foscat 3.8.2__py3-none-any.whl → 2025.3.0__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- foscat/BkBase.py +36 -35
- foscat/BkNumpy.py +53 -62
- foscat/BkTensorflow.py +87 -88
- foscat/BkTorch.py +159 -72
- foscat/FoCUS.py +228 -89
- foscat/Synthesis.py +3 -3
- foscat/alm.py +188 -170
- foscat/backend.py +84 -70
- foscat/scat_cov.py +2138 -2220
- foscat/scat_cov2D.py +146 -53
- {foscat-3.8.2.dist-info → foscat-2025.3.0.dist-info}/METADATA +3 -2
- foscat-2025.3.0.dist-info/RECORD +30 -0
- {foscat-3.8.2.dist-info → foscat-2025.3.0.dist-info}/WHEEL +1 -1
- foscat-3.8.2.dist-info/RECORD +0 -30
- {foscat-3.8.2.dist-info → foscat-2025.3.0.dist-info/licenses}/LICENSE +0 -0
- {foscat-3.8.2.dist-info → foscat-2025.3.0.dist-info}/top_level.txt +0 -0
foscat/scat_cov2D.py
CHANGED
|
@@ -1,6 +1,8 @@
|
|
|
1
|
-
import foscat.scat_cov as scat
|
|
2
1
|
import numpy as np
|
|
3
2
|
|
|
3
|
+
import foscat.scat_cov as scat
|
|
4
|
+
|
|
5
|
+
|
|
4
6
|
class scat_cov2D:
|
|
5
7
|
def __init__(self, s0, s2, s3, s4, s1=None, s3p=None, backend=None):
|
|
6
8
|
|
|
@@ -11,12 +13,13 @@ class scat_cov2D:
|
|
|
11
13
|
def fill(self, im, nullval=0):
|
|
12
14
|
return self.fill_2d(im, nullval=nullval)
|
|
13
15
|
|
|
16
|
+
|
|
14
17
|
class funct(scat.funct):
|
|
15
18
|
def __init__(self, *args, **kwargs):
|
|
16
19
|
# Impose que use_2D=True pour la classe scat
|
|
17
|
-
super().__init__(use_2D=True,KERNELSZ=5, *args, **kwargs)
|
|
18
|
-
|
|
19
|
-
def spectrum(self,image):
|
|
20
|
+
super().__init__(use_2D=True, KERNELSZ=5, *args, **kwargs)
|
|
21
|
+
|
|
22
|
+
def spectrum(self, image):
|
|
20
23
|
"""
|
|
21
24
|
Compute the 1D power spectrum of a 2D image by averaging the 2D power spectrum
|
|
22
25
|
over concentric frequency rings (radial averaging), using np.bincount for efficiency.
|
|
@@ -29,7 +32,7 @@ class funct(scat.funct):
|
|
|
29
32
|
- spectrum_1d : corresponding 1D power spectrum
|
|
30
33
|
"""
|
|
31
34
|
import numpy as np
|
|
32
|
-
|
|
35
|
+
|
|
33
36
|
# Compute the 2D Fourier Transform and shift the zero frequency to the center
|
|
34
37
|
F = np.fft.fftshift(np.fft.fft2(image))
|
|
35
38
|
power_spectrum = np.abs(F) ** 2
|
|
@@ -37,7 +40,7 @@ class funct(scat.funct):
|
|
|
37
40
|
# Create coordinate grids and compute the radial distance from the center
|
|
38
41
|
y, x = np.indices(power_spectrum.shape)
|
|
39
42
|
center = np.array(power_spectrum.shape) // 2
|
|
40
|
-
r = np.sqrt((x - center[1])**2 + (y - center[0])**2).astype(int)
|
|
43
|
+
r = np.sqrt((x - center[1]) ** 2 + (y - center[0]) ** 2).astype(int)
|
|
41
44
|
|
|
42
45
|
# Use np.bincount for fast summation and counting
|
|
43
46
|
sum_power = np.bincount(r.ravel(), weights=power_spectrum.ravel())
|
|
@@ -48,71 +51,161 @@ class funct(scat.funct):
|
|
|
48
51
|
|
|
49
52
|
return spectrum_1d
|
|
50
53
|
|
|
51
|
-
def plot_results(
|
|
54
|
+
def plot_results(
|
|
55
|
+
self,
|
|
56
|
+
in_image,
|
|
57
|
+
out_image,
|
|
58
|
+
vmin=None,
|
|
59
|
+
vmax=None,
|
|
60
|
+
cmap="coolwarm",
|
|
61
|
+
spec_range=None,
|
|
62
|
+
):
|
|
52
63
|
import matplotlib.pyplot as plt
|
|
53
|
-
|
|
54
|
-
if len(out_image.shape)>2:
|
|
55
|
-
nimage=out_image.shape[0]
|
|
56
|
-
ndraw=np.min([3,nimage])
|
|
57
|
-
plt.figure(figsize=(16,12))
|
|
58
|
-
plt.subplot(2,ndraw+1,1)
|
|
59
|
-
plt.title(
|
|
60
|
-
plt.imshow(in_image,cmap=cmap,vmin=vmin,vmax=vmax,origin=
|
|
64
|
+
|
|
65
|
+
if len(out_image.shape) > 2:
|
|
66
|
+
nimage = out_image.shape[0]
|
|
67
|
+
ndraw = np.min([3, nimage])
|
|
68
|
+
plt.figure(figsize=(16, 12))
|
|
69
|
+
plt.subplot(2, ndraw + 1, 1)
|
|
70
|
+
plt.title("Original field")
|
|
71
|
+
plt.imshow(in_image, cmap=cmap, vmin=vmin, vmax=vmax, origin="lower")
|
|
61
72
|
plt.xticks([])
|
|
62
73
|
plt.yticks([])
|
|
63
74
|
for k in range(ndraw):
|
|
64
|
-
plt.subplot(2,ndraw+1,2+k)
|
|
65
|
-
plt.title(
|
|
66
|
-
plt.imshow(
|
|
75
|
+
plt.subplot(2, ndraw + 1, 2 + k)
|
|
76
|
+
plt.title("Modeled field #%d" % (k))
|
|
77
|
+
plt.imshow(
|
|
78
|
+
out_image[k], cmap=cmap, vmin=vmin, vmax=vmax, origin="lower"
|
|
79
|
+
)
|
|
67
80
|
plt.xticks([])
|
|
68
81
|
plt.yticks([])
|
|
69
|
-
plt.subplot(2,2,3)
|
|
70
|
-
plt.title(
|
|
82
|
+
plt.subplot(2, 2, 3)
|
|
83
|
+
plt.title("Histogram")
|
|
71
84
|
for k in range(nimage):
|
|
72
|
-
if k==0:
|
|
73
|
-
plt.hist(
|
|
85
|
+
if k == 0:
|
|
86
|
+
plt.hist(
|
|
87
|
+
out_image[k].flatten(),
|
|
88
|
+
bins=100,
|
|
89
|
+
label="modeled",
|
|
90
|
+
color="b",
|
|
91
|
+
histtype="step",
|
|
92
|
+
log=True,
|
|
93
|
+
alpha=0.5,
|
|
94
|
+
)
|
|
74
95
|
else:
|
|
75
|
-
plt.hist(
|
|
76
|
-
|
|
96
|
+
plt.hist(
|
|
97
|
+
out_image[k].flatten(),
|
|
98
|
+
bins=100,
|
|
99
|
+
color="b",
|
|
100
|
+
histtype="step",
|
|
101
|
+
log=True,
|
|
102
|
+
alpha=0.5,
|
|
103
|
+
)
|
|
104
|
+
plt.hist(
|
|
105
|
+
in_image.flatten(),
|
|
106
|
+
bins=100,
|
|
107
|
+
label="original",
|
|
108
|
+
color="r",
|
|
109
|
+
histtype="step",
|
|
110
|
+
log=True,
|
|
111
|
+
)
|
|
77
112
|
plt.legend(frameon=0)
|
|
78
|
-
plt.subplot(2,2,4)
|
|
79
|
-
plt.title(
|
|
113
|
+
plt.subplot(2, 2, 4)
|
|
114
|
+
plt.title("Powerspectra")
|
|
80
115
|
for k in range(nimage):
|
|
81
|
-
if k==0:
|
|
82
|
-
plt.plot(
|
|
116
|
+
if k == 0:
|
|
117
|
+
plt.plot(
|
|
118
|
+
self.spectrum(out_image[k]),
|
|
119
|
+
color="b",
|
|
120
|
+
label="modeled",
|
|
121
|
+
alpha=0.5,
|
|
122
|
+
)
|
|
83
123
|
else:
|
|
84
|
-
plt.plot(self.spectrum(out_image[k]),color=
|
|
85
|
-
plt.plot(self.spectrum(in_image),color=
|
|
86
|
-
plt.xscale(
|
|
87
|
-
plt.yscale(
|
|
124
|
+
plt.plot(self.spectrum(out_image[k]), color="b", alpha=0.5)
|
|
125
|
+
plt.plot(self.spectrum(in_image), color="r", label="original")
|
|
126
|
+
plt.xscale("log")
|
|
127
|
+
plt.yscale("log")
|
|
88
128
|
plt.legend(frameon=0)
|
|
89
129
|
if spec_range is not None:
|
|
90
|
-
plt.ylim(spec_range[0],spec_range[1])
|
|
130
|
+
plt.ylim(spec_range[0], spec_range[1])
|
|
91
131
|
else:
|
|
92
|
-
plt.figure(figsize=(16,3))
|
|
93
|
-
plt.subplot(1,4,1)
|
|
94
|
-
plt.title(
|
|
95
|
-
plt.imshow(in_image,cmap=cmap,vmin=vmin,vmax=vmax,origin=
|
|
132
|
+
plt.figure(figsize=(16, 3))
|
|
133
|
+
plt.subplot(1, 4, 1)
|
|
134
|
+
plt.title("Original field")
|
|
135
|
+
plt.imshow(in_image, cmap=cmap, vmin=vmin, vmax=vmax, origin="lower")
|
|
96
136
|
plt.xticks([])
|
|
97
137
|
plt.yticks([])
|
|
98
|
-
plt.subplot(1,4,2)
|
|
99
|
-
plt.title(
|
|
100
|
-
plt.imshow(out_image,cmap=cmap,vmin=vmin,vmax=vmax,origin=
|
|
138
|
+
plt.subplot(1, 4, 2)
|
|
139
|
+
plt.title("Modeled field")
|
|
140
|
+
plt.imshow(out_image, cmap=cmap, vmin=vmin, vmax=vmax, origin="lower")
|
|
101
141
|
plt.xticks([])
|
|
102
142
|
plt.yticks([])
|
|
103
|
-
plt.subplot(1,4,3)
|
|
104
|
-
plt.title(
|
|
105
|
-
plt.hist(
|
|
106
|
-
|
|
143
|
+
plt.subplot(1, 4, 3)
|
|
144
|
+
plt.title("Histogram")
|
|
145
|
+
plt.hist(
|
|
146
|
+
in_image.flatten(),
|
|
147
|
+
bins=100,
|
|
148
|
+
label="original",
|
|
149
|
+
color="r",
|
|
150
|
+
histtype="step",
|
|
151
|
+
log=True,
|
|
152
|
+
)
|
|
153
|
+
plt.hist(
|
|
154
|
+
out_image.flatten(),
|
|
155
|
+
bins=100,
|
|
156
|
+
label="modeled",
|
|
157
|
+
color="b",
|
|
158
|
+
histtype="step",
|
|
159
|
+
log=True,
|
|
160
|
+
)
|
|
107
161
|
plt.legend(frameon=0)
|
|
108
|
-
plt.subplot(1,4,4)
|
|
109
|
-
plt.title(
|
|
110
|
-
plt.plot(self.spectrum(in_image),color=
|
|
111
|
-
plt.plot(self.spectrum(out_image),color=
|
|
112
|
-
plt.xscale(
|
|
113
|
-
plt.yscale(
|
|
162
|
+
plt.subplot(1, 4, 4)
|
|
163
|
+
plt.title("Powerspectra")
|
|
164
|
+
plt.plot(self.spectrum(in_image), color="b", label="original")
|
|
165
|
+
plt.plot(self.spectrum(out_image), color="r", label="modeled")
|
|
166
|
+
plt.xscale("log")
|
|
167
|
+
plt.yscale("log")
|
|
114
168
|
if spec_range is not None:
|
|
115
|
-
plt.ylim(spec_range[0],spec_range[1])
|
|
169
|
+
plt.ylim(spec_range[0], spec_range[1])
|
|
116
170
|
plt.legend(frameon=0)
|
|
117
|
-
|
|
118
|
-
|
|
171
|
+
|
|
172
|
+
def plot_results(self, in_image, out_image, vmin=None, vmax=None, cmap="coolwarm"):
|
|
173
|
+
import matplotlib.pyplot as plt
|
|
174
|
+
|
|
175
|
+
plt.figure(figsize=(16, 3))
|
|
176
|
+
plt.subplot(1, 4, 1)
|
|
177
|
+
plt.title("Original field")
|
|
178
|
+
plt.imshow(in_image, cmap=cmap, vmin=vmin, vmax=vmax, origin="lower")
|
|
179
|
+
plt.xticks([])
|
|
180
|
+
plt.yticks([])
|
|
181
|
+
plt.subplot(1, 4, 2)
|
|
182
|
+
plt.title("Modeled field")
|
|
183
|
+
plt.imshow(out_image, cmap=cmap, vmin=vmin, vmax=vmax, origin="lower")
|
|
184
|
+
plt.xticks([])
|
|
185
|
+
plt.yticks([])
|
|
186
|
+
plt.subplot(1, 4, 3)
|
|
187
|
+
plt.title("Histogram")
|
|
188
|
+
plt.hist(
|
|
189
|
+
in_image.flatten(),
|
|
190
|
+
bins=100,
|
|
191
|
+
label="original",
|
|
192
|
+
color="r",
|
|
193
|
+
histtype="step",
|
|
194
|
+
log=True,
|
|
195
|
+
)
|
|
196
|
+
plt.hist(
|
|
197
|
+
out_image.flatten(),
|
|
198
|
+
bins=100,
|
|
199
|
+
label="modeled",
|
|
200
|
+
color="b",
|
|
201
|
+
histtype="step",
|
|
202
|
+
log=True,
|
|
203
|
+
)
|
|
204
|
+
plt.legend(frameon=0)
|
|
205
|
+
plt.subplot(1, 4, 4)
|
|
206
|
+
plt.title("Powerspectra")
|
|
207
|
+
plt.plot(self.spectrum(in_image), color="b", label="original")
|
|
208
|
+
plt.plot(self.spectrum(out_image), color="r", label="modeled")
|
|
209
|
+
plt.xscale("log")
|
|
210
|
+
plt.yscale("log")
|
|
211
|
+
plt.legend(frameon=0)
|
|
@@ -1,6 +1,6 @@
|
|
|
1
|
-
Metadata-Version: 2.
|
|
1
|
+
Metadata-Version: 2.4
|
|
2
2
|
Name: foscat
|
|
3
|
-
Version: 3.
|
|
3
|
+
Version: 2025.3.0
|
|
4
4
|
Summary: Generate synthetic Healpix or 2D data using Cross Scattering Transform
|
|
5
5
|
Author-email: Jean-Marc DELOUIS <jean.marc.delouis@ifremer.fr>
|
|
6
6
|
Maintainer-email: Theo Foulquier <theo.foulquier@ifremer.fr>
|
|
@@ -25,6 +25,7 @@ Requires-Dist: matplotlib
|
|
|
25
25
|
Requires-Dist: numpy
|
|
26
26
|
Requires-Dist: healpy
|
|
27
27
|
Requires-Dist: spherical
|
|
28
|
+
Dynamic: license-file
|
|
28
29
|
|
|
29
30
|
# foscat
|
|
30
31
|
|
|
@@ -0,0 +1,30 @@
|
|
|
1
|
+
foscat/BkBase.py,sha256=_iszgMdVIVEB47EBxNt5xemsdaKzsNFPStDF00M_-Ng,21281
|
|
2
|
+
foscat/BkNumpy.py,sha256=zRldS_-L6A7y1zDzEPZXQntuw3Paw2zHZowhD43FHRs,10589
|
|
3
|
+
foscat/BkTensorflow.py,sha256=N5TBacuyFB1-qGTi2kOc8zbgWzj5lVRRN47uZJpJJ10,15713
|
|
4
|
+
foscat/BkTorch.py,sha256=011L9WCBtrRzV1jfGWCYOMSkt1IJ0PfEO82NnrIYbAc,16648
|
|
5
|
+
foscat/CNN.py,sha256=j0F2a4Xf3LijhyD_WVZ6Eg_IjGuXw3ddH6Iudj1xVaw,4874
|
|
6
|
+
foscat/CircSpline.py,sha256=CXi49FxF8ZoeZ17Ua8c1AZXe2B5ICEC9aCXb97atB3s,4028
|
|
7
|
+
foscat/FoCUS.py,sha256=iCWuhQqYQ1ub3F0flO2iVuMoN7gCDd1oZ79SIH9-oww,108768
|
|
8
|
+
foscat/GCNN.py,sha256=5RV-FKuvqbD-k99TwiM4CttM2LMZE21WD0IK0j5Mkko,7599
|
|
9
|
+
foscat/Softmax.py,sha256=aBLQauoG0q2SJYPotV6U-cxAhsJcspWHNRWdnA_nAiQ,2854
|
|
10
|
+
foscat/Spline1D.py,sha256=rKzzenduaZZ-yBDJd35it6Gyrj1spqb7hoIaUgISPzY,2983
|
|
11
|
+
foscat/Synthesis.py,sha256=tC5hvpam19QwDdvghVax7dA7gMgKA6ZtxQEcV9HjdC0,13824
|
|
12
|
+
foscat/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
|
13
|
+
foscat/alm.py,sha256=qZlsYj5HzV1EY9Fdzt0U8bemrZHZziaMOKZ55FU8foM,33806
|
|
14
|
+
foscat/backend.py,sha256=l3aMwDyXP6jURMIvratFMGWCTcQpaR68KnUuuGDezqE,45418
|
|
15
|
+
foscat/backend_tens.py,sha256=9Dp136m9frkclkwifJQLLbIpl3ETI3_txdPUZcKfuMw,1618
|
|
16
|
+
foscat/loss_backend_tens.py,sha256=dCOVN6faDtIpN3VO78HTmYP2i5fnFAf-Ddy5qVBlGrM,1783
|
|
17
|
+
foscat/loss_backend_torch.py,sha256=k3z18Dj3SaLKK6ZIKcm7GO4U_YKYVP6LtHG1aIbxkYk,1627
|
|
18
|
+
foscat/scat.py,sha256=qGYiBIysPt65MdmF07WWA4piVlTfA9-lFDTaicnqC2w,72822
|
|
19
|
+
foscat/scat1D.py,sha256=W5Uu6wdQ4ZsFKXpof0f1OBl-1wjJmW7ruvddRWxe7uM,53726
|
|
20
|
+
foscat/scat2D.py,sha256=boKj0ASqMMSy7uQLK6hPniG87m3hZGJBYBiq5v8F9IQ,532
|
|
21
|
+
foscat/scat_cov.py,sha256=ZOFDWNC8q04N6Tvpe7RxSWlRgJ8jgsIyPJ_EJ39CXOg,258297
|
|
22
|
+
foscat/scat_cov1D.py,sha256=XOxsZZ5TYq8f34i2tUgIfzyaqaTDlICB3HzD2l_puro,531
|
|
23
|
+
foscat/scat_cov2D.py,sha256=pAm0fKw8wyXram0TFbtw8tGcc8QPKuPXpQk0kh10r4U,7078
|
|
24
|
+
foscat/scat_cov_map.py,sha256=Swt39-nYEaQkBzyX4EOAQBvUuYQpERzJ-uVxSWS2b-Y,2911
|
|
25
|
+
foscat/scat_cov_map2D.py,sha256=FqF45FBcoiQbvuVsrLWUIPRUc95GsKsrnH6fKzB3GlE,2841
|
|
26
|
+
foscat-2025.3.0.dist-info/licenses/LICENSE,sha256=i0ukIr8ZUpkSY2sZaE9XZK-6vuSU5iG6IgX_3pjatP8,1505
|
|
27
|
+
foscat-2025.3.0.dist-info/METADATA,sha256=hfPyoLACrvhbOjv70ve--tjL5CseBXEHMFvC3CNzSr0,7215
|
|
28
|
+
foscat-2025.3.0.dist-info/WHEEL,sha256=CmyFI0kx5cdEMTLiONQRbGQwjIoR1aIYB7eCAQ4KPJ0,91
|
|
29
|
+
foscat-2025.3.0.dist-info/top_level.txt,sha256=AGySXBBAlJgb8Tj8af6m_F-aiNg2zNTcybCUPVOKjAg,7
|
|
30
|
+
foscat-2025.3.0.dist-info/RECORD,,
|
foscat-3.8.2.dist-info/RECORD
DELETED
|
@@ -1,30 +0,0 @@
|
|
|
1
|
-
foscat/BkBase.py,sha256=MaQVDqbXqiEIMv1OPrEPBFEH1sHHDm6zU8gQBJHHGRI,21457
|
|
2
|
-
foscat/BkNumpy.py,sha256=809noOfXCfhVqxGGsWJKk9_V98ldrxJFbKsXBaIFVtA,10863
|
|
3
|
-
foscat/BkTensorflow.py,sha256=ZU86N9PFzRhK_Z2aLxzOUJ1PiE5WE7GTs80ASSGkc5U,15893
|
|
4
|
-
foscat/BkTorch.py,sha256=Q9glqlnjk4NB3H6RWFzyuRW9Zyrypt6WtuvWYrkic-w,14263
|
|
5
|
-
foscat/CNN.py,sha256=j0F2a4Xf3LijhyD_WVZ6Eg_IjGuXw3ddH6Iudj1xVaw,4874
|
|
6
|
-
foscat/CircSpline.py,sha256=CXi49FxF8ZoeZ17Ua8c1AZXe2B5ICEC9aCXb97atB3s,4028
|
|
7
|
-
foscat/FoCUS.py,sha256=gXvB-fajnPJMY_FQLLkGENaEuoU6sSUpNr5M_cGqnTI,103330
|
|
8
|
-
foscat/GCNN.py,sha256=5RV-FKuvqbD-k99TwiM4CttM2LMZE21WD0IK0j5Mkko,7599
|
|
9
|
-
foscat/Softmax.py,sha256=aBLQauoG0q2SJYPotV6U-cxAhsJcspWHNRWdnA_nAiQ,2854
|
|
10
|
-
foscat/Spline1D.py,sha256=rKzzenduaZZ-yBDJd35it6Gyrj1spqb7hoIaUgISPzY,2983
|
|
11
|
-
foscat/Synthesis.py,sha256=3oL-WIwOzjO6jYn-7J3TfAQSiPaQTqGtrmxcGBh1Gvs,13787
|
|
12
|
-
foscat/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
|
13
|
-
foscat/alm.py,sha256=XCpVH_QQmpc37oTXCLy7-DI_lzAbQYleWxlnCk44yd4,33482
|
|
14
|
-
foscat/backend.py,sha256=CcHtYS1j2dmQJyJDcm13ksS5Ya6V8bpp0DnKOt4uwCs,45580
|
|
15
|
-
foscat/backend_tens.py,sha256=9Dp136m9frkclkwifJQLLbIpl3ETI3_txdPUZcKfuMw,1618
|
|
16
|
-
foscat/loss_backend_tens.py,sha256=dCOVN6faDtIpN3VO78HTmYP2i5fnFAf-Ddy5qVBlGrM,1783
|
|
17
|
-
foscat/loss_backend_torch.py,sha256=k3z18Dj3SaLKK6ZIKcm7GO4U_YKYVP6LtHG1aIbxkYk,1627
|
|
18
|
-
foscat/scat.py,sha256=qGYiBIysPt65MdmF07WWA4piVlTfA9-lFDTaicnqC2w,72822
|
|
19
|
-
foscat/scat1D.py,sha256=W5Uu6wdQ4ZsFKXpof0f1OBl-1wjJmW7ruvddRWxe7uM,53726
|
|
20
|
-
foscat/scat2D.py,sha256=boKj0ASqMMSy7uQLK6hPniG87m3hZGJBYBiq5v8F9IQ,532
|
|
21
|
-
foscat/scat_cov.py,sha256=pC448VMy09wQ0Se-3zKfK2DGKVMy1rSKsDUDsY7CB90,272665
|
|
22
|
-
foscat/scat_cov1D.py,sha256=XOxsZZ5TYq8f34i2tUgIfzyaqaTDlICB3HzD2l_puro,531
|
|
23
|
-
foscat/scat_cov2D.py,sha256=GC26Yop7Y_Db3hNRQJYV8B7TxERgoH7TYr77wygmonQ,4813
|
|
24
|
-
foscat/scat_cov_map.py,sha256=Swt39-nYEaQkBzyX4EOAQBvUuYQpERzJ-uVxSWS2b-Y,2911
|
|
25
|
-
foscat/scat_cov_map2D.py,sha256=FqF45FBcoiQbvuVsrLWUIPRUc95GsKsrnH6fKzB3GlE,2841
|
|
26
|
-
foscat-3.8.2.dist-info/LICENSE,sha256=i0ukIr8ZUpkSY2sZaE9XZK-6vuSU5iG6IgX_3pjatP8,1505
|
|
27
|
-
foscat-3.8.2.dist-info/METADATA,sha256=z7WEKeFXBLHJElITxgknsXal6JhXvbQExjXLoGRQ-lE,7190
|
|
28
|
-
foscat-3.8.2.dist-info/WHEEL,sha256=52BFRY2Up02UkjOa29eZOS2VxUrpPORXg1pkohGGUS8,91
|
|
29
|
-
foscat-3.8.2.dist-info/top_level.txt,sha256=AGySXBBAlJgb8Tj8af6m_F-aiNg2zNTcybCUPVOKjAg,7
|
|
30
|
-
foscat-3.8.2.dist-info/RECORD,,
|
|
File without changes
|
|
File without changes
|