
|
-
Estimate the eigenvalues of a matrix.
|
|
29
|
-
|
|
30
|
-
This function estimates the eigenvalues of the matrix :math:`\\mathbf{A}`
|
|
31
|
-
or a larger matrix containing :math:`\\mathbf{A}` using free decompression.
|
|
32
|
-
|
|
33
|
-
Parameters
|
|
34
|
-
----------
|
|
35
|
-
|
|
36
|
-
A : numpy.ndarray
|
|
37
|
-
The symmetric real-valued matrix :math:`\\mathbf{A}` whose eigenvalues
|
|
38
|
-
(or those of a matrix containing :math:`\\mathbf{A}`) are to be
|
|
39
|
-
computed.
|
|
40
|
-
|
|
41
|
-
N : int, default=None
|
|
42
|
-
The size of the matrix containing :math:`\\mathbf{A}` to estimate
|
|
43
|
-
eigenvalues of. If None, returns estimates of the eigenvalues of
|
|
44
|
-
:math:`\\mathbf{A}` itself.
|
|
45
|
-
|
|
46
|
-
psd: bool, default=None
|
|
47
|
-
Determines whether the matrix is positive-semidefinite (PSD; all
|
|
48
|
-
eigenvalues are non-negative). If None, the matrix is considered PSD if
|
|
49
|
-
all sampled eigenvalues are positive.
|
|
50
|
-
|
|
51
|
-
plots : bool, default=False
|
|
52
|
-
Print out all relevant plots for diagnosing eigenvalue accuracy.
|
|
53
|
-
|
|
54
|
-
Notes
|
|
55
|
-
-----
|
|
56
|
-
|
|
57
|
-
This is a convenience function for the FreeForm class with some effective
|
|
58
|
-
defaults that work well for common random matrix ensembles. For improved
|
|
59
|
-
performance and plotting utilites, consider finetuning parameters using
|
|
60
|
-
the FreeForm class.
|
|
61
|
-
|
|
62
|
-
References
|
|
63
|
-
----------
|
|
64
|
-
|
|
65
|
-
.. [1] Reference.
|
|
66
|
-
|
|
67
|
-
Examples
|
|
68
|
-
--------
|
|
69
|
-
|
|
70
|
-
.. code-block:: python
|
|
71
|
-
|
|
72
|
-
>>> from freealg import condfree
|
|
73
|
-
>>> from freealg.distributions import MarchenkoPastur
|
|
74
|
-
>>> mp = MarchenkoPastur(1/50)
|
|
75
|
-
>>> A = mp.matrix(3000)
|
|
76
|
-
>>> eigs = eigfree(A)
|
|
77
|
-
"""
|
|
78
|
-
|
|
79
|
-
if A.ndim != 2 or A.shape[0] != A.shape[1]:
|
|
80
|
-
raise RuntimeError("Only square matrices are permitted.")
|
|
81
|
-
n = A.shape[0]
|
|
82
|
-
|
|
83
|
-
if N is None:
|
|
84
|
-
N = n
|
|
85
|
-
|
|
86
|
-
# Size of sample matrix
|
|
87
|
-
n_s = int(80*(1 + numpy.log(n)))
|
|
88
|
-
# If matrix is not large enough, return eigenvalues
|
|
89
|
-
if n < n_s:
|
|
90
|
-
return compute_eig(A)
|
|
91
|
-
# Number of samples
|
|
92
|
-
num_samples = int(10 * (n / n_s)**0.5)
|
|
93
|
-
|
|
94
|
-
# Collect eigenvalue samples
|
|
95
|
-
samples = []
|
|
96
|
-
for _ in range(num_samples):
|
|
97
|
-
indices = numpy.random.choice(n, n_s, replace=False)
|
|
98
|
-
samples.append(compute_eig(A[numpy.ix_(indices, indices)]))
|
|
99
|
-
samples = numpy.concatenate(samples).ravel()
|
|
100
|
-
|
|
101
|
-
# If all eigenvalues are positive, set PSD flag
|
|
102
|
-
if psd is None:
|
|
103
|
-
psd = samples.min() > 0
|
|
104
|
-
|
|
105
|
-
ff = FreeForm(samples)
|
|
106
|
-
# Since we are resampling, we need to provide the correct matrix size
|
|
107
|
-
ff.n = n_s
|
|
108
|
-
|
|
109
|
-
# Perform fit and estimate eigenvalues
|
|
110
|
-
order = 1 + int(len(samples)**.2)
|
|
111
|
-
ff.fit(method='chebyshev', K=order, projection='sample',
|
|
112
|
-
force=True, plot=False, latex=False, save=False)
|
|
113
|
-
|
|
114
|
-
if plots:
|
|
115
|
-
ff.density(plot=True)
|
|
116
|
-
ff.stieltjes(plot=True)
|
|
117
|
-
|
|
118
|
-
_, _, eigs = ff.decompress(N, plot=plots)
|
|
119
|
-
|
|
120
|
-
if psd:
|
|
121
|
-
eigs = numpy.abs(eigs)
|
|
122
|
-
eigs.sort()
|
|
123
|
-
|
|
124
|
-
return eigs
|
|
125
|
-
|
|
126
|
-
|
|
127
|
-
# ========
|
|
128
|
-
# cond free
|
|
129
|
-
# ========
|
|
130
|
-
|
|
131
|
-
def condfree(A, N=None):
|
|
132
|
-
"""
|
|
133
|
-
Estimate the condition number of a positive-definite matrix.
|
|
134
|
-
|
|
135
|
-
This function estimates the condition number of the matrix
|
|
136
|
-
:math:`\\mathbf{A}` or a larger matrix containing :math:`\\mathbf{A}`
|
|
137
|
-
using free decompression.
|
|
138
|
-
|
|
139
|
-
Parameters
|
|
140
|
-
----------
|
|
141
|
-
|
|
142
|
-
A : numpy.ndarray
|
|
143
|
-
The symmetric real-valued matrix :math:`\\mathbf{A}` whose condition
|
|
144
|
-
number (or that of a matrix containing :math:`\\mathbf{A}`) are to be
|
|
145
|
-
computed.
|
|
146
|
-
|
|
147
|
-
N : int, default=None
|
|
148
|
-
The size of the matrix containing :math:`\\mathbf{A}` to estimate
|
|
149
|
-
eigenvalues of. If None, returns estimates of the eigenvalues of
|
|
150
|
-
:math:`\\mathbf{A}` itself.
|
|
151
|
-
|
|
152
|
-
Notes
|
|
153
|
-
-----
|
|
154
|
-
|
|
155
|
-
This is a convenience function using the eigfree procedure.
|
|
156
|
-
|
|
157
|
-
Examples
|
|
158
|
-
--------
|
|
159
|
-
|
|
160
|
-
.. code-block:: python
|
|
161
|
-
|
|
162
|
-
>>> from freealg import condfree
|
|
163
|
-
>>> from freealg.distributions import MarchenkoPastur
|
|
164
|
-
>>> mp = MarchenkoPastur(1/50)
|
|
165
|
-
>>> A = mp.matrix(3000)
|
|
166
|
-
>>> condfree(A)
|
|
167
|
-
"""
|
|
168
|
-
|
|
169
|
-
eigs = eigfree(A, N)
|
|
170
|
-
return eigs.max() / eigs.min()
|
freealg-0.1.15.dist-info/RECORD
DELETED
|
@@ -1,25 +0,0 @@
|
|
|
1
|
-
freealg/__init__.py,sha256=oYfXRQgu--OhZAY9cIVdfEHDVz6XQmqzTsIqIFAlPws,570
|
|
2
|
-
freealg/__version__.py,sha256=qb0TalpSt1CbprnFyeLUKqgrqNtmnk9IoQQ7umAoXVY,23
|
|
3
|
-
freealg/_chebyshev.py,sha256=dsAj3YEpmkzB65smluZ0Fi5IZSdpnQXBSIuKMg19grA,5523
|
|
4
|
-
freealg/_damp.py,sha256=k2vtBtWOxQBf4qXaWu_En81lQBXbEO4QbxxWpvuVhdE,1802
|
|
5
|
-
freealg/_decompress.py,sha256=Q19AmpqxBWcrbFSniDOnh9ethOLm5_7bqDLXUNGCxk4,10372
|
|
6
|
-
freealg/_jacobi.py,sha256=AT4ONSHGGDxVKE3MGMLyMR8uDFiO-e9u3x5udYfdJJk,5635
|
|
7
|
-
freealg/_pade.py,sha256=wer31W6c6lDCag4THKGdW69r5d7uimsH_Y53wJih144,15185
|
|
8
|
-
freealg/_plot_util.py,sha256=U4alp7Pzg315_7jJdu1UB0tIUcxUovQgHDHsUYoa2Z0,19728
|
|
9
|
-
freealg/_sample.py,sha256=ckC75eqv-mRP1F5BnhvsjfLTaoAzHK8bebl9bCRZYDo,2561
|
|
10
|
-
freealg/_support.py,sha256=LIM_VWH8TzLJlp_q5A0ql-xawPUNyH2YI9ZKBlHHuzo,6122
|
|
11
|
-
freealg/_util.py,sha256=PWLXcsTb0-FinGWvNiY12D-f4CHQB5bP_W3ThqfY4FY,3681
|
|
12
|
-
freealg/eigfree.py,sha256=ssS6t6b5wSgZNOo3ydA0MxvnhJivbYH8bwdKNmD81FE,4571
|
|
13
|
-
freealg/freeform.py,sha256=j1oECmOyc-v6o7bIrbW844QZqAG6hJm6NjGvLXRMvEo,31263
|
|
14
|
-
freealg/distributions/__init__.py,sha256=t_yZyEkW_W_tSV9IvgYXtVASxD2BEdiNVXcV2ebMy8M,579
|
|
15
|
-
freealg/distributions/_kesten_mckay.py,sha256=210RF2OQEYLZBeLB6wmbdHnZPs_9ldDNHm_FMlg5tis,19881
|
|
16
|
-
freealg/distributions/_marchenko_pastur.py,sha256=kchFccRMuVF2Cus_99vdEwuRimkHzEUV8xt5kZFg7ZI,16994
|
|
17
|
-
freealg/distributions/_meixner.py,sha256=ws7t_EUa7V0s97dgMQIJLv1b6qMLqf9fLLbTJQudf_8,17512
|
|
18
|
-
freealg/distributions/_wachter.py,sha256=Hna_MXqAPjuRkeilLPMf4Xg_3C6tTu5oZLEQnA-RuE4,16897
|
|
19
|
-
freealg/distributions/_wigner.py,sha256=SxgPLtvIVBi9m4De-oBD0x6-2Je_eBqpDrpDYcoLuis,15871
|
|
20
|
-
freealg-0.1.15.dist-info/licenses/AUTHORS.txt,sha256=0b67Nz4_JgIzUupHJTAZxu5QdSUM_HRM_X_w4xCb17o,30
|
|
21
|
-
freealg-0.1.15.dist-info/licenses/LICENSE.txt,sha256=J-EEYEtxb3VVf_Bn1TYfWnpY5lMFIM15iLDDcnaDTPA,1443
|
|
22
|
-
freealg-0.1.15.dist-info/METADATA,sha256=mvdtAxG-4t3-rThaz_lqpG3B_Ca8Z2LrpekEocrxVRk,4497
|
|
23
|
-
freealg-0.1.15.dist-info/WHEEL,sha256=_zCd3N1l69ArxyTb8rzEoP9TpbYXkqRFSNOD5OuxnTs,91
|
|
24
|
-
freealg-0.1.15.dist-info/top_level.txt,sha256=eR2wrgYwDdnnJ9Zf5PruPqe4kQav0GMvRsqct6y00Q8,8
|
|
25
|
-
freealg-0.1.15.dist-info/RECORD,,
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|