franky-control 1.0.2__cp313-cp313-manylinux_2_28_x86_64.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- franky/__init__.py +12 -0
- franky/_franky.cpython-313-x86_64-linux-gnu.so +0 -0
- franky/_franky.pyi +1736 -0
- franky/motion.py +12 -0
- franky/reaction.py +43 -0
- franky/robot.py +8 -0
- franky/robot_web_session.py +183 -0
- franky_control-1.0.2.dist-info/METADATA +881 -0
- franky_control-1.0.2.dist-info/RECORD +27 -0
- franky_control-1.0.2.dist-info/WHEEL +5 -0
- franky_control-1.0.2.dist-info/licenses/LICENSE +165 -0
- franky_control-1.0.2.dist-info/top_level.txt +2 -0
- franky_control.libs/libPocoFoundation-7333b9fc.so.95 +0 -0
- franky_control.libs/libPocoNet-007a41b7.so.95 +0 -0
- franky_control.libs/libboost_filesystem-38deced9.so.1.66.0 +0 -0
- franky_control.libs/libboost_serialization-3aa46b41.so.1.66.0 +0 -0
- franky_control.libs/libboost_system-69a6c43e.so.1.66.0 +0 -0
- franky_control.libs/libconsole_bridge-def124d9.so.0.3 +0 -0
- franky_control.libs/libfmt-8375f6bf.so.6.2.1 +0 -0
- franky_control.libs/libfranka-92ddaf43.so.0.15.0 +0 -0
- franky_control.libs/libpinocchio_default-7b0164b0.so.3.1.0 +0 -0
- franky_control.libs/libpinocchio_parsers-50abb87c.so.3.1.0 +0 -0
- franky_control.libs/libtinyxml-435d1f53.so.0.2.6.2 +0 -0
- franky_control.libs/liburdfdom_model-9e7b5a88.so.1.0 +0 -0
- franky_control.libs/liburdfdom_model_state-741cbb83.so.1.0 +0 -0
- franky_control.libs/liburdfdom_sensor-5dbb5bb4.so.1.0 +0 -0
- franky_control.libs/liburdfdom_world-bd943329.so.1.0 +0 -0
@@ -0,0 +1,881 @@
|
|
1
|
+
Metadata-Version: 2.4
|
2
|
+
Name: franky-control
|
3
|
+
Version: 1.0.2
|
4
|
+
Summary: High-level control library for Franka robots.
|
5
|
+
Home-page: https://github.com/TimSchneider42/franky
|
6
|
+
Author: Tim Schneider
|
7
|
+
Author-email: tim@robot-learning.de
|
8
|
+
License: LGPL-3.0-or-later
|
9
|
+
Keywords: robot,robotics,trajectory-generation,motion-control
|
10
|
+
Classifier: Development Status :: 4 - Beta
|
11
|
+
Classifier: Intended Audience :: Science/Research
|
12
|
+
Classifier: Topic :: Scientific/Engineering
|
13
|
+
Classifier: Programming Language :: C++
|
14
|
+
Requires-Python: >=3.7
|
15
|
+
Description-Content-Type: text/markdown
|
16
|
+
License-File: LICENSE
|
17
|
+
Requires-Dist: numpy
|
18
|
+
Dynamic: author
|
19
|
+
Dynamic: author-email
|
20
|
+
Dynamic: classifier
|
21
|
+
Dynamic: description
|
22
|
+
Dynamic: description-content-type
|
23
|
+
Dynamic: home-page
|
24
|
+
Dynamic: keywords
|
25
|
+
Dynamic: license
|
26
|
+
Dynamic: license-file
|
27
|
+
Dynamic: requires-dist
|
28
|
+
Dynamic: requires-python
|
29
|
+
Dynamic: summary
|
30
|
+
|
31
|
+
<div align="center">
|
32
|
+
<img width="340" src="https://raw.githubusercontent.com/timschneider42/franky/master/doc/logo.svg?sanitize=true">
|
33
|
+
<h3 align="center">
|
34
|
+
High-Level Control Library for Franka Robots with Python and C++ Support
|
35
|
+
</h3>
|
36
|
+
</div>
|
37
|
+
<p align="center">
|
38
|
+
<a href="https://github.com/timschneider42/franky/actions">
|
39
|
+
<img src="https://github.com/timschneider42/franky/workflows/CI/badge.svg" alt="CI">
|
40
|
+
</a>
|
41
|
+
|
42
|
+
<a href="https://github.com/timschneider42/franky/actions">
|
43
|
+
<img src="https://github.com/timschneider42/franky/workflows/Publish/badge.svg" alt="Publish">
|
44
|
+
</a>
|
45
|
+
|
46
|
+
<a href="https://github.com/timschneider42/franky/issues">
|
47
|
+
<img src="https://img.shields.io/github/issues/timschneider42/franky.svg" alt="Issues">
|
48
|
+
</a>
|
49
|
+
|
50
|
+
<a href="https://github.com/timschneider42/franky/releases">
|
51
|
+
<img src="https://img.shields.io/github/v/release/timschneider42/franky.svg?include_prereleases&sort=semver" alt="Releases">
|
52
|
+
</a>
|
53
|
+
|
54
|
+
<a href="https://github.com/timschneider42/franky/blob/master/LICENSE">
|
55
|
+
<img src="https://img.shields.io/badge/license-LGPL-green.svg" alt="LGPL">
|
56
|
+
</a>
|
57
|
+
</p>
|
58
|
+
|
59
|
+
Franky is a high-level control library for Franka robots offering Python and C++ support.
|
60
|
+
By providing a high-level control interface, Franky eliminates the need for strict real-time programming at 1 kHz,
|
61
|
+
making control from non-real-time environments, such as Python programs, feasible.
|
62
|
+
Instead of relying on low-level control commands, Franky expects high-level position or velocity targets and
|
63
|
+
uses [Ruckig](https://github.com/pantor/ruckig) to plan time-optimal trajectories in real-time.
|
64
|
+
|
65
|
+
Although Python does not provide real-time guarantees, Franky strives to maintain as much real-time control as possible.
|
66
|
+
Motions can be preempted at any moment, prompting Franky to re-plan trajectories on the fly.
|
67
|
+
To handle unforeseen situations—such as unexpected contact with the environment — Franky includes a reaction system that
|
68
|
+
allows to update motion commands dynamically.
|
69
|
+
Furthermore, most non-real-time functionality of [libfranka](https://frankaemika.github.io/docs/libfranka.html), such as
|
70
|
+
Gripper control is made directly available in Python.
|
71
|
+
|
72
|
+
Check out the [tutorial](#-tutorial) and the [examples](https://github.com/TimSchneider42/franky/tree/master/examples)
|
73
|
+
for an introduction.
|
74
|
+
The full documentation can be found
|
75
|
+
at [https://timschneider42.github.io/franky/](https://timschneider42.github.io/franky/).
|
76
|
+
|
77
|
+
## 🚀 Features
|
78
|
+
|
79
|
+
- **Control your Franka robot directly from Python in just a few lines!**
|
80
|
+
No more endless hours setting up ROS, juggling packages, or untangling dependencies. Just `pip install` — no ROS at all.
|
81
|
+
|
82
|
+
- **[Four control modes](#motion-types)**: [Cartesian position](#cartesian-position-control), [Cartesian velocity](#cartesian-velocity-control), [Joint position](#joint-position-control), [Joint velocity](#joint-velocity-control)
|
83
|
+
Franky uses [Ruckig](https://github.com/pantor/ruckig) to generate smooth, time-optimal trajectories while respecting velocity, acceleration, and jerk limits.
|
84
|
+
|
85
|
+
- **[Real-time control from Python and C++](#real-time-motions)**
|
86
|
+
Need to change the target while the robot’s moving? No problem. Franky re-plans trajectories on the fly so that you can preempt motions anytime.
|
87
|
+
|
88
|
+
- **[Reactive behavior](#-real-time-reactions)**
|
89
|
+
Robots don’t always go according to plan. Franky lets you define reactions to unexpected events—like contact with the environment — so you can change course in real-time.
|
90
|
+
|
91
|
+
- **[Motion and reaction callbacks](#motion-callbacks)**
|
92
|
+
Want to monitor what’s happening under the hood? Add callbacks to your motions and reactions. They won’t block the control thread and are super handy for debugging or logging.
|
93
|
+
|
94
|
+
- **Things are moving too fast? [Tune the robot's dynamics to your needs](#-robot)**
|
95
|
+
Adjust max velocity, acceleration, and jerk to match your setup or task. Fine control for smooth, safe operation.
|
96
|
+
|
97
|
+
- **Full Python access to the libfranka API**
|
98
|
+
Want to tweak impedance, read the robot state, set force thresholds, or mess with the Jacobian? Go for it. If libfranka supports it, chances are Franky does, too.
|
99
|
+
|
100
|
+
## 📖 Python Quickstart Guide
|
101
|
+
|
102
|
+
Real-time kernel already installed and real-time permissions granted? Just install Franky via
|
103
|
+
|
104
|
+
```bash
|
105
|
+
pip install franky-control
|
106
|
+
```
|
107
|
+
|
108
|
+
otherwise, follow the [setup instructions](#setup) first.
|
109
|
+
|
110
|
+
Now we are already ready to go!
|
111
|
+
Unlock the brakes in the web interface, activate FCI, and start coding:
|
112
|
+
```python
|
113
|
+
from franky import *
|
114
|
+
|
115
|
+
robot = Robot("172.16.0.2") # Replace this with your robot's IP
|
116
|
+
|
117
|
+
# Let's start slow (this lets the robot use a maximum of 5% of its velocity, acceleration, and jerk limits)
|
118
|
+
robot.relative_dynamics_factor = 0.05
|
119
|
+
|
120
|
+
# Move the robot 20cm along the relative X-axis of its end-effector
|
121
|
+
motion = CartesianMotion(Affine([0.2, 0.0, 0.0]), ReferenceType.Relative)
|
122
|
+
robot.move(motion)
|
123
|
+
```
|
124
|
+
|
125
|
+
If you are seeing server version mismatch errors, such as
|
126
|
+
```
|
127
|
+
franky.IncompatibleVersionException: libfranka: Incompatible library version (server version: 5, library version: 9)
|
128
|
+
```
|
129
|
+
then your Franka robot is either not on the most recent firmware version or you are using the older Franka Panda model.
|
130
|
+
In any case, it's no big deal; just check [here](https://frankaemika.github.io/docs/compatibility.html) which libfranka version you need and follow our [instructions](installing-frankly) to install the appropriate Franky wheels.
|
131
|
+
|
132
|
+
## <a id="setup" /> ⚙️ Setup
|
133
|
+
|
134
|
+
To install Franky, you have to follow three steps:
|
135
|
+
|
136
|
+
1. Ensure that you are using a realtime kernel
|
137
|
+
2. Ensure that the executing user has permission to run real-time applications
|
138
|
+
3. Install Franky via pip or build it from source
|
139
|
+
|
140
|
+
### Installing a real-time kernel
|
141
|
+
|
142
|
+
In order for Franky to function properly, it requires the underlying OS to use a realtime kernel.
|
143
|
+
Otherwise, you might see `communication_constrains_violation` errors.
|
144
|
+
|
145
|
+
To check whether your system is currently using a real-time kernel, type `uname -a`.
|
146
|
+
You should see something like this:
|
147
|
+
|
148
|
+
```
|
149
|
+
$ uname -a
|
150
|
+
Linux [PCNAME] 5.15.0-1056-realtime #63-Ubuntu SMP PREEMPT_RT ...
|
151
|
+
```
|
152
|
+
|
153
|
+
If it does not say PREEMPT_RT, you are not currently running a real-time kernel.
|
154
|
+
|
155
|
+
There are multiple ways of installing a real-time kernel.
|
156
|
+
You
|
157
|
+
can [build it from source](https://frankaemika.github.io/docs/installation_linux.html#setting-up-the-real-time-kernel)
|
158
|
+
or, if you are using Ubuntu, it can be [enabled through Ubuntu Pro](https://ubuntu.com/real-time).
|
159
|
+
|
160
|
+
### Allowing the executing user to run real-time applications
|
161
|
+
|
162
|
+
First, create a group `realtime` and add your user (or whoever is running Franky) to this group:
|
163
|
+
|
164
|
+
```bash
|
165
|
+
sudo addgroup realtime
|
166
|
+
sudo usermod -a -G realtime $(whoami)
|
167
|
+
```
|
168
|
+
|
169
|
+
Afterward, add the following limits to the real-time group in /etc/security/limits.conf:
|
170
|
+
|
171
|
+
```
|
172
|
+
@realtime soft rtprio 99
|
173
|
+
@realtime soft priority 99
|
174
|
+
@realtime soft memlock 102400
|
175
|
+
@realtime hard rtprio 99
|
176
|
+
@realtime hard priority 99
|
177
|
+
@realtime hard memlock 102400
|
178
|
+
```
|
179
|
+
|
180
|
+
Log out and log in again to let the changes take effect.
|
181
|
+
|
182
|
+
To verify that the changes were applied, check if your user is in the `realtime` group:
|
183
|
+
|
184
|
+
```bash
|
185
|
+
$ groups
|
186
|
+
... realtime
|
187
|
+
```
|
188
|
+
|
189
|
+
If realtime is not listed in your groups, try rebooting.
|
190
|
+
|
191
|
+
### Installing Franky
|
192
|
+
|
193
|
+
To start using Franky with Python and libfranka *0.15.0*, just install it via
|
194
|
+
|
195
|
+
```bash
|
196
|
+
pip install franky-control
|
197
|
+
```
|
198
|
+
|
199
|
+
We also provide wheels for libfranka versions *0.7.1*, *0.8.0*, *0.9.2*, *0.10.0*, *0.11.0*, *0.12.1*, *0.13.3*,
|
200
|
+
*0.14.2*, and *0.15.0*.
|
201
|
+
They can be installed via
|
202
|
+
|
203
|
+
```bash
|
204
|
+
VERSION=0-9-2
|
205
|
+
wget https://github.com/TimSchneider42/franky/releases/latest/download/libfranka_${VERSION}_wheels.zip
|
206
|
+
unzip libfranka_${VERSION}_wheels.zip
|
207
|
+
pip install numpy
|
208
|
+
pip install --no-index --find-links=./dist franky-control
|
209
|
+
```
|
210
|
+
|
211
|
+
Franky is based on [libfranka](https://github.com/frankaemika/libfranka), [Eigen](https://eigen.tuxfamily.org) for
|
212
|
+
transformation calculations and [pybind11](https://github.com/pybind/pybind11) for the Python bindings.
|
213
|
+
As the Franka is sensitive to acceleration discontinuities, it requires jerk-constrained motion generation, for which
|
214
|
+
Franky uses the [Ruckig](https://ruckig.com) community version for Online Trajectory Generation (OTG).
|
215
|
+
|
216
|
+
After installing the dependencies (the exact versions can be found [here](#-development)), you can build and install
|
217
|
+
Franky via
|
218
|
+
|
219
|
+
```bash
|
220
|
+
git clone --recurse-submodules git@github.com:timschneider42/franky.git
|
221
|
+
cd franky
|
222
|
+
mkdir -p build
|
223
|
+
cd build
|
224
|
+
cmake -DCMAKE_BUILD_TYPE=Release ..
|
225
|
+
make
|
226
|
+
make install
|
227
|
+
```
|
228
|
+
|
229
|
+
To use Franky, you can also include it as a subproject in your parent CMake via `add_subdirectory(franky)` and then
|
230
|
+
`target_link_libraries(<target> franky)`.
|
231
|
+
|
232
|
+
If you need only the Python module, you can install Franky via
|
233
|
+
|
234
|
+
```bash
|
235
|
+
pip install .
|
236
|
+
```
|
237
|
+
|
238
|
+
Make sure that the built library `_franky.cpython-3**-****-linux-gnu.so` is in the Python path, e.g. by adjusting
|
239
|
+
`PYTHONPATH` accordingly.
|
240
|
+
|
241
|
+
#### Using Docker
|
242
|
+
|
243
|
+
To use Franky within Docker we provide a [Dockerfile](docker/run/Dockerfile) and
|
244
|
+
accompanying [docker-compose](docker-compose.yml) file.
|
245
|
+
|
246
|
+
```bash
|
247
|
+
git clone --recurse-submodules https://github.com/timschneider42/franky.git
|
248
|
+
cd franky/
|
249
|
+
docker compose build franky-run
|
250
|
+
```
|
251
|
+
|
252
|
+
To use another version of libfranka than the default (0.15.0) add a build argument:
|
253
|
+
|
254
|
+
```bash
|
255
|
+
docker compose build franky-run --build-arg LIBFRANKA_VERSION=0.9.2
|
256
|
+
```
|
257
|
+
|
258
|
+
To run the container:
|
259
|
+
|
260
|
+
```bash
|
261
|
+
docker compose run franky-run bash
|
262
|
+
```
|
263
|
+
|
264
|
+
The container requires access to the host machines network *and* elevated user rights to allow the docker user to set RT
|
265
|
+
capabilities of the processes run from within it.
|
266
|
+
|
267
|
+
#### Building Franky with Docker
|
268
|
+
|
269
|
+
For building Franky and its wheels, we provide another Docker container that can also be launched using docker-compose:
|
270
|
+
|
271
|
+
```bash
|
272
|
+
docker compose build franky-build
|
273
|
+
docker compose run --rm franky-build run-tests # To run the tests
|
274
|
+
docker compose run --rm franky-build build-wheels # To build wheels for all supported python versions
|
275
|
+
```
|
276
|
+
|
277
|
+
## 📚 Tutorial
|
278
|
+
|
279
|
+
Franky comes with both a C++ and Python API that differ only regarding real-time capability.
|
280
|
+
We will introduce both languages next to each other.
|
281
|
+
In your C++ project, just include `include <franky.hpp>` and link the library.
|
282
|
+
For Python, just `import franky`.
|
283
|
+
As a first example, only four lines of code are needed for simple robotic motions.
|
284
|
+
|
285
|
+
```c++
|
286
|
+
#include <franky.hpp>
|
287
|
+
using namespace franky;
|
288
|
+
|
289
|
+
// Connect to the robot with the FCI IP address
|
290
|
+
Robot robot("172.16.0.2");
|
291
|
+
|
292
|
+
// Reduce velocity and acceleration of the robot
|
293
|
+
robot.setRelativeDynamicsFactor(0.05);
|
294
|
+
|
295
|
+
// Move the end-effector 20cm in positive x-direction
|
296
|
+
auto motion = std::make_shared<CartesianMotion>(RobotPose(Affine({0.2, 0.0, 0.0}), 0.0), ReferenceType::Relative);
|
297
|
+
|
298
|
+
// Finally move the robot
|
299
|
+
robot.move(motion);
|
300
|
+
```
|
301
|
+
|
302
|
+
The corresponding program in Python is
|
303
|
+
|
304
|
+
```python
|
305
|
+
from franky import Affine, CartesianMotion, Robot, ReferenceType
|
306
|
+
|
307
|
+
robot = Robot("172.16.0.2")
|
308
|
+
robot.relative_dynamics_factor = 0.05
|
309
|
+
|
310
|
+
motion = CartesianMotion(Affine([0.2, 0.0, 0.0]), ReferenceType.Relative)
|
311
|
+
robot.move(motion)
|
312
|
+
```
|
313
|
+
|
314
|
+
Furthermore, we will introduce methods for geometric calculations, for moving the robot according to different motion
|
315
|
+
types, how to implement real-time reactions and changing waypoints in real time as well as controlling the gripper.
|
316
|
+
|
317
|
+
### 🧮 Geometry
|
318
|
+
|
319
|
+
`franky.Affine` is a python wrapper for [Eigen::Affine3d](https://eigen.tuxfamily.org/dox/group__TutorialGeometry.html).
|
320
|
+
It is used for Cartesian poses, frames and transformation.
|
321
|
+
franky adds its own constructor, which takes a position and a quaternion as inputs:
|
322
|
+
|
323
|
+
```python
|
324
|
+
import math
|
325
|
+
from scipy.spatial.transform import Rotation
|
326
|
+
from franky import Affine
|
327
|
+
|
328
|
+
z_translation = Affine([0.0, 0.0, 0.5])
|
329
|
+
|
330
|
+
quat = Rotation.from_euler("xyz", [0, 0, math.pi / 2]).as_quat()
|
331
|
+
z_rotation = Affine([0.0, 0.0, 0.0], quat)
|
332
|
+
|
333
|
+
combined_transformation = z_translation * z_rotation
|
334
|
+
```
|
335
|
+
|
336
|
+
In all cases, distances are in [m] and rotations in [rad].
|
337
|
+
|
338
|
+
### 🤖 Robot
|
339
|
+
|
340
|
+
Franky exposes most of the libfanka API for Python.
|
341
|
+
Moreover, we added methods to adapt the dynamics limits of the robot for all motions.
|
342
|
+
|
343
|
+
```python
|
344
|
+
from franky import *
|
345
|
+
|
346
|
+
robot = Robot("172.16.0.2")
|
347
|
+
|
348
|
+
# Recover from errors
|
349
|
+
robot.recover_from_errors()
|
350
|
+
|
351
|
+
# Set velocity, acceleration and jerk to 5% of the maximum
|
352
|
+
robot.relative_dynamics_factor = 0.05
|
353
|
+
|
354
|
+
# Alternatively, you can define each constraint individually
|
355
|
+
robot.relative_dynamics_factor = RelativeDynamicsFactor(velocity=0.1, acceleration=0.05, jerk=0.1)
|
356
|
+
|
357
|
+
# Or, for more finegrained access, set individual limits
|
358
|
+
robot.translation_velocity_limit.set(3.0)
|
359
|
+
robot.rotation_velocity_limit.set(2.5)
|
360
|
+
robot.elbow_velocity_limit.set(2.62)
|
361
|
+
robot.translation_acceleration_limit.set(9.0)
|
362
|
+
robot.rotation_acceleration_limit.set(17.0)
|
363
|
+
robot.elbow_acceleration_limit.set(10.0)
|
364
|
+
robot.translation_jerk_limit.set(4500.0)
|
365
|
+
robot.rotation_jerk_limit.set(8500.0)
|
366
|
+
robot.elbow_jerk_limit.set(5000.0)
|
367
|
+
robot.joint_velocity_limit.set([2.62, 2.62, 2.62, 2.62, 5.26, 4.18, 5.26])
|
368
|
+
robot.joint_acceleration_limit.set([10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0])
|
369
|
+
robot.joint_jerk_limit.set([5000.0, 5000.0, 5000.0, 5000.0, 5000.0, 5000.0, 5000.0])
|
370
|
+
# By default, these limits are set to their respective maxima (the values shown here)
|
371
|
+
|
372
|
+
# Get the max of each limit (as provided by Franka) with the max function, e.g.:
|
373
|
+
print(robot.joint_jerk_limit.max)
|
374
|
+
```
|
375
|
+
|
376
|
+
#### Robot State
|
377
|
+
|
378
|
+
The robot state can be retrieved by accessing the following properties:
|
379
|
+
|
380
|
+
* `state`: Object of type `franky.RobotState`, which extends the
|
381
|
+
libfranka [franka::RobotState](https://frankaemika.github.io/libfranka/structfranka_1_1RobotState.html) structure by
|
382
|
+
additional state elements.
|
383
|
+
* `current_cartesian_state`: Object of type `franky.CartesianState`, which contains the end-effector pose and velocity
|
384
|
+
obtained
|
385
|
+
from [franka::RobotState::O_T_EE](https://frankaemika.github.io/libfranka/structfranka_1_1RobotState.html#a193781d47722b32925e0ea7ac415f442)
|
386
|
+
and [franka::RobotState::O_dP_EE_c](https://frankaemika.github.io/libfranka/structfranka_1_1RobotState.html#a4be112bd1a9a7d777a67aea4a18a8dcc).
|
387
|
+
* `current_joint_position`: Object of type `franky.JointState`, which contains the joint positions and velocities
|
388
|
+
obtained
|
389
|
+
from [franka::RobotState::q](https://frankaemika.github.io/libfranka/structfranka_1_1RobotState.html#ade3335d1ac2f6c44741a916d565f7091)
|
390
|
+
and [franka::RobotState::dq](https://frankaemika.github.io/libfranka/structfranka_1_1RobotState.html#a706045af1b176049e9e56df755325bd2).
|
391
|
+
|
392
|
+
```python
|
393
|
+
from franky import *
|
394
|
+
|
395
|
+
robot = Robot("172.16.0.2")
|
396
|
+
|
397
|
+
# Get the current state as `franky.RobotState`. See the documentation for a list of fields.
|
398
|
+
state = robot.state
|
399
|
+
|
400
|
+
# Get the robot's cartesian state
|
401
|
+
cartesian_state = robot.current_cartesian_state
|
402
|
+
robot_pose = cartesian_state.pose # Contains end-effector pose and elbow position
|
403
|
+
ee_pose = robot_pose.end_effector_pose
|
404
|
+
elbow_pos = robot_pose.elbow_state
|
405
|
+
robot_velocity = cartesian_state.velocity # Contains end-effector twist and elbow velocity
|
406
|
+
ee_twist = robot_velocity.end_effector_twist
|
407
|
+
elbow_vel = robot_velocity.elbow_velocity
|
408
|
+
|
409
|
+
# Get the robot's joint state
|
410
|
+
joint_state = robot.current_joint_state
|
411
|
+
joint_pos = joint_state.position
|
412
|
+
joint_vel = joint_state.velocity
|
413
|
+
|
414
|
+
# Use the robot model to compute kinematics
|
415
|
+
q = [-0.3, 0.1, 0.3, -1.4, 0.1, 1.8, 0.7]
|
416
|
+
f_t_ee = Affine()
|
417
|
+
ee_t_k = Affine()
|
418
|
+
ee_pose_kin = robot.model.pose(Frame.EndEffector, q, f_t_ee, ee_t_k)
|
419
|
+
|
420
|
+
# Get the jacobian of the current robot state
|
421
|
+
jacobian = robot.model.body_jacobian(Frame.EndEffector, state)
|
422
|
+
|
423
|
+
# Alternatively, just get the URDF as string and do the kinematics computation yourself (only for libfranka >= 0.15.0)
|
424
|
+
urdf_model = robot.model_urdf
|
425
|
+
```
|
426
|
+
|
427
|
+
For a full list of state-related features, check
|
428
|
+
the [Robot](https://timschneider42.github.io/franky/classfranky_1_1_robot.html)
|
429
|
+
and [Model](https://timschneider42.github.io/franky/classfranky_1_1_model.html) sections of the documentation.
|
430
|
+
|
431
|
+
### <a id="motion-types" /> 🏃♂️ Motion Types
|
432
|
+
|
433
|
+
Franky currently supports four different impedance control modes: **joint position control**, **joint velocity control
|
434
|
+
**, **cartesian position control**, and **cartesian velocity control**.
|
435
|
+
Each of these control modes is invoked by passing the robot an appropriate _Motion_ object.
|
436
|
+
|
437
|
+
In the following, we provide a brief example for each motion type implemented by Franky in Python.
|
438
|
+
The C++ interface is generally analogous, though some variable and method names are different because we
|
439
|
+
follow [PEP 8](https://peps.python.org/pep-0008/) naming conventions in Python
|
440
|
+
and [Google naming conventions](https://google.github.io/styleguide/cppguide.html) in C++.
|
441
|
+
|
442
|
+
All units are in $m$, $\frac{m}{s}$, $\textit{rad}$, or $\frac{\textit{rad}}{s}$.
|
443
|
+
|
444
|
+
#### Joint Position Control
|
445
|
+
|
446
|
+
```python
|
447
|
+
from franky import *
|
448
|
+
|
449
|
+
# A point-to-point motion in the joint space
|
450
|
+
m_jp1 = JointMotion([-0.3, 0.1, 0.3, -1.4, 0.1, 1.8, 0.7])
|
451
|
+
|
452
|
+
# A motion in joint space with multiple waypoints
|
453
|
+
m_jp2 = JointWaypointMotion([
|
454
|
+
JointWaypoint([-0.3, 0.1, 0.3, -1.4, 0.1, 1.8, 0.7]),
|
455
|
+
JointWaypoint([0.0, 0.3, 0.3, -1.5, -0.2, 1.5, 0.8]),
|
456
|
+
JointWaypoint([0.1, 0.4, 0.3, -1.4, -0.3, 1.7, 0.9])
|
457
|
+
])
|
458
|
+
|
459
|
+
# Intermediate waypoints also permit to specify target velocities. The default target velocity is 0, meaning that the
|
460
|
+
# robot will stop at every waypoint.
|
461
|
+
m_jp3 = JointWaypointMotion([
|
462
|
+
JointWaypoint([-0.3, 0.1, 0.3, -1.4, 0.1, 1.8, 0.7]),
|
463
|
+
JointWaypoint(
|
464
|
+
JointState(
|
465
|
+
position=[0.0, 0.3, 0.3, -1.5, -0.2, 1.5, 0.8],
|
466
|
+
velocity=[0.1, 0.0, 0.0, 0.0, -0.0, 0.0, 0.0])),
|
467
|
+
JointWaypoint([0.1, 0.4, 0.3, -1.4, -0.3, 1.7, 0.9])
|
468
|
+
])
|
469
|
+
|
470
|
+
# Stop the robot in joint position control mode. The difference of JointStopMotion to other stop motions such as
|
471
|
+
# CartesianStopMotion is that # JointStopMotion # stops the robot in joint position control mode while
|
472
|
+
# CartesianStopMotion stops it in cartesian pose control mode. The difference becomes relevant when asynchronous move
|
473
|
+
# commands are being sent or reactions are being used(see below).
|
474
|
+
m_jp4 = JointStopMotion()
|
475
|
+
```
|
476
|
+
|
477
|
+
#### Joint Velocity Control
|
478
|
+
|
479
|
+
```python
|
480
|
+
from franky import *
|
481
|
+
|
482
|
+
# Accelerate to the given joint velocity and hold it. After 1000ms stop the robot again.
|
483
|
+
m_jv1 = JointVelocityMotion([0.1, 0.3, -0.1, 0.0, 0.1, -0.2, 0.4], duration=Duration(1000))
|
484
|
+
|
485
|
+
# Joint velocity motions also support waypoints. Unlike in joint position control, a joint velocity waypoint is a
|
486
|
+
# target velocity to be reached. This particular example first accelerates the joints, holds the velocity for 1s, then
|
487
|
+
# reverses direction for 2s, reverses direction again for 1s, and finally stops. It is important not to forget to stop
|
488
|
+
# the robot at the end of such a sequence, as it will otherwise throw an error.
|
489
|
+
m_jv2 = JointVelocityWaypointMotion([
|
490
|
+
JointVelocityWaypoint([0.1, 0.3, -0.1, 0.0, 0.1, -0.2, 0.4], hold_target_duration=Duration(1000)),
|
491
|
+
JointVelocityWaypoint([-0.1, -0.3, 0.1, -0.0, -0.1, 0.2, -0.4], hold_target_duration=Duration(2000)),
|
492
|
+
JointVelocityWaypoint([0.1, 0.3, -0.1, 0.0, 0.1, -0.2, 0.4], hold_target_duration=Duration(1000)),
|
493
|
+
JointVelocityWaypoint([0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0]),
|
494
|
+
])
|
495
|
+
|
496
|
+
# Stop the robot in joint velocity control mode.
|
497
|
+
m_jv3 = JointVelocityStopMotion()
|
498
|
+
```
|
499
|
+
|
500
|
+
#### Cartesian Position Control
|
501
|
+
|
502
|
+
```python
|
503
|
+
import math
|
504
|
+
from scipy.spatial.transform import Rotation
|
505
|
+
from franky import *
|
506
|
+
|
507
|
+
# Move to the given target pose
|
508
|
+
quat = Rotation.from_euler("xyz", [0, 0, math.pi / 2]).as_quat()
|
509
|
+
m_cp1 = CartesianMotion(Affine([0.4, -0.2, 0.3], quat))
|
510
|
+
|
511
|
+
# With target elbow angle (otherwise, the Franka firmware will choose by itself)
|
512
|
+
m_cp2 = CartesianMotion(RobotPose(Affine([0.4, -0.2, 0.3], quat), elbow_state=ElbowState(0.3)))
|
513
|
+
|
514
|
+
# A linear motion in cartesian space relative to the initial position
|
515
|
+
# (Note that this motion is relative both in position and orientation. Hence, when the robot's end-effector is oriented
|
516
|
+
# differently, it will move in a different direction)
|
517
|
+
m_cp3 = CartesianMotion(Affine([0.2, 0.0, 0.0]), ReferenceType.Relative)
|
518
|
+
|
519
|
+
# Generalization of CartesianMotion that allows for multiple waypoints
|
520
|
+
m_cp4 = CartesianWaypointMotion([
|
521
|
+
CartesianWaypoint(RobotPose(Affine([0.4, -0.2, 0.3], quat), elbow_state=ElbowState(0.3))),
|
522
|
+
# The following waypoint is relative to the prior one and 50% slower
|
523
|
+
CartesianWaypoint(Affine([0.2, 0.0, 0.0]), ReferenceType.Relative, RelativeDynamicsFactor(0.5, 1.0, 1.0))
|
524
|
+
])
|
525
|
+
|
526
|
+
# Cartesian waypoints also permit to specify target velocities
|
527
|
+
m_cp5 = CartesianWaypointMotion([
|
528
|
+
CartesianWaypoint(Affine([0.5, -0.2, 0.3], quat)),
|
529
|
+
CartesianWaypoint(
|
530
|
+
CartesianState(
|
531
|
+
pose=Affine([0.4, -0.1, 0.3], quat),
|
532
|
+
velocity=Twist([-0.01, 0.01, 0.0]))),
|
533
|
+
CartesianWaypoint(Affine([0.3, 0.0, 0.3], quat))
|
534
|
+
])
|
535
|
+
|
536
|
+
# Stop the robot in cartesian position control mode.
|
537
|
+
m_cp6 = CartesianStopMotion()
|
538
|
+
```
|
539
|
+
|
540
|
+
#### Cartesian Velocity Control
|
541
|
+
|
542
|
+
```python
|
543
|
+
from franky import *
|
544
|
+
|
545
|
+
# A cartesian velocity motion with linear (first argument) and angular (second argument) components
|
546
|
+
m_cv1 = CartesianVelocityMotion(Twist([0.2, -0.1, 0.1], [0.1, -0.1, 0.2]))
|
547
|
+
|
548
|
+
# With target elbow velocity
|
549
|
+
m_cv2 = CartesianVelocityMotion(RobotVelocity(Twist([0.2, -0.1, 0.1], [0.1, -0.1, 0.2]), elbow_velocity=-0.2))
|
550
|
+
|
551
|
+
# Cartesian velocity motions also support multiple waypoints. Unlike in cartesian position control, a cartesian velocity
|
552
|
+
# waypoint is a target velocity to be reached. This particular example first accelerates the end-effector, holds the
|
553
|
+
# velocity for 1s, then # reverses direction for 2s, reverses direction again for 1s, and finally stops. It is important
|
554
|
+
# not to forget to stop # the robot at the end of such a sequence, as it will otherwise throw an error.
|
555
|
+
m_cv4 = CartesianVelocityWaypointMotion([
|
556
|
+
CartesianVelocityWaypoint(Twist([0.2, -0.1, 0.1], [0.1, -0.1, 0.2]), hold_target_duration=Duration(1000)),
|
557
|
+
CartesianVelocityWaypoint(Twist([-0.2, 0.1, -0.1], [-0.1, 0.1, -0.2]), hold_target_duration=Duration(2000)),
|
558
|
+
CartesianVelocityWaypoint(Twist([0.2, -0.1, 0.1], [0.1, -0.1, 0.2]), hold_target_duration=Duration(1000)),
|
559
|
+
CartesianVelocityWaypoint(Twist()),
|
560
|
+
])
|
561
|
+
|
562
|
+
# Stop the robot in cartesian velocity control mode.
|
563
|
+
m_cv6 = CartesianVelocityStopMotion()
|
564
|
+
```
|
565
|
+
|
566
|
+
#### Relative Dynamics Factors
|
567
|
+
|
568
|
+
Every motion and waypoint type allows to adapt the dynamics (velocity, acceleration and jerk) by setting the respective
|
569
|
+
`relative_dynamics_factor` parameter.
|
570
|
+
This parameter can also be set for the robot globally as shown below or in the `robot.move` command.
|
571
|
+
Crucially, relative dynamics factors on different layers (robot, move command, and motion) do not override each other
|
572
|
+
but rather get multiplied.
|
573
|
+
Hence, a relative dynamics factor on a motion can only reduce the dynamics of the robot and never increase them.
|
574
|
+
|
575
|
+
There is one exception to this rule and that is if any layer sets the relative dynamics factor to
|
576
|
+
`RelativeDynamicsFactor.MAX_DYNAMICS`.
|
577
|
+
This will cause the motion to be executed with maximum velocity, acceleration, and jerk limits, independently of the
|
578
|
+
relative dynamics factors of the other layers.
|
579
|
+
This feature should only be used to abruptly stop the robot in case of an unexpected environment contact as executing
|
580
|
+
other motions with it is likely to lead to a discontinuity error and might be dangerous.
|
581
|
+
|
582
|
+
#### Executing Motions
|
583
|
+
|
584
|
+
The real robot can be moved by applying a motion to the robot using `move`:
|
585
|
+
|
586
|
+
```python
|
587
|
+
# Before moving the robot, set an appropriate dynamics factor. We start small:
|
588
|
+
robot.relative_dynamics_factor = 0.05
|
589
|
+
# or alternatively, to control the scaling of velocity, acceleration, and jerk limits separately:
|
590
|
+
robot.relative_dynamics_factor = RelativeDynamicsFactor(0.05, 0.1, 0.15)
|
591
|
+
# If these values are set too high, you will see discontinuity errors
|
592
|
+
|
593
|
+
robot.move(m_jp1)
|
594
|
+
|
595
|
+
# We can also set a relative dynamics factor in the move command. It will be multiplied with the other relative
|
596
|
+
# dynamics factors (robot and motion if present).
|
597
|
+
robot.move(m_jp2, relative_dynamics_factor=0.8)
|
598
|
+
```
|
599
|
+
|
600
|
+
#### Motion Callbacks
|
601
|
+
|
602
|
+
All motions support callbacks, which will be invoked in every control step at 1kHz.
|
603
|
+
Callbacks can be attached as follows:
|
604
|
+
|
605
|
+
```python
|
606
|
+
def cb(
|
607
|
+
robot_state: RobotState,
|
608
|
+
time_step: Duration,
|
609
|
+
rel_time: Duration,
|
610
|
+
abs_time: Duration,
|
611
|
+
control_signal: JointPositions):
|
612
|
+
print(f"At time {abs_time}, the target joint positions were {control_signal.q}")
|
613
|
+
|
614
|
+
|
615
|
+
m_jp1.register_callback(cb)
|
616
|
+
robot.move(m_jp1)
|
617
|
+
```
|
618
|
+
|
619
|
+
Note that in Python, these callbacks are not executed in the control thread since they would otherwise block it.
|
620
|
+
Instead, they are put in a queue and executed by another thread.
|
621
|
+
While this scheme ensures that the control thread can always run, it cannot prevent that the queue grows indefinitely
|
622
|
+
when the callbacks take more time to execute than it takes for new callbacks to be queued.
|
623
|
+
Hence, callbacks might be executed significantly after they were queued if they take a long time to execute.
|
624
|
+
|
625
|
+
### ⚡ Real-Time Reactions
|
626
|
+
|
627
|
+
By adding reactions to the motion data, the robot can react to unforeseen events.
|
628
|
+
In the Python API, you can define conditions by using a comparison between a robot's value and a given threshold.
|
629
|
+
If the threshold is exceeded, the reaction fires.
|
630
|
+
|
631
|
+
```python
|
632
|
+
from franky import CartesianMotion, Affine, ReferenceType, Measure, Reaction
|
633
|
+
|
634
|
+
motion = CartesianMotion(Affine([0.0, 0.0, 0.1]), ReferenceType.Relative) # Move down 10cm
|
635
|
+
|
636
|
+
# It is important that the reaction motion uses the same control mode as the original motion. Hence, we cannot register
|
637
|
+
# a JointMotion as a reaction motion to a CartesianMotion.
|
638
|
+
reaction_motion = CartesianMotion(Affine([0.0, 0.0, 0.01]), ReferenceType.Relative) # Move up for 1cm
|
639
|
+
|
640
|
+
# Trigger reaction if the Z force is greater than 30N
|
641
|
+
reaction = Reaction(Measure.FORCE_Z > 30.0, reaction_motion)
|
642
|
+
motion.add_reaction(reaction)
|
643
|
+
|
644
|
+
robot.move(motion)
|
645
|
+
```
|
646
|
+
|
647
|
+
Possible values to measure are
|
648
|
+
|
649
|
+
* `Measure.FORCE_X,` `Measure.FORCE_Y,` `Measure.FORCE_Z`: Force in X, Y and Z direction
|
650
|
+
* `Measure.REL_TIME`: Time in seconds since the current motion started
|
651
|
+
* `Measure.ABS_TIME`: Time in seconds since the initial motion started
|
652
|
+
|
653
|
+
The difference between `Measure.REL_TIME` and `Measure.ABS_TIME` is that `Measure.REL_TIME` is reset to zero whenever a
|
654
|
+
new motion starts (either by calling `Robot.move` or as a result of a triggered `Reaction`).
|
655
|
+
`Measure.ABS_TIME`, on the other hand, is only reset to zero when a motion terminates regularly without being
|
656
|
+
interrupted and the robot stops moving.
|
657
|
+
Hence, `Measure.ABS_TIME` measures the total time in which the robot has moved without interruption.
|
658
|
+
|
659
|
+
`Measure` values support all classical arithmetic operations, like addition, subtraction, multiplication, division, and
|
660
|
+
exponentiation (both as base and exponent).
|
661
|
+
|
662
|
+
```python
|
663
|
+
normal_force = (Measure.FORCE_X ** 2 + Measure.FORCE_Y ** 2 + Measure.FORCE_Z ** 2) ** 0.5
|
664
|
+
```
|
665
|
+
|
666
|
+
With arithmetic comparisons, conditions can be generated.
|
667
|
+
|
668
|
+
```python
|
669
|
+
normal_force_within_bounds = normal_force < 30.0
|
670
|
+
time_up = Measure.ABS_TIME > 10.0
|
671
|
+
```
|
672
|
+
|
673
|
+
Conditions support negation, conjunction (and), and disjunction (or):
|
674
|
+
|
675
|
+
```python
|
676
|
+
abort = ~normal_force_within_bounds | time_up
|
677
|
+
fast_abort = ~normal_force_within_bounds | time_up
|
678
|
+
```
|
679
|
+
|
680
|
+
To check whether a reaction has fired, a callback can be attached:
|
681
|
+
|
682
|
+
```python
|
683
|
+
from franky import RobotState
|
684
|
+
|
685
|
+
|
686
|
+
def reaction_callback(robot_state: RobotState, rel_time: float, abs_time: float):
|
687
|
+
print(f"Reaction fired at {abs_time}.")
|
688
|
+
|
689
|
+
|
690
|
+
reaction.register_callback(reaction_callback)
|
691
|
+
```
|
692
|
+
|
693
|
+
Similar to the motion callbacks, in Python, reaction callbacks are not executed in real-time but in a regular thread
|
694
|
+
with lower priority to ensure that the control thread does not get blocked.
|
695
|
+
Thus, the callbacks might fire substantially after the reaction has fired, depending on the time it takes to execute
|
696
|
+
them.
|
697
|
+
|
698
|
+
In C++ you can additionally use lambdas to define more complex behaviours:
|
699
|
+
|
700
|
+
```c++
|
701
|
+
auto motion = CartesianMotion(RobotPose(Affine({0.0, 0.0, 0.2}), 0.0), ReferenceType::Relative);
|
702
|
+
|
703
|
+
// Stop motion if force is over 10N
|
704
|
+
auto stop_motion = StopMotion<franka::CartesianPose>()
|
705
|
+
|
706
|
+
motion
|
707
|
+
.addReaction(
|
708
|
+
Reaction(
|
709
|
+
Measure::ForceZ() > 10.0, // [N],
|
710
|
+
stop_motion))
|
711
|
+
.addReaction(
|
712
|
+
Reaction(
|
713
|
+
Condition(
|
714
|
+
[](const franka::RobotState& state, double rel_time, double abs_time) {
|
715
|
+
// Lambda condition
|
716
|
+
return state.current_errors.self_collision_avoidance_violation;
|
717
|
+
}),
|
718
|
+
[](const franka::RobotState& state, double rel_time, double abs_time) {
|
719
|
+
// Lambda reaction motion generator
|
720
|
+
// (we are just returning a stop motion, but there could be arbitrary
|
721
|
+
// logic here for generating reaction motions)
|
722
|
+
return StopMotion<franka::CartesianPose>();
|
723
|
+
})
|
724
|
+
));
|
725
|
+
|
726
|
+
robot.move(motion)
|
727
|
+
```
|
728
|
+
|
729
|
+
### <a id="real-time-motions" /> ⏱️ Real-Time Motions
|
730
|
+
|
731
|
+
By setting the `asynchronous` parameter of `Robot.move` to `True`, the function does not block until the motion
|
732
|
+
finishes.
|
733
|
+
Instead, it returns immediately and, thus, allows the main thread to set new motions asynchronously.
|
734
|
+
|
735
|
+
```python
|
736
|
+
import time
|
737
|
+
from franky import Affine, CartesianMotion, Robot, ReferenceType
|
738
|
+
|
739
|
+
robot = Robot("172.16.0.2")
|
740
|
+
robot.relative_dynamics_factor = 0.05
|
741
|
+
|
742
|
+
motion1 = CartesianMotion(Affine([0.2, 0.0, 0.0]), ReferenceType.Relative)
|
743
|
+
robot.move(motion1, asynchronous=True)
|
744
|
+
|
745
|
+
time.sleep(0.5)
|
746
|
+
# Note that similar to reactions, when preempting active motions with new motions, the control mode cannot change.
|
747
|
+
# Hence, we cannot use, e.g., a JointMotion here.
|
748
|
+
motion2 = CartesianMotion(Affine([0.2, 0.0, 0.0]), ReferenceType.Relative)
|
749
|
+
robot.move(motion2, asynchronous=True)
|
750
|
+
```
|
751
|
+
|
752
|
+
By calling `Robot.join_motion` the main thread can be synchronized with the motion thread, as it will block until the
|
753
|
+
robot finishes its motion.
|
754
|
+
|
755
|
+
```python
|
756
|
+
robot.join_motion()
|
757
|
+
```
|
758
|
+
|
759
|
+
Note that when exceptions occur during the asynchronous execution of a motion, they will not be thrown immediately.
|
760
|
+
Instead, the control thread stores the exception and terminates.
|
761
|
+
The next time `Robot.join_motion` or `Robot.move` are called, they will throw the stored exception in the main thread.
|
762
|
+
Hence, after an asynchronous motion has finished, make sure to call `Robot.join_motion` to ensure being notified of any
|
763
|
+
exceptions that occurred during the motion.
|
764
|
+
|
765
|
+
### Gripper
|
766
|
+
|
767
|
+
In the `franky::Gripper` class, the default gripper force and gripper speed can be set.
|
768
|
+
Then, additionally to the libfranka commands, the following helper methods can be used:
|
769
|
+
|
770
|
+
```c++
|
771
|
+
#include <franky.hpp>
|
772
|
+
#include <chrono>
|
773
|
+
#include <future>
|
774
|
+
|
775
|
+
auto gripper = franky::Gripper("172.16.0.2");
|
776
|
+
|
777
|
+
double speed = 0.02; // [m/s]
|
778
|
+
double force = 20.0; // [N]
|
779
|
+
|
780
|
+
// Move the fingers to a specific width (5cm)
|
781
|
+
bool success = gripper.move(0.05, speed);
|
782
|
+
|
783
|
+
// Grasp an object of unknown width
|
784
|
+
success &= gripper.grasp(0.0, speed, force, epsilon_outer=1.0);
|
785
|
+
|
786
|
+
// Get the width of the grasped object
|
787
|
+
double width = gripper.width();
|
788
|
+
|
789
|
+
// Release the object
|
790
|
+
gripper.open(speed);
|
791
|
+
|
792
|
+
// There are also asynchronous versions of the methods
|
793
|
+
std::future<bool> success_future = gripper.moveAsync(0.05, speed);
|
794
|
+
|
795
|
+
// Wait for 1s
|
796
|
+
if (!success_future.wait_for(std::chrono::seconds(1)) == std::future_status::ready) {
|
797
|
+
// Get the result
|
798
|
+
std::cout << "Success: " << success_future.get() << std::endl;
|
799
|
+
} else {
|
800
|
+
gripper.stop();
|
801
|
+
success_future.wait();
|
802
|
+
std::cout << "Gripper motion timed out." << std::endl;
|
803
|
+
}
|
804
|
+
```
|
805
|
+
|
806
|
+
The Python API follows the c++ API closely:
|
807
|
+
|
808
|
+
```python
|
809
|
+
import franky
|
810
|
+
|
811
|
+
gripper = franky.Gripper("172.16.0.2")
|
812
|
+
|
813
|
+
speed = 0.02 # [m/s]
|
814
|
+
force = 20.0 # [N]
|
815
|
+
|
816
|
+
# Move the fingers to a specific width (5cm)
|
817
|
+
success = gripper.move(0.05, speed)
|
818
|
+
|
819
|
+
# Grasp an object of unknown width
|
820
|
+
success &= gripper.grasp(0.0, speed, force, epsilon_outer=1.0)
|
821
|
+
|
822
|
+
# Get the width of the grasped object
|
823
|
+
width = gripper.width
|
824
|
+
|
825
|
+
# Release the object
|
826
|
+
gripper.open(speed)
|
827
|
+
|
828
|
+
# There are also asynchronous versions of the methods
|
829
|
+
success_future = gripper.move_async(0.05, speed)
|
830
|
+
|
831
|
+
# Wait for 1s
|
832
|
+
if success_future.wait(1):
|
833
|
+
print(f"Success: {success_future.get()}")
|
834
|
+
else:
|
835
|
+
gripper.stop()
|
836
|
+
success_future.wait()
|
837
|
+
print("Gripper motion timed out.")
|
838
|
+
```
|
839
|
+
|
840
|
+
## 🛠️ Development
|
841
|
+
|
842
|
+
Franky is currently tested against following versions
|
843
|
+
|
844
|
+
- libfranka 0.7.1, 0.8.0, 0.9.2, 0.10.0, 0.11.0, 0.12.1, 0.13.3, 0.14.2, 0.15.0
|
845
|
+
- Eigen 3.4.0
|
846
|
+
- Pybind11 2.13.6
|
847
|
+
- POCO 1.12.5p2
|
848
|
+
- Pinocchio 3.4.0
|
849
|
+
- Python 3.7, 3.8, 3.9, 3.10, 3.11, 3.12, 3.13
|
850
|
+
- Catch2 2.13.8 (for testing only)
|
851
|
+
|
852
|
+
## 📜 License
|
853
|
+
|
854
|
+
For non-commercial applications, this software is licensed under the LGPL v3.0.
|
855
|
+
If you want to use Franky within commercial applications or under a different license, please contact us for individual
|
856
|
+
agreements.
|
857
|
+
|
858
|
+
## 🔍 Differences to frankx
|
859
|
+
|
860
|
+
Franky started originally as a fork of [frankx](https://github.com/pantor/frankx), though both codebase and
|
861
|
+
functionality differ substantially from frankx by now.
|
862
|
+
Aside of bug fixes and general performance improvements, Franky provides the following new features/improvements:
|
863
|
+
|
864
|
+
* [Motions can be updated asynchronously.](#-real-time-motions)
|
865
|
+
* [Reactions allow for the registration of callbacks instead of just printing to stdout when fired.](#-real-time-reactions)
|
866
|
+
* [Motions allow for the registration of callbacks for profiling.](#motion-callbacks)
|
867
|
+
* [The robot state is also available during control.](#robot-state)
|
868
|
+
* A larger part of the libfranka API is exposed to python (e.g.,`setCollisionBehavior`, `setJoinImpedance`, and
|
869
|
+
`setCartesianImpedance`).
|
870
|
+
* Cartesian motion generation handles boundaries in Euler angles properly.
|
871
|
+
* [There is a new joint motion type that supports waypoints.](#-motion-types)
|
872
|
+
* [The signature of `Affine` changed.](#-geometry) `Affine` does not handle elbow positions anymore.
|
873
|
+
Instead, a new class `RobotPose` stores both the end-effector pose and optionally the elbow position.
|
874
|
+
* The `MotionData` class does not exist anymore.
|
875
|
+
Instead, reactions and other settings moved to `Motion`.
|
876
|
+
* [The `Measure` class allows for arithmetic operations.](#-real-time-reactions)
|
877
|
+
* Exceptions caused by libfranka are raised properly instead of being printed to stdout.
|
878
|
+
* [We provide wheels for both Franka Research 3 and the older Franka Panda](#-setup)
|
879
|
+
* Franky supports [joint velocity control](#joint-velocity-control)
|
880
|
+
and [cartesian velocity control](#cartesian-velocity-control)
|
881
|
+
* The dynamics limits are not hard-coded anymore but can be [set for each robot instance](#-robot).
|