fraudcrawler 0.3.3__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of fraudcrawler might be problematic. Click here for more details.
- fraudcrawler/__init__.py +30 -0
- fraudcrawler/base/__init__.py +0 -0
- fraudcrawler/base/base.py +145 -0
- fraudcrawler/base/client.py +134 -0
- fraudcrawler/base/google-languages.json +630 -0
- fraudcrawler/base/google-locations.json +1 -0
- fraudcrawler/base/orchestrator.py +626 -0
- fraudcrawler/launch_demo_pipeline.py +100 -0
- fraudcrawler/processing/__init__.py +0 -0
- fraudcrawler/processing/processor.py +105 -0
- fraudcrawler/scraping/__init__.py +0 -0
- fraudcrawler/scraping/enrich.py +303 -0
- fraudcrawler/scraping/serp.py +251 -0
- fraudcrawler/scraping/zyte.py +194 -0
- fraudcrawler/settings.py +31 -0
- fraudcrawler-0.3.3.dist-info/LICENSE +21 -0
- fraudcrawler-0.3.3.dist-info/METADATA +163 -0
- fraudcrawler-0.3.3.dist-info/RECORD +20 -0
- fraudcrawler-0.3.3.dist-info/WHEEL +4 -0
- fraudcrawler-0.3.3.dist-info/entry_points.txt +3 -0
fraudcrawler/__init__.py
ADDED
|
@@ -0,0 +1,30 @@
|
|
|
1
|
+
from fraudcrawler.scraping.serp import SerpApi
|
|
2
|
+
from fraudcrawler.scraping.enrich import Enricher
|
|
3
|
+
from fraudcrawler.scraping.zyte import ZyteApi
|
|
4
|
+
from fraudcrawler.processing.processor import Processor
|
|
5
|
+
from fraudcrawler.base.orchestrator import Orchestrator, ProductItem
|
|
6
|
+
from fraudcrawler.base.client import FraudCrawlerClient
|
|
7
|
+
from fraudcrawler.base.base import (
|
|
8
|
+
Deepness,
|
|
9
|
+
Enrichment,
|
|
10
|
+
Host,
|
|
11
|
+
Language,
|
|
12
|
+
Location,
|
|
13
|
+
Prompt,
|
|
14
|
+
)
|
|
15
|
+
|
|
16
|
+
__all__ = [
|
|
17
|
+
"SerpApi",
|
|
18
|
+
"Enricher",
|
|
19
|
+
"ZyteApi",
|
|
20
|
+
"Processor",
|
|
21
|
+
"Orchestrator",
|
|
22
|
+
"ProductItem",
|
|
23
|
+
"FraudCrawlerClient",
|
|
24
|
+
"Language",
|
|
25
|
+
"Location",
|
|
26
|
+
"Host",
|
|
27
|
+
"Deepness",
|
|
28
|
+
"Enrichment",
|
|
29
|
+
"Prompt",
|
|
30
|
+
]
|
|
File without changes
|
|
@@ -0,0 +1,145 @@
|
|
|
1
|
+
import json
|
|
2
|
+
import logging
|
|
3
|
+
from pydantic import BaseModel, field_validator, model_validator
|
|
4
|
+
from pydantic_settings import BaseSettings
|
|
5
|
+
from typing import List
|
|
6
|
+
|
|
7
|
+
import aiohttp
|
|
8
|
+
|
|
9
|
+
from fraudcrawler.settings import (
|
|
10
|
+
GOOGLE_LANGUAGES_FILENAME,
|
|
11
|
+
GOOGLE_LOCATIONS_FILENAME,
|
|
12
|
+
PROCESSOR_DEFAULT_IF_MISSING,
|
|
13
|
+
)
|
|
14
|
+
|
|
15
|
+
logger = logging.getLogger(__name__)
|
|
16
|
+
|
|
17
|
+
# Load google locations and languages
|
|
18
|
+
with open(GOOGLE_LOCATIONS_FILENAME, "r") as gfile:
|
|
19
|
+
_locs = json.load(gfile)
|
|
20
|
+
_LOCATION_CODES = {loc["name"]: loc["country_code"].lower() for loc in _locs}
|
|
21
|
+
with open(GOOGLE_LANGUAGES_FILENAME, "r") as gfile:
|
|
22
|
+
_langs = json.load(gfile)
|
|
23
|
+
_LANGUAGE_CODES = {lang["language_name"]: lang["language_code"] for lang in _langs}
|
|
24
|
+
|
|
25
|
+
|
|
26
|
+
# Base classes
|
|
27
|
+
class Setup(BaseSettings):
|
|
28
|
+
"""Class for loading environment variables."""
|
|
29
|
+
|
|
30
|
+
# Crawler ENV variables
|
|
31
|
+
serpapi_key: str
|
|
32
|
+
dataforseo_user: str
|
|
33
|
+
dataforseo_pwd: str
|
|
34
|
+
zyteapi_key: str
|
|
35
|
+
openaiapi_key: str
|
|
36
|
+
|
|
37
|
+
class Config:
|
|
38
|
+
env_file = ".env"
|
|
39
|
+
env_file_encoding = "utf-8"
|
|
40
|
+
|
|
41
|
+
|
|
42
|
+
class Host(BaseModel):
|
|
43
|
+
"""Model for host details (e.g. `Host(name="Galaxus", domains="galaxus.ch, digitec.ch")`)."""
|
|
44
|
+
|
|
45
|
+
name: str
|
|
46
|
+
domains: str | List[str]
|
|
47
|
+
|
|
48
|
+
@field_validator("domains", mode="before")
|
|
49
|
+
def split_domains_if_str(cls, val):
|
|
50
|
+
if isinstance(val, str):
|
|
51
|
+
return [dom.strip() for dom in val.split(",")]
|
|
52
|
+
return val
|
|
53
|
+
|
|
54
|
+
|
|
55
|
+
class Location(BaseModel):
|
|
56
|
+
"""Model for location details (e.g. `Location(name="Switzerland", code="ch")`)."""
|
|
57
|
+
|
|
58
|
+
name: str
|
|
59
|
+
code: str = ""
|
|
60
|
+
|
|
61
|
+
@model_validator(mode="before")
|
|
62
|
+
def set_code(cls, values):
|
|
63
|
+
"""Set the location code if not provided and make it lower case."""
|
|
64
|
+
name = values.get("name")
|
|
65
|
+
code = values.get("code")
|
|
66
|
+
if code is None or not len(code):
|
|
67
|
+
code = _LOCATION_CODES.get(name)
|
|
68
|
+
if code is None:
|
|
69
|
+
raise ValueError(f'Location code not found for location name="{name}"')
|
|
70
|
+
code = code.lower()
|
|
71
|
+
return {"name": name, "code": code}
|
|
72
|
+
|
|
73
|
+
|
|
74
|
+
class Language(BaseModel):
|
|
75
|
+
"""Model for language details (e.g. `Language(name="German", code="de")`)."""
|
|
76
|
+
|
|
77
|
+
name: str
|
|
78
|
+
code: str = ""
|
|
79
|
+
|
|
80
|
+
@model_validator(mode="before")
|
|
81
|
+
def set_code(cls, values):
|
|
82
|
+
"""Set the language code if not provided and make it lower case."""
|
|
83
|
+
name = values.get("name")
|
|
84
|
+
code = values.get("code")
|
|
85
|
+
if code is None or not len(code):
|
|
86
|
+
code = _LANGUAGE_CODES.get(name)
|
|
87
|
+
if code is None:
|
|
88
|
+
raise ValueError(f'Language code not found for language name="{name}"')
|
|
89
|
+
code = code.lower()
|
|
90
|
+
return {"name": name, "code": code}
|
|
91
|
+
|
|
92
|
+
|
|
93
|
+
class Enrichment(BaseModel):
|
|
94
|
+
"""Model for enriching initial search_term with alternative ones."""
|
|
95
|
+
|
|
96
|
+
additional_terms: int
|
|
97
|
+
additional_urls_per_term: int
|
|
98
|
+
|
|
99
|
+
|
|
100
|
+
class Deepness(BaseModel):
|
|
101
|
+
"""Model for search depth."""
|
|
102
|
+
|
|
103
|
+
num_results: int
|
|
104
|
+
enrichment: Enrichment | None = None
|
|
105
|
+
|
|
106
|
+
|
|
107
|
+
class Prompt(BaseModel):
|
|
108
|
+
"""Model for prompts."""
|
|
109
|
+
|
|
110
|
+
name: str
|
|
111
|
+
context: str
|
|
112
|
+
system_prompt: str
|
|
113
|
+
allowed_classes: List[int]
|
|
114
|
+
default_if_missing: int = PROCESSOR_DEFAULT_IF_MISSING
|
|
115
|
+
|
|
116
|
+
|
|
117
|
+
class AsyncClient:
|
|
118
|
+
"""Base class for sub-classes using async HTTP requests."""
|
|
119
|
+
|
|
120
|
+
@staticmethod
|
|
121
|
+
async def get(
|
|
122
|
+
url: str,
|
|
123
|
+
headers: dict | None = None,
|
|
124
|
+
params: dict | None = None,
|
|
125
|
+
) -> dict:
|
|
126
|
+
"""Async GET request of a given URL returning the data."""
|
|
127
|
+
async with aiohttp.ClientSession(headers=headers) as session:
|
|
128
|
+
async with session.get(url=url, params=params) as response:
|
|
129
|
+
response.raise_for_status()
|
|
130
|
+
json_ = await response.json()
|
|
131
|
+
return json_
|
|
132
|
+
|
|
133
|
+
@staticmethod
|
|
134
|
+
async def post(
|
|
135
|
+
url: str,
|
|
136
|
+
headers: dict | None = None,
|
|
137
|
+
data: List[dict] | dict | None = None,
|
|
138
|
+
auth: aiohttp.BasicAuth | None = None,
|
|
139
|
+
) -> dict:
|
|
140
|
+
"""Async POST request of a given URL returning the data."""
|
|
141
|
+
async with aiohttp.ClientSession(headers=headers) as session:
|
|
142
|
+
async with session.post(url=url, json=data, auth=auth) as response:
|
|
143
|
+
response.raise_for_status()
|
|
144
|
+
json_ = await response.json()
|
|
145
|
+
return json_
|
|
@@ -0,0 +1,134 @@
|
|
|
1
|
+
import asyncio
|
|
2
|
+
import csv
|
|
3
|
+
from datetime import datetime
|
|
4
|
+
import logging
|
|
5
|
+
from pathlib import Path
|
|
6
|
+
from pydantic import BaseModel
|
|
7
|
+
from typing import List
|
|
8
|
+
|
|
9
|
+
import pandas as pd
|
|
10
|
+
|
|
11
|
+
from fraudcrawler.settings import ROOT_DIR
|
|
12
|
+
from fraudcrawler.base.base import Setup, Language, Location, Deepness, Host, Prompt
|
|
13
|
+
from fraudcrawler.base.orchestrator import Orchestrator, ProductItem
|
|
14
|
+
|
|
15
|
+
logger = logging.getLogger(__name__)
|
|
16
|
+
|
|
17
|
+
_RESULTS_DIR = ROOT_DIR / "data" / "results"
|
|
18
|
+
|
|
19
|
+
|
|
20
|
+
class Results(BaseModel):
|
|
21
|
+
"""The results of the product search."""
|
|
22
|
+
|
|
23
|
+
search_term: str
|
|
24
|
+
filename: Path | None = None
|
|
25
|
+
|
|
26
|
+
|
|
27
|
+
class FraudCrawlerClient(Orchestrator):
|
|
28
|
+
"""The main client for FraudCrawler."""
|
|
29
|
+
|
|
30
|
+
_filename_template = "{search_term}_{language}_{location}_{timestamp}.csv"
|
|
31
|
+
|
|
32
|
+
def __init__(self):
|
|
33
|
+
setup = Setup()
|
|
34
|
+
super().__init__(
|
|
35
|
+
serpapi_key=setup.serpapi_key,
|
|
36
|
+
dataforseo_user=setup.dataforseo_user,
|
|
37
|
+
dataforseo_pwd=setup.dataforseo_pwd,
|
|
38
|
+
zyteapi_key=setup.zyteapi_key,
|
|
39
|
+
openaiapi_key=setup.openaiapi_key,
|
|
40
|
+
)
|
|
41
|
+
|
|
42
|
+
self._results_dir = _RESULTS_DIR
|
|
43
|
+
if not self._results_dir.exists():
|
|
44
|
+
self._results_dir.mkdir(parents=True)
|
|
45
|
+
self._results: List[Results] = []
|
|
46
|
+
|
|
47
|
+
async def _collect_results(
|
|
48
|
+
self, queue_in: asyncio.Queue[ProductItem | None]
|
|
49
|
+
) -> None:
|
|
50
|
+
"""Collects the results from the given queue_in and saves it as csv.
|
|
51
|
+
|
|
52
|
+
Args:
|
|
53
|
+
queue_in: The input queue containing the results.
|
|
54
|
+
"""
|
|
55
|
+
products = []
|
|
56
|
+
while True:
|
|
57
|
+
product = await queue_in.get()
|
|
58
|
+
if product is None:
|
|
59
|
+
queue_in.task_done()
|
|
60
|
+
break
|
|
61
|
+
|
|
62
|
+
products.append(product.model_dump())
|
|
63
|
+
queue_in.task_done()
|
|
64
|
+
|
|
65
|
+
# Convert the list of products to a DataFrame
|
|
66
|
+
df = pd.json_normalize(products)
|
|
67
|
+
cols = [c.split(".")[-1] for c in df.columns]
|
|
68
|
+
if len(cols) != len(set(cols)):
|
|
69
|
+
logger.error("Duplicate columns after json_normalize.")
|
|
70
|
+
else:
|
|
71
|
+
df.columns = cols
|
|
72
|
+
|
|
73
|
+
# Save the DataFrame to a CSV file
|
|
74
|
+
filename = self._results[-1].filename
|
|
75
|
+
df.to_csv(filename, index=False, quoting=csv.QUOTE_ALL)
|
|
76
|
+
logger.info(f"Results saved to {filename}")
|
|
77
|
+
|
|
78
|
+
def execute(
|
|
79
|
+
self,
|
|
80
|
+
search_term: str,
|
|
81
|
+
language: Language,
|
|
82
|
+
location: Location,
|
|
83
|
+
deepness: Deepness,
|
|
84
|
+
prompts: List[Prompt],
|
|
85
|
+
marketplaces: List[Host] | None = None,
|
|
86
|
+
excluded_urls: List[Host] | None = None,
|
|
87
|
+
) -> None:
|
|
88
|
+
"""Runs the pipeline steps: serp, enrich, zyte, process, and collect the results.
|
|
89
|
+
|
|
90
|
+
Args:
|
|
91
|
+
search_term: The search term for the query.
|
|
92
|
+
language: The language to use for the query.
|
|
93
|
+
location: The location to use for the query.
|
|
94
|
+
deepness: The search depth and enrichment details.
|
|
95
|
+
prompts: The list of prompts to use for classification.
|
|
96
|
+
marketplaces: The marketplaces to include in the search.
|
|
97
|
+
excluded_urls: The URLs to exclude from the search.
|
|
98
|
+
"""
|
|
99
|
+
timestamp = datetime.today().strftime("%Y%m%d%H%M%S")
|
|
100
|
+
filename = self._results_dir / self._filename_template.format(
|
|
101
|
+
search_term=search_term,
|
|
102
|
+
language=language.code,
|
|
103
|
+
location=location.code,
|
|
104
|
+
timestamp=timestamp,
|
|
105
|
+
)
|
|
106
|
+
self._results.append(Results(search_term=search_term, filename=filename))
|
|
107
|
+
|
|
108
|
+
asyncio.run(
|
|
109
|
+
super().run(
|
|
110
|
+
search_term=search_term,
|
|
111
|
+
language=language,
|
|
112
|
+
location=location,
|
|
113
|
+
deepness=deepness,
|
|
114
|
+
prompts=prompts,
|
|
115
|
+
marketplaces=marketplaces,
|
|
116
|
+
excluded_urls=excluded_urls,
|
|
117
|
+
)
|
|
118
|
+
)
|
|
119
|
+
|
|
120
|
+
def load_results(self, index: int = -1) -> pd.DataFrame:
|
|
121
|
+
"""Loads the results from the saved .csv files.
|
|
122
|
+
|
|
123
|
+
Args:
|
|
124
|
+
index: The index of the results to load (`incex=-1` are the results for the most recent run).
|
|
125
|
+
"""
|
|
126
|
+
|
|
127
|
+
results = self._results[index]
|
|
128
|
+
return pd.read_csv(results.filename)
|
|
129
|
+
|
|
130
|
+
def print_available_results(self) -> None:
|
|
131
|
+
"""Prints the available results."""
|
|
132
|
+
n_res = len(self._results)
|
|
133
|
+
for i, res in enumerate(self._results):
|
|
134
|
+
print(f"index={-n_res + i}: {res.search_term} - {res.filename}")
|