foscat 3.6.1__py3-none-any.whl → 3.7.1__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- foscat/CircSpline.py +19 -22
- foscat/FoCUS.py +61 -51
- foscat/Spline1D.py +12 -13
- foscat/Synthesis.py +16 -13
- foscat/alm.py +718 -580
- foscat/backend.py +141 -37
- foscat/scat_cov.py +2311 -430
- foscat/scat_cov2D.py +102 -2
- foscat/scat_cov_map.py +15 -2
- {foscat-3.6.1.dist-info → foscat-3.7.1.dist-info}/METADATA +3 -3
- foscat-3.7.1.dist-info/RECORD +26 -0
- {foscat-3.6.1.dist-info → foscat-3.7.1.dist-info}/WHEEL +1 -1
- foscat/alm_tools.py +0 -11
- foscat-3.6.1.dist-info/RECORD +0 -27
- /foscat-3.6.1.dist-info/LICENCE → /foscat-3.7.1.dist-info/LICENSE +0 -0
- {foscat-3.6.1.dist-info → foscat-3.7.1.dist-info}/top_level.txt +0 -0
foscat/alm.py
CHANGED
|
@@ -1,178 +1,191 @@
|
|
|
1
|
+
import time
|
|
2
|
+
|
|
1
3
|
import healpy as hp
|
|
2
4
|
import numpy as np
|
|
3
|
-
import time
|
|
4
5
|
|
|
5
|
-
class alm():
|
|
6
6
|
|
|
7
|
-
|
|
8
|
-
|
|
9
|
-
|
|
7
|
+
class alm:
|
|
8
|
+
|
|
9
|
+
def __init__(self, backend=None, lmax=24, nside=None, limit_range=1e10):
|
|
10
|
+
|
|
10
11
|
if backend is None:
|
|
11
12
|
import foscat.scat_cov as sc
|
|
12
|
-
|
|
13
|
-
self.
|
|
13
|
+
|
|
14
|
+
self.sc = sc.funct()
|
|
15
|
+
self.backend = self.sc.backend
|
|
14
16
|
else:
|
|
15
|
-
self.backend=backend.backend
|
|
16
|
-
|
|
17
|
-
self._logtab={}
|
|
18
|
-
self.lth={}
|
|
19
|
-
self.lph={}
|
|
20
|
-
self.matrix_shift_ph={}
|
|
21
|
-
self.ratio_mm={}
|
|
22
|
-
self.P_mm={}
|
|
23
|
-
self.A={}
|
|
24
|
-
self.B={}
|
|
17
|
+
self.backend = backend.backend
|
|
18
|
+
|
|
19
|
+
self._logtab = {}
|
|
20
|
+
self.lth = {}
|
|
21
|
+
self.lph = {}
|
|
22
|
+
self.matrix_shift_ph = {}
|
|
23
|
+
self.ratio_mm = {}
|
|
24
|
+
self.P_mm = {}
|
|
25
|
+
self.A = {}
|
|
26
|
+
self.B = {}
|
|
25
27
|
if nside is not None:
|
|
26
|
-
self.maxlog=6*nside+1
|
|
27
|
-
self.lmax=3*nside
|
|
28
|
+
self.maxlog = 6 * nside + 1
|
|
29
|
+
self.lmax = 3 * nside
|
|
28
30
|
else:
|
|
29
|
-
self.lmax=lmax
|
|
30
|
-
self.maxlog=2*lmax+1
|
|
31
|
-
|
|
32
|
-
for k in range(1,self.maxlog):
|
|
33
|
-
self._logtab[k]=self.backend.bk_log(self.backend.bk_cast(k))
|
|
34
|
-
self._logtab[0]=0.0
|
|
31
|
+
self.lmax = lmax
|
|
32
|
+
self.maxlog = 2 * lmax + 1
|
|
33
|
+
|
|
34
|
+
for k in range(1, self.maxlog):
|
|
35
|
+
self._logtab[k] = self.backend.bk_log(self.backend.bk_cast(k))
|
|
36
|
+
self._logtab[0] = 0.0
|
|
35
37
|
|
|
36
38
|
if nside is not None:
|
|
37
39
|
self.ring_th(nside)
|
|
38
40
|
self.ring_ph(nside)
|
|
39
41
|
self.shift_ph(nside)
|
|
40
|
-
|
|
41
|
-
self._limit_range=1/limit_range
|
|
42
|
-
self._log_limit_range=np.log(limit_range)
|
|
43
|
-
|
|
44
42
|
|
|
45
|
-
self.
|
|
46
|
-
self.
|
|
43
|
+
self._limit_range = 1 / limit_range
|
|
44
|
+
self._log_limit_range = np.log(limit_range)
|
|
47
45
|
|
|
48
|
-
|
|
46
|
+
self.Yp = {}
|
|
47
|
+
self.Ym = {}
|
|
48
|
+
|
|
49
|
+
def ring_th(self, nside):
|
|
49
50
|
if nside not in self.lth:
|
|
50
|
-
n=0
|
|
51
|
-
ith=[]
|
|
52
|
-
for k in range(nside-1):
|
|
53
|
-
N=4*(k+1)
|
|
51
|
+
n = 0
|
|
52
|
+
ith = []
|
|
53
|
+
for k in range(nside - 1):
|
|
54
|
+
N = 4 * (k + 1)
|
|
54
55
|
ith.append(n)
|
|
55
|
-
n+=N
|
|
56
|
-
|
|
57
|
-
for k in range(2*nside+1):
|
|
58
|
-
N=4*nside
|
|
56
|
+
n += N
|
|
57
|
+
|
|
58
|
+
for k in range(2 * nside + 1):
|
|
59
|
+
N = 4 * nside
|
|
59
60
|
ith.append(n)
|
|
60
|
-
n+=N
|
|
61
|
-
for k in range(nside-1):
|
|
62
|
-
N=4*(nside-1-k)
|
|
61
|
+
n += N
|
|
62
|
+
for k in range(nside - 1):
|
|
63
|
+
N = 4 * (nside - 1 - k)
|
|
63
64
|
ith.append(n)
|
|
64
|
-
n+=N
|
|
65
|
-
|
|
66
|
-
th,ph=hp.pix2ang(nside,ith)
|
|
67
|
-
|
|
68
|
-
self.lth[nside]=th
|
|
65
|
+
n += N
|
|
66
|
+
|
|
67
|
+
th, ph = hp.pix2ang(nside, ith)
|
|
68
|
+
|
|
69
|
+
self.lth[nside] = th
|
|
69
70
|
return self.lth[nside]
|
|
70
|
-
|
|
71
|
-
def ring_ph(self,nside):
|
|
71
|
+
|
|
72
|
+
def ring_ph(self, nside):
|
|
72
73
|
if nside not in self.lph:
|
|
73
|
-
n=0
|
|
74
|
-
iph=[]
|
|
75
|
-
for k in range(nside-1):
|
|
76
|
-
N=4*(k+1)
|
|
74
|
+
n = 0
|
|
75
|
+
iph = []
|
|
76
|
+
for k in range(nside - 1):
|
|
77
|
+
N = 4 * (k + 1)
|
|
77
78
|
iph.append(n)
|
|
78
|
-
n+=N
|
|
79
|
-
|
|
80
|
-
for k in range(2*nside+1):
|
|
81
|
-
N=4*nside
|
|
79
|
+
n += N
|
|
80
|
+
|
|
81
|
+
for k in range(2 * nside + 1):
|
|
82
|
+
N = 4 * nside
|
|
82
83
|
iph.append(n)
|
|
83
|
-
n+=N
|
|
84
|
-
for k in range(nside-1):
|
|
85
|
-
N=4*(nside-1-k)
|
|
84
|
+
n += N
|
|
85
|
+
for k in range(nside - 1):
|
|
86
|
+
N = 4 * (nside - 1 - k)
|
|
86
87
|
iph.append(n)
|
|
87
|
-
n+=N
|
|
88
|
-
|
|
89
|
-
th,ph=hp.pix2ang(nside,iph)
|
|
90
|
-
|
|
91
|
-
self.lph[nside]=ph
|
|
92
|
-
|
|
93
|
-
def shift_ph(self,nside):
|
|
94
|
-
|
|
88
|
+
n += N
|
|
89
|
+
|
|
90
|
+
th, ph = hp.pix2ang(nside, iph)
|
|
91
|
+
|
|
92
|
+
self.lph[nside] = ph
|
|
93
|
+
|
|
94
|
+
def shift_ph(self, nside):
|
|
95
|
+
|
|
95
96
|
if nside not in self.matrix_shift_ph:
|
|
96
97
|
self.ring_th(nside)
|
|
97
98
|
self.ring_ph(nside)
|
|
98
|
-
x=(-
|
|
99
|
-
self.matrix_shift_ph[nside]=self.backend.bk_cast(
|
|
100
|
-
|
|
101
|
-
|
|
102
|
-
|
|
103
|
-
|
|
104
|
-
|
|
105
|
-
|
|
106
|
-
|
|
107
|
-
|
|
108
|
-
|
|
109
|
-
|
|
110
|
-
|
|
111
|
-
|
|
99
|
+
x = (-1j * np.arange(3 * nside)).reshape(1, 3 * nside)
|
|
100
|
+
self.matrix_shift_ph[nside] = self.backend.bk_cast(
|
|
101
|
+
self.backend.bk_exp(x * self.lph[nside].reshape(4 * nside - 1, 1))
|
|
102
|
+
)
|
|
103
|
+
|
|
104
|
+
self.lmax = 3 * nside - 1
|
|
105
|
+
|
|
106
|
+
ratio_mm = {}
|
|
107
|
+
|
|
108
|
+
for m in range(3 * nside):
|
|
109
|
+
val = np.zeros([self.lmax - m + 1])
|
|
110
|
+
aval = np.zeros([self.lmax - m + 1])
|
|
111
|
+
bval = np.zeros([self.lmax - m + 1])
|
|
112
|
+
|
|
113
|
+
if m > 0:
|
|
114
|
+
val[0] = self.double_factorial_log(2 * m - 1) - 0.5 * np.sum(
|
|
115
|
+
np.log(1 + np.arange(2 * m))
|
|
116
|
+
)
|
|
112
117
|
else:
|
|
113
|
-
val[0]=self.double_factorial_log(2*m - 1)
|
|
114
|
-
if m<self.lmax:
|
|
115
|
-
aval[1]=
|
|
116
|
-
val[1] = val[0]-0.5*self.log(2*m+1)
|
|
117
|
-
|
|
118
|
-
for l in range(m + 2, self.lmax+1):
|
|
119
|
-
aval[l-m]=(2*l - 1)/ (l - m)
|
|
120
|
-
bval[l-m]=(l + m - 1)/ (l - m)
|
|
121
|
-
val[l-m] =
|
|
122
|
-
|
|
123
|
-
|
|
124
|
-
|
|
125
|
-
|
|
118
|
+
val[0] = self.double_factorial_log(2 * m - 1)
|
|
119
|
+
if m < self.lmax:
|
|
120
|
+
aval[1] = 2 * m + 1
|
|
121
|
+
val[1] = val[0] - 0.5 * self.log(2 * m + 1)
|
|
122
|
+
|
|
123
|
+
for l in range(m + 2, self.lmax + 1):
|
|
124
|
+
aval[l - m] = (2 * l - 1) / (l - m)
|
|
125
|
+
bval[l - m] = (l + m - 1) / (l - m)
|
|
126
|
+
val[l - m] = (
|
|
127
|
+
val[l - m - 1]
|
|
128
|
+
+ 0.5 * self.log(l - m)
|
|
129
|
+
- 0.5 * self.log(l + m)
|
|
130
|
+
)
|
|
131
|
+
|
|
132
|
+
self.A[nside, m] = self.backend.constant((aval))
|
|
133
|
+
self.B[nside, m] = self.backend.constant((bval))
|
|
134
|
+
self.ratio_mm[nside, m] = self.backend.constant(
|
|
135
|
+
np.sqrt(4 * np.pi) * np.expand_dims(np.exp(val), 1)
|
|
136
|
+
)
|
|
126
137
|
# Calcul de P_{mm}(x)
|
|
127
|
-
P_mm=np.ones([3*nside,4*nside-1])
|
|
128
|
-
x=np.cos(self.lth[nside])
|
|
138
|
+
P_mm = np.ones([3 * nside, 4 * nside - 1])
|
|
139
|
+
x = np.cos(self.lth[nside])
|
|
129
140
|
if m == 0:
|
|
130
141
|
P_mm[m] = 1.0
|
|
131
|
-
for m in range(3*nside-1):
|
|
132
|
-
P_mm[m] = (0.5-m%2)*2 * (1 - x**2)**(m/2)
|
|
133
|
-
self.P_mm[nside]=self.backend.constant(P_mm)
|
|
134
|
-
|
|
135
|
-
def init_Ys(self,s,nside):
|
|
142
|
+
for m in range(3 * nside - 1):
|
|
143
|
+
P_mm[m] = (0.5 - m % 2) * 2 * (1 - x**2) ** (m / 2)
|
|
144
|
+
self.P_mm[nside] = self.backend.constant(P_mm)
|
|
145
|
+
|
|
146
|
+
def init_Ys(self, s, nside):
|
|
136
147
|
|
|
137
|
-
if (s,nside) not in self.Yp:
|
|
148
|
+
if (s, nside) not in self.Yp:
|
|
138
149
|
import quaternionic
|
|
139
150
|
import spherical
|
|
140
151
|
|
|
141
|
-
ell_max = 3*nside-1 # Use the largest ℓ value you expect to need
|
|
152
|
+
ell_max = 3 * nside - 1 # Use the largest ℓ value you expect to need
|
|
142
153
|
wigner = spherical.Wigner(ell_max)
|
|
143
154
|
|
|
144
|
-
#th,ph=hp.pix2ang(nside,np.arange(12*nside*nside))
|
|
145
|
-
|
|
146
|
-
lth=self.ring_th(nside)
|
|
147
|
-
|
|
148
|
-
R = quaternionic.array.from_spherical_coordinates(lth, 0*lth)
|
|
149
|
-
self.Yp[s,nside]
|
|
150
|
-
self.Ym[s,nside]
|
|
151
|
-
iplus
|
|
152
|
-
imoins = (wigner.sYlm(-s, R)*(4*np.pi/(12*nside**2))).T.real
|
|
153
|
-
|
|
154
|
-
for m in range(ell_max+1):
|
|
155
|
-
idx=np.array([wigner.Yindex(k, m) for k in range(m,ell_max+1)])
|
|
156
|
-
vnorm=1/np.expand_dims(
|
|
157
|
-
|
|
158
|
-
|
|
159
|
-
|
|
160
|
-
|
|
161
|
-
|
|
162
|
-
del
|
|
163
|
-
|
|
164
|
-
|
|
155
|
+
# th,ph=hp.pix2ang(nside,np.arange(12*nside*nside))
|
|
156
|
+
|
|
157
|
+
lth = self.ring_th(nside)
|
|
158
|
+
|
|
159
|
+
R = quaternionic.array.from_spherical_coordinates(lth, 0 * lth)
|
|
160
|
+
self.Yp[s, nside] = {}
|
|
161
|
+
self.Ym[s, nside] = {}
|
|
162
|
+
iplus = (wigner.sYlm(s, R) * (4 * np.pi / (12 * nside**2))).T.real
|
|
163
|
+
imoins = (wigner.sYlm(-s, R) * (4 * np.pi / (12 * nside**2))).T.real
|
|
164
|
+
|
|
165
|
+
for m in range(ell_max + 1):
|
|
166
|
+
idx = np.array([wigner.Yindex(k, m) for k in range(m, ell_max + 1)])
|
|
167
|
+
vnorm = 1 / np.expand_dims(
|
|
168
|
+
np.sqrt(2 * (np.arange(ell_max - m + 1) + m) + 1), 1
|
|
169
|
+
)
|
|
170
|
+
self.Yp[s, nside][m] = iplus[idx] * vnorm
|
|
171
|
+
self.Ym[s, nside][m] = imoins[idx] * vnorm
|
|
172
|
+
|
|
173
|
+
del iplus
|
|
174
|
+
del imoins
|
|
175
|
+
del wigner
|
|
176
|
+
|
|
177
|
+
def log(self, v):
|
|
165
178
|
return np.log(v)
|
|
166
|
-
if isinstance(v,np.ndarray):
|
|
179
|
+
if isinstance(v, np.ndarray):
|
|
167
180
|
return np.array([self.backend.bk_log(self.backend.bk_cast(k)) for k in v])
|
|
168
|
-
if v<self.maxlog:
|
|
181
|
+
if v < self.maxlog:
|
|
169
182
|
return self._logtab[v]
|
|
170
183
|
else:
|
|
171
|
-
self._logtab[v]=self.backend.bk_log(self.backend.bk_cast(v))
|
|
184
|
+
self._logtab[v] = self.backend.bk_log(self.backend.bk_cast(v))
|
|
172
185
|
return self._logtab[v]
|
|
173
186
|
|
|
174
187
|
# Fonction pour calculer la double factorielle
|
|
175
|
-
def double_factorial_log(self,n):
|
|
188
|
+
def double_factorial_log(self, n):
|
|
176
189
|
if n <= 0:
|
|
177
190
|
return 0.0
|
|
178
191
|
result = 0.0
|
|
@@ -180,7 +193,7 @@ class alm():
|
|
|
180
193
|
result += np.log(i)
|
|
181
194
|
return result
|
|
182
195
|
|
|
183
|
-
def recurrence_fn(self,states, inputs):
|
|
196
|
+
def recurrence_fn(self, states, inputs):
|
|
184
197
|
"""
|
|
185
198
|
Fonction de récurrence pour tf.scan.
|
|
186
199
|
states: un tuple (U_{n-1}, U_{n-2}) de forme [m]
|
|
@@ -190,62 +203,73 @@ class alm():
|
|
|
190
203
|
a_n, b_n = inputs # a_n est de forme [m], b_n est un scalaire
|
|
191
204
|
U_n = a_n * U_prev - b_n * U_prev2
|
|
192
205
|
return (U_n, U_prev) # Avancer les états
|
|
193
|
-
|
|
194
|
-
|
|
195
|
-
|
|
196
|
-
|
|
197
|
-
|
|
198
|
-
|
|
199
|
-
|
|
206
|
+
|
|
207
|
+
# Calcul des P_{lm}(x) pour tout l inclus dans [m,lmax]
|
|
208
|
+
def compute_legendre_m(self, x, m, lmax, nside):
|
|
209
|
+
result = np.zeros([lmax - m + 1, x.shape[0]])
|
|
210
|
+
ratio = np.zeros([lmax - m + 1, 1])
|
|
211
|
+
|
|
212
|
+
ratio[0, 0] = self.double_factorial_log(2 * m - 1) - 0.5 * np.sum(
|
|
213
|
+
self.log(1 + np.arange(2 * m))
|
|
214
|
+
)
|
|
215
|
+
|
|
200
216
|
# Étape 1 : Calcul de P_{mm}(x)
|
|
201
217
|
if m == 0:
|
|
202
218
|
Pmm = 1.0
|
|
203
219
|
else:
|
|
204
|
-
#Pmm = (-1)**m * (1 - x**2)**(m/2)
|
|
205
|
-
Pmm = (0.5-m%2)*2 * (1 - x**2)**(m/2)
|
|
206
|
-
|
|
207
|
-
|
|
220
|
+
# Pmm = (-1)**m * (1 - x**2)**(m/2)
|
|
221
|
+
Pmm = (0.5 - m % 2) * 2 * (1 - x**2) ** (m / 2)
|
|
222
|
+
|
|
208
223
|
# Si l == m, c'est directement P_{mm}
|
|
209
|
-
result[0]
|
|
210
|
-
|
|
224
|
+
result[0] = Pmm
|
|
225
|
+
|
|
211
226
|
if m == lmax:
|
|
212
|
-
return result*np.exp(ratio)*np.sqrt(4*np.pi)
|
|
213
|
-
|
|
227
|
+
return result * np.exp(ratio) * np.sqrt(4 * np.pi)
|
|
228
|
+
|
|
214
229
|
# Étape 2 : Calcul de P_{l+1, m}(x)
|
|
215
|
-
result[1] = x * (2*m + 1) * result[0]
|
|
230
|
+
result[1] = x * (2 * m + 1) * result[0]
|
|
231
|
+
|
|
232
|
+
ratio[1, 0] = ratio[0, 0] - 0.5 * self.log(2 * m + 1)
|
|
216
233
|
|
|
217
|
-
ratio[1,0] = ratio[0,0]-0.5*self.log(2*m+1)
|
|
218
|
-
|
|
219
234
|
# Étape 3 : Récurence pour l > m + 1
|
|
220
|
-
for l in range(m + 2, lmax+1):
|
|
221
|
-
result[l
|
|
222
|
-
|
|
223
|
-
|
|
224
|
-
|
|
225
|
-
|
|
226
|
-
|
|
227
|
-
|
|
228
|
-
|
|
229
|
-
|
|
235
|
+
for l in range(m + 2, lmax + 1):
|
|
236
|
+
result[l - m] = (
|
|
237
|
+
(2 * l - 1) * x * result[l - m - 1] - (l + m - 1) * result[l - m - 2]
|
|
238
|
+
) / (l - m)
|
|
239
|
+
ratio[l - m, 0] = (
|
|
240
|
+
0.5 * self.log(l - m) - 0.5 * self.log(l + m) + ratio[l - m - 1, 0]
|
|
241
|
+
)
|
|
242
|
+
if np.max(abs(result[l - m])) > self._limit_range:
|
|
243
|
+
result[l - m - 1] *= self._limit_range
|
|
244
|
+
result[l - m] *= self._limit_range
|
|
245
|
+
ratio[l - m - 1, 0] += self._log_limit_range
|
|
246
|
+
ratio[l - m, 0] += self._log_limit_range
|
|
247
|
+
|
|
248
|
+
return result * np.exp(ratio) * np.sqrt(4 * np.pi)
|
|
230
249
|
|
|
231
250
|
# Calcul des P_{lm}(x) pour tout l inclus dans [m,lmax]
|
|
232
|
-
def compute_legendre_m_old2(self,x,m,lmax,nside):
|
|
233
|
-
|
|
234
|
-
result={}
|
|
235
|
-
|
|
251
|
+
def compute_legendre_m_old2(self, x, m, lmax, nside):
|
|
252
|
+
|
|
253
|
+
result = {}
|
|
254
|
+
|
|
236
255
|
# Si l == m, c'est directement P_{mm}
|
|
237
|
-
result[0]
|
|
238
|
-
|
|
256
|
+
result[0] = self.P_mm[nside][m]
|
|
257
|
+
|
|
239
258
|
if m == lmax:
|
|
240
|
-
v=self.backend.bk_reshape(
|
|
241
|
-
|
|
242
|
-
|
|
259
|
+
v = self.backend.bk_reshape(
|
|
260
|
+
result[0] * self.ratio_mm[nside, m][0], [1, 4 * nside - 1]
|
|
261
|
+
)
|
|
262
|
+
return self.backend.bk_complex(v, 0 * v)
|
|
263
|
+
|
|
243
264
|
# Étape 2 : Calcul de P_{l+1, m}(x)
|
|
244
|
-
result[1] = x * self.A[nside,m][1] * result[0]
|
|
245
|
-
|
|
265
|
+
result[1] = x * self.A[nside, m][1] * result[0]
|
|
266
|
+
|
|
246
267
|
# Étape 3 : Récurence pour l > m + 1
|
|
247
|
-
for l in range(m + 2, lmax+1):
|
|
248
|
-
result[l
|
|
268
|
+
for l in range(m + 2, lmax + 1):
|
|
269
|
+
result[l - m] = (
|
|
270
|
+
self.A[nside, m][l - m] * x * result[l - m - 1]
|
|
271
|
+
- self.B[nside, m][l - m] * result[l - m - 2]
|
|
272
|
+
)
|
|
249
273
|
"""
|
|
250
274
|
if np.max(abs(result[l-m]))>self._limit_range:
|
|
251
275
|
result[l-m-1]*= self._limit_range
|
|
@@ -253,45 +277,62 @@ class alm():
|
|
|
253
277
|
ratio[l-m-1]+= self._log_limit_range
|
|
254
278
|
ratio[l-m]+= self._log_limit_range
|
|
255
279
|
"""
|
|
256
|
-
result=self.backend.bk_reshape(
|
|
280
|
+
result = self.backend.bk_reshape(
|
|
281
|
+
self.backend.bk_concat([result[k] for k in range(lmax + 1 - m)], axis=0),
|
|
282
|
+
[lmax + 1 - m, 4 * nside - 1],
|
|
283
|
+
)
|
|
257
284
|
|
|
258
|
-
return self.backend.bk_complex(result*self.ratio_mm[nside,m],0*result)
|
|
285
|
+
return self.backend.bk_complex(result * self.ratio_mm[nside, m], 0 * result)
|
|
286
|
+
|
|
287
|
+
def compute_legendre_m_old(self, x, m, lmax, nside):
|
|
259
288
|
|
|
260
|
-
|
|
261
|
-
def compute_legendre_m_old(self,x,m,lmax,nside):
|
|
262
|
-
|
|
263
289
|
import tensorflow as tf
|
|
264
|
-
|
|
265
|
-
|
|
290
|
+
|
|
291
|
+
result = {}
|
|
292
|
+
|
|
266
293
|
# Si l == m, c'est directement P_{mm}
|
|
267
|
-
U_0
|
|
268
|
-
|
|
294
|
+
U_0 = self.P_mm[nside][m]
|
|
295
|
+
|
|
269
296
|
if m == lmax:
|
|
270
|
-
v=self.backend.bk_reshape(
|
|
271
|
-
|
|
272
|
-
|
|
273
|
-
|
|
274
|
-
U_1 = x * self.A[nside,m][1] * U_0
|
|
275
|
-
if m == lmax-1:
|
|
276
|
-
result = tf.concat([self.backend.bk_expand_dims(U_0,0),
|
|
277
|
-
self.backend.bk_expand_dims(U_1,0)],0)
|
|
278
|
-
return self.backend.bk_complex(result*self.ratio_mm[nside,m],0*result)
|
|
297
|
+
v = self.backend.bk_reshape(
|
|
298
|
+
U_0 * self.ratio_mm[nside, m][0], [1, 4 * nside - 1]
|
|
299
|
+
)
|
|
300
|
+
return self.backend.bk_complex(v, 0 * v)
|
|
279
301
|
|
|
280
|
-
|
|
302
|
+
# Étape 2 : Calcul de P_{l+1, m}(x)
|
|
303
|
+
U_1 = x * self.A[nside, m][1] * U_0
|
|
304
|
+
if m == lmax - 1:
|
|
305
|
+
result = tf.concat(
|
|
306
|
+
[
|
|
307
|
+
self.backend.bk_expand_dims(U_0, 0),
|
|
308
|
+
self.backend.bk_expand_dims(U_1, 0),
|
|
309
|
+
],
|
|
310
|
+
0,
|
|
311
|
+
)
|
|
312
|
+
return self.backend.bk_complex(result * self.ratio_mm[nside, m], 0 * result)
|
|
313
|
+
|
|
314
|
+
a_values = self.backend.bk_expand_dims(
|
|
315
|
+
self.A[nside, m], 1
|
|
316
|
+
) * self.backend.bk_expand_dims(x, 0)
|
|
281
317
|
# Initialiser les états avec (U_1, U_0) pour chaque m
|
|
282
318
|
initial_states = (U_1, U_0)
|
|
283
|
-
inputs = (a_values[2:], self.B[nside,m][2:])
|
|
319
|
+
inputs = (a_values[2:], self.B[nside, m][2:])
|
|
284
320
|
# Appliquer tf.scan
|
|
285
321
|
result = tf.scan(self.recurrence_fn, inputs, initializer=initial_states)
|
|
286
322
|
# Le premier élément de result contient les U[n]
|
|
287
|
-
result = tf.concat(
|
|
288
|
-
|
|
289
|
-
|
|
323
|
+
result = tf.concat(
|
|
324
|
+
[
|
|
325
|
+
self.backend.bk_expand_dims(U_0, 0),
|
|
326
|
+
self.backend.bk_expand_dims(U_1, 0),
|
|
327
|
+
result[0],
|
|
328
|
+
],
|
|
329
|
+
axis=0,
|
|
330
|
+
)
|
|
290
331
|
"""
|
|
291
332
|
# Étape 3 : Récurence pour l > m + 1
|
|
292
333
|
for l in range(m + 2, lmax+1):
|
|
293
334
|
result[l-m] = self.A[nside,m][l-m] * x * result[l-m-1] - self.B[nside,m][l-m] * result[l-m-2]
|
|
294
|
-
|
|
335
|
+
|
|
295
336
|
if np.max(abs(result[l-m]))>self._limit_range:
|
|
296
337
|
result[l-m-1]*= self._limit_range
|
|
297
338
|
result[l-m]*= self._limit_range
|
|
@@ -299,501 +340,598 @@ class alm():
|
|
|
299
340
|
ratio[l-m]+= self._log_limit_range
|
|
300
341
|
result=self.backend.bk_reshape(self.backend.bk_concat([result[k] for k in range(lmax+1-m)],axis=0),[lmax+1-m,4*nside-1])
|
|
301
342
|
"""
|
|
302
|
-
|
|
303
|
-
return self.backend.bk_complex(result*self.ratio_mm[nside,m],0*result)
|
|
304
343
|
|
|
305
|
-
|
|
344
|
+
return self.backend.bk_complex(result * self.ratio_mm[nside, m], 0 * result)
|
|
345
|
+
|
|
306
346
|
# Calcul des s_P_{lm}(x) pour tout l inclus dans [m,lmax]
|
|
307
|
-
def compute_legendre_spin2_m(self,co_th,si_th,m,lmax):
|
|
308
|
-
result=np.zeros([lmax-m+2,co_th.shape[0]])
|
|
309
|
-
ratio =np.zeros([lmax-m+2,1])
|
|
310
|
-
|
|
311
|
-
ratio[1,0] = self.double_factorial_log(2*m - 1)-0.5*np.sum(
|
|
347
|
+
def compute_legendre_spin2_m(self, co_th, si_th, m, lmax):
|
|
348
|
+
result = np.zeros([lmax - m + 2, co_th.shape[0]])
|
|
349
|
+
ratio = np.zeros([lmax - m + 2, 1])
|
|
350
|
+
|
|
351
|
+
ratio[1, 0] = self.double_factorial_log(2 * m - 1) - 0.5 * np.sum(
|
|
352
|
+
self.log(1 + np.arange(2 * m))
|
|
353
|
+
)
|
|
312
354
|
# Étape 1 : Calcul de P_{mm}(x)
|
|
313
355
|
if m == 0:
|
|
314
356
|
Pmm = 1.0
|
|
315
357
|
else:
|
|
316
|
-
#Pmm = (-1)**m * (1 - x**2)**(m/2)
|
|
317
|
-
Pmm = (0.5-m%2)*2 * (1 - co_th**2)**(m/2)
|
|
318
|
-
|
|
319
|
-
|
|
358
|
+
# Pmm = (-1)**m * (1 - x**2)**(m/2)
|
|
359
|
+
Pmm = (0.5 - m % 2) * 2 * (1 - co_th**2) ** (m / 2)
|
|
360
|
+
|
|
320
361
|
# Si l == m, c'est directement P_{mm}
|
|
321
|
-
result[1]
|
|
322
|
-
|
|
362
|
+
result[1] = Pmm
|
|
363
|
+
|
|
323
364
|
if m == lmax:
|
|
324
|
-
ylm=result*np.exp(ratio)
|
|
325
|
-
ylm[1:]*=(
|
|
365
|
+
ylm = result * np.exp(ratio)
|
|
366
|
+
ylm[1:] *= (
|
|
367
|
+
np.sqrt(4 * np.pi * (2 * (np.arange(lmax - m + 1) + m) + 1))
|
|
368
|
+
).reshape(lmax + 1 - m, 1)
|
|
326
369
|
|
|
327
370
|
else:
|
|
328
371
|
# Étape 2 : Calcul de P_{l+1, m}(x)
|
|
329
|
-
result[2] = co_th * (2*m + 1) * result[0]
|
|
372
|
+
result[2] = co_th * (2 * m + 1) * result[0]
|
|
373
|
+
|
|
374
|
+
ratio[2, 0] = ratio[1, 0] - self.log(2 * m + 1) / 2
|
|
330
375
|
|
|
331
|
-
ratio[2,0] = ratio[1,0]-self.log(2*m+1)/2
|
|
332
|
-
|
|
333
376
|
# Étape 3 : Récurence pour l > m + 1
|
|
334
|
-
for l in range(m + 2, lmax+1):
|
|
335
|
-
result[l
|
|
336
|
-
|
|
337
|
-
|
|
338
|
-
|
|
339
|
-
|
|
340
|
-
|
|
341
|
-
|
|
342
|
-
|
|
343
|
-
|
|
344
|
-
|
|
345
|
-
|
|
346
|
-
|
|
347
|
-
|
|
348
|
-
|
|
349
|
-
|
|
350
|
-
|
|
351
|
-
|
|
352
|
-
|
|
353
|
-
|
|
354
|
-
|
|
355
|
-
|
|
356
|
-
|
|
357
|
-
|
|
358
|
-
|
|
359
|
-
|
|
360
|
-
|
|
361
|
-
|
|
362
|
-
|
|
363
|
-
|
|
364
|
-
|
|
365
|
-
|
|
366
|
-
|
|
367
|
-
|
|
368
|
-
|
|
369
|
-
|
|
370
|
-
|
|
371
|
-
|
|
372
|
-
|
|
373
|
-
|
|
374
|
-
|
|
375
|
-
|
|
377
|
+
for l in range(m + 2, lmax + 1):
|
|
378
|
+
result[l - m + 1] = (
|
|
379
|
+
(2 * l - 1) * co_th * result[l - m]
|
|
380
|
+
- (l + m - 1) * result[l - m - 1]
|
|
381
|
+
) / (l - m)
|
|
382
|
+
ratio[l - m + 1, 0] = (self.log(l - m) - self.log(l + m)) / 2 + ratio[
|
|
383
|
+
l - m, 0
|
|
384
|
+
]
|
|
385
|
+
if np.max(abs(result[l - m + 1])) > self._limit_range:
|
|
386
|
+
result[l - m] *= self._limit_range
|
|
387
|
+
result[l - m + 1] *= self._limit_range
|
|
388
|
+
ratio[l - m, 0] += self._log_limit_range
|
|
389
|
+
ratio[l - m + 1, 0] += self._log_limit_range
|
|
390
|
+
|
|
391
|
+
ylm = result * np.exp(ratio)
|
|
392
|
+
ylm[1:] *= (
|
|
393
|
+
np.sqrt(4 * np.pi * (2 * (np.arange(lmax - m + 1) + m) + 1))
|
|
394
|
+
).reshape(lmax + 1 - m, 1)
|
|
395
|
+
|
|
396
|
+
ell = (np.arange(lmax + 1 - m) + m).reshape(lmax + 1 - m, 1)
|
|
397
|
+
|
|
398
|
+
cot_th = co_th / si_th
|
|
399
|
+
si2_th = si_th * si_th
|
|
400
|
+
|
|
401
|
+
a = (2 * m**2 - ell * (ell + 1)) / (
|
|
402
|
+
si2_th.reshape(1, si2_th.shape[0])
|
|
403
|
+
) + ell * (ell - 1) * cot_th * cot_th
|
|
404
|
+
b = 2 * m * (ell - 1) * cot_th / si_th
|
|
405
|
+
w = np.zeros([lmax + 1 - m, 1])
|
|
406
|
+
l = ell[ell > 1]
|
|
407
|
+
w[ell > 1] = np.sqrt(1 / ((l + 2) * (l + 1) * (l) * (l - 1)))
|
|
408
|
+
w = w.reshape(lmax + 1 - m, 1)
|
|
409
|
+
|
|
410
|
+
alpha_plus = w * (a + b)
|
|
411
|
+
alpha_moins = w * (a - b)
|
|
412
|
+
|
|
413
|
+
a = 2 * np.sqrt((2 * ell + 1) / (2 * ell - 1) * (ell * ell - m * m))
|
|
414
|
+
b = m / si2_th
|
|
415
|
+
|
|
416
|
+
beta_plus = w * a * (cot_th / si_th + b)
|
|
417
|
+
beta_moins = w * a * (cot_th / si_th - b)
|
|
418
|
+
|
|
419
|
+
ylm_plus = alpha_plus * ylm[1:] + beta_plus * ylm[:-1]
|
|
420
|
+
ylm_moins = alpha_moins * ylm[1:] + beta_moins * ylm[:-1]
|
|
421
|
+
|
|
422
|
+
return ylm_plus, ylm_moins
|
|
423
|
+
|
|
424
|
+
def rfft2fft(self, val, axis=0):
|
|
425
|
+
r = self.backend.bk_rfft(val)
|
|
426
|
+
if axis == 0:
|
|
427
|
+
r_inv = self.backend.bk_reverse(
|
|
428
|
+
self.backend.bk_conjugate(r[1:-1]), axis=axis
|
|
429
|
+
)
|
|
376
430
|
else:
|
|
377
|
-
r_inv=self.backend.bk_reverse(
|
|
378
|
-
|
|
379
|
-
|
|
380
|
-
|
|
381
|
-
|
|
382
|
-
|
|
431
|
+
r_inv = self.backend.bk_reverse(
|
|
432
|
+
self.backend.bk_conjugate(r[:, 1:-1]), axis=axis
|
|
433
|
+
)
|
|
434
|
+
return self.backend.bk_concat([r, r_inv], axis=axis)
|
|
435
|
+
|
|
436
|
+
def irfft2fft(self, val, N, axis=0):
|
|
437
|
+
if axis == 0:
|
|
438
|
+
return self.backend.bk_irfft(val[0 : N // 2 + 1])
|
|
383
439
|
else:
|
|
384
|
-
return self.backend.bk_irfft(val[:,0:N//2+1])
|
|
385
|
-
|
|
386
|
-
def comp_tf(self,im,nside,realfft=False):
|
|
387
|
-
|
|
440
|
+
return self.backend.bk_irfft(val[:, 0 : N // 2 + 1])
|
|
441
|
+
|
|
442
|
+
def comp_tf(self, im, nside, realfft=False):
|
|
443
|
+
|
|
388
444
|
self.shift_ph(nside)
|
|
389
|
-
n=0
|
|
390
|
-
|
|
391
|
-
ft_im=[]
|
|
392
|
-
for k in range(nside-1):
|
|
393
|
-
N=4*(k+1)
|
|
394
|
-
|
|
445
|
+
n = 0
|
|
446
|
+
|
|
447
|
+
ft_im = []
|
|
448
|
+
for k in range(nside - 1):
|
|
449
|
+
N = 4 * (k + 1)
|
|
450
|
+
|
|
395
451
|
if realfft:
|
|
396
|
-
tmp=self.rfft2fft(im[n:n+N])
|
|
452
|
+
tmp = self.rfft2fft(im[n : n + N])
|
|
397
453
|
else:
|
|
398
|
-
tmp=self.backend.bk_fft(im[n:n+N])
|
|
399
|
-
|
|
400
|
-
l_n=tmp.shape[0]
|
|
401
|
-
|
|
402
|
-
if l_n<3*nside+1:
|
|
403
|
-
repeat_n=3*nside//l_n+1
|
|
404
|
-
tmp=self.backend.bk_tile(tmp,repeat_n,axis=0)
|
|
405
|
-
|
|
406
|
-
ft_im.append(tmp[0:3*nside])
|
|
407
|
-
|
|
408
|
-
n+=N
|
|
409
|
-
if nside>1:
|
|
410
|
-
result=self.backend.bk_reshape(
|
|
411
|
-
|
|
412
|
-
|
|
413
|
-
|
|
454
|
+
tmp = self.backend.bk_fft(im[n : n + N])
|
|
455
|
+
|
|
456
|
+
l_n = tmp.shape[0]
|
|
457
|
+
|
|
458
|
+
if l_n < 3 * nside + 1:
|
|
459
|
+
repeat_n = 3 * nside // l_n + 1
|
|
460
|
+
tmp = self.backend.bk_tile(tmp, repeat_n, axis=0)
|
|
461
|
+
|
|
462
|
+
ft_im.append(tmp[0 : 3 * nside])
|
|
463
|
+
|
|
464
|
+
n += N
|
|
465
|
+
if nside > 1:
|
|
466
|
+
result = self.backend.bk_reshape(
|
|
467
|
+
self.backend.bk_concat(ft_im, axis=0), [nside - 1, 3 * nside]
|
|
468
|
+
)
|
|
469
|
+
|
|
470
|
+
N = 4 * nside * (2 * nside + 1)
|
|
471
|
+
v = self.backend.bk_reshape(im[n : n + N], [2 * nside + 1, 4 * nside])
|
|
414
472
|
if realfft:
|
|
415
|
-
v_fft=self.rfft2fft(v,axis=1)[
|
|
473
|
+
v_fft = self.rfft2fft(v, axis=1)[:, : 3 * nside]
|
|
416
474
|
else:
|
|
417
|
-
v_fft=self.backend.bk_fft(v)[
|
|
475
|
+
v_fft = self.backend.bk_fft(v)[:, : 3 * nside]
|
|
418
476
|
|
|
419
|
-
n+=N
|
|
420
|
-
if nside>1:
|
|
421
|
-
result=self.backend.bk_concat([result,v_fft],axis=0)
|
|
477
|
+
n += N
|
|
478
|
+
if nside > 1:
|
|
479
|
+
result = self.backend.bk_concat([result, v_fft], axis=0)
|
|
422
480
|
else:
|
|
423
|
-
result=v_fft
|
|
424
|
-
|
|
425
|
-
if nside>1:
|
|
426
|
-
ft_im=[]
|
|
427
|
-
for k in range(nside-1):
|
|
428
|
-
N=4*(nside-1-k)
|
|
481
|
+
result = v_fft
|
|
482
|
+
|
|
483
|
+
if nside > 1:
|
|
484
|
+
ft_im = []
|
|
485
|
+
for k in range(nside - 1):
|
|
486
|
+
N = 4 * (nside - 1 - k)
|
|
429
487
|
|
|
430
488
|
if realfft:
|
|
431
|
-
tmp=self.rfft2fft(im[n:n+N])[0:l_n]
|
|
489
|
+
tmp = self.rfft2fft(im[n : n + N])[0:l_n]
|
|
432
490
|
else:
|
|
433
|
-
tmp=self.backend.bk_fft(im[n:n+N])[0:l_n]
|
|
491
|
+
tmp = self.backend.bk_fft(im[n : n + N])[0:l_n]
|
|
434
492
|
|
|
435
|
-
l_n=tmp.shape[0]
|
|
493
|
+
l_n = tmp.shape[0]
|
|
436
494
|
|
|
437
|
-
if l_n<3*nside+1:
|
|
438
|
-
repeat_n=3*nside//l_n+1
|
|
439
|
-
tmp=self.backend.bk_tile(tmp,repeat_n,axis=0)
|
|
495
|
+
if l_n < 3 * nside + 1:
|
|
496
|
+
repeat_n = 3 * nside // l_n + 1
|
|
497
|
+
tmp = self.backend.bk_tile(tmp, repeat_n, axis=0)
|
|
440
498
|
|
|
441
|
-
ft_im.append(tmp[0:3*nside])
|
|
442
|
-
n+=N
|
|
499
|
+
ft_im.append(tmp[0 : 3 * nside])
|
|
500
|
+
n += N
|
|
443
501
|
|
|
444
|
-
lastresult=self.backend.bk_reshape(
|
|
445
|
-
|
|
502
|
+
lastresult = self.backend.bk_reshape(
|
|
503
|
+
self.backend.bk_concat(ft_im, axis=0), [nside - 1, 3 * nside]
|
|
504
|
+
)
|
|
505
|
+
return (
|
|
506
|
+
self.backend.bk_concat([result, lastresult], axis=0)
|
|
507
|
+
* self.matrix_shift_ph[nside]
|
|
508
|
+
)
|
|
446
509
|
else:
|
|
447
|
-
return result*self.matrix_shift_ph[nside]
|
|
510
|
+
return result * self.matrix_shift_ph[nside]
|
|
511
|
+
|
|
512
|
+
def icomp_tf(self, i_im, nside, realfft=False):
|
|
448
513
|
|
|
449
|
-
|
|
450
|
-
def icomp_tf(self,i_im,nside,realfft=False):
|
|
451
|
-
|
|
452
514
|
self.shift_ph(nside)
|
|
453
|
-
|
|
454
|
-
n=0
|
|
455
|
-
im=[]
|
|
456
|
-
ft_im=i_im*self.backend.bk_conjugate(self.matrix_shift_ph[nside])
|
|
457
|
-
|
|
458
|
-
for k in range(nside-1):
|
|
459
|
-
N=4*(k+1)
|
|
460
|
-
|
|
515
|
+
|
|
516
|
+
n = 0
|
|
517
|
+
im = []
|
|
518
|
+
ft_im = i_im * self.backend.bk_conjugate(self.matrix_shift_ph[nside])
|
|
519
|
+
|
|
520
|
+
for k in range(nside - 1):
|
|
521
|
+
N = 4 * (k + 1)
|
|
522
|
+
|
|
461
523
|
if realfft:
|
|
462
|
-
tmp=self.irfft2fft(ft_im[k],N)
|
|
524
|
+
tmp = self.irfft2fft(ft_im[k], N)
|
|
463
525
|
else:
|
|
464
|
-
tmp=self.backend.bk_ifft(im[k],N)
|
|
465
|
-
|
|
526
|
+
tmp = self.backend.bk_ifft(im[k], N)
|
|
527
|
+
|
|
466
528
|
im.append(tmp[0:N])
|
|
467
|
-
|
|
468
|
-
n+=N
|
|
469
|
-
|
|
470
|
-
if nside>1:
|
|
471
|
-
result=self.backend.bk_concat(im,axis=0)
|
|
472
|
-
|
|
473
|
-
N=4*nside*(2*nside+1)
|
|
474
|
-
v=ft_im[nside-1:3*nside,0:2*nside+1]
|
|
529
|
+
|
|
530
|
+
n += N
|
|
531
|
+
|
|
532
|
+
if nside > 1:
|
|
533
|
+
result = self.backend.bk_concat(im, axis=0)
|
|
534
|
+
|
|
535
|
+
N = 4 * nside * (2 * nside + 1)
|
|
536
|
+
v = ft_im[nside - 1 : 3 * nside, 0 : 2 * nside + 1]
|
|
475
537
|
if realfft:
|
|
476
|
-
v_fft=self.backend.bk_reshape(
|
|
538
|
+
v_fft = self.backend.bk_reshape(
|
|
539
|
+
self.irfft2fft(v, N, axis=1), [4 * nside * (2 * nside + 1)]
|
|
540
|
+
)
|
|
477
541
|
else:
|
|
478
|
-
v_fft=self.backend.bk_ifft(v)
|
|
542
|
+
v_fft = self.backend.bk_ifft(v)
|
|
479
543
|
|
|
480
|
-
n+=N
|
|
481
|
-
if nside>1:
|
|
482
|
-
result=self.backend.bk_concat([result,v_fft],axis=0)
|
|
544
|
+
n += N
|
|
545
|
+
if nside > 1:
|
|
546
|
+
result = self.backend.bk_concat([result, v_fft], axis=0)
|
|
483
547
|
else:
|
|
484
|
-
result=v_fft
|
|
485
|
-
|
|
486
|
-
if nside>1:
|
|
487
|
-
im=[]
|
|
488
|
-
for k in range(nside-1):
|
|
489
|
-
N=4*(nside-1-k)
|
|
490
|
-
|
|
548
|
+
result = v_fft
|
|
549
|
+
|
|
550
|
+
if nside > 1:
|
|
551
|
+
im = []
|
|
552
|
+
for k in range(nside - 1):
|
|
553
|
+
N = 4 * (nside - 1 - k)
|
|
554
|
+
|
|
491
555
|
if realfft:
|
|
492
|
-
tmp=self.irfft2fft(ft_im[k+3*nside],N)
|
|
556
|
+
tmp = self.irfft2fft(ft_im[k + 3 * nside], N)
|
|
493
557
|
else:
|
|
494
|
-
tmp=self.backend.bk_ifft(im[k+3*nside],N)
|
|
495
|
-
|
|
558
|
+
tmp = self.backend.bk_ifft(im[k + 3 * nside], N)
|
|
559
|
+
|
|
496
560
|
im.append(tmp[0:N])
|
|
497
|
-
|
|
498
|
-
n+=N
|
|
499
561
|
|
|
500
|
-
|
|
562
|
+
n += N
|
|
563
|
+
|
|
564
|
+
return self.backend.bk_concat([result] + im, axis=0)
|
|
501
565
|
else:
|
|
502
566
|
return result
|
|
503
|
-
|
|
504
|
-
def anafast(self,im,map2=None,nest=False,spin=2):
|
|
505
|
-
|
|
506
|
-
"""The `anafast` function computes the L1 and L2 norm power spectra.
|
|
507
567
|
|
|
508
|
-
|
|
568
|
+
def anafast(self, im, map2=None, nest=False, spin=2):
|
|
569
|
+
"""The `anafast` function computes the L1 and L2 norm power spectra.
|
|
570
|
+
|
|
571
|
+
Currently, it is not optimized for single-pass computation due to the relatively inefficient computation of \(Y_{lm}\).
|
|
509
572
|
Nonetheless, it utilizes TensorFlow and can be integrated into gradient computations.
|
|
510
573
|
|
|
511
574
|
Input:
|
|
512
|
-
- `im`: a vector of size \([12 \times \text{Nside}^2]\) for scalar data, or of size \([2, 12 \times \text{Nside}^2]\) for Q,U polar data,
|
|
575
|
+
- `im`: a vector of size \([12 \times \text{Nside}^2]\) for scalar data, or of size \([2, 12 \times \text{Nside}^2]\) for Q,U polar data,
|
|
513
576
|
or of size \([3, 12 \times \text{Nside}^2]\) for I,Q,U polar data.
|
|
514
|
-
- `map2` (optional): a vector of size \([12 \times \text{Nside}^2]\) for scalar data, or of size
|
|
577
|
+
- `map2` (optional): a vector of size \([12 \times \text{Nside}^2]\) for scalar data, or of size
|
|
515
578
|
\([3, 12 \times \text{Nside}^2]\) for polar data. If provided, cross power spectra will be computed.
|
|
516
579
|
- `nest=True`: alters the ordering of the input maps.
|
|
517
580
|
- `spin=2` for 1/2 spin data as Q and U. Spin=1 for seep fields
|
|
518
581
|
|
|
519
582
|
Output:
|
|
520
|
-
-A tensor of size \([l_{\text{max}} \times (l_{\text{max}}-1)]\) formatted as \([6, \ldots]\),
|
|
583
|
+
-A tensor of size \([l_{\text{max}} \times (l_{\text{max}}-1)]\) formatted as \([6, \ldots]\),
|
|
521
584
|
ordered as TT, EE, BB, TE, EB.TBanafast function computes L1 and L2 norm powerspctra.
|
|
522
585
|
|
|
523
586
|
"""
|
|
524
|
-
i_im=self.backend.bk_cast(im)
|
|
587
|
+
i_im = self.backend.bk_cast(im)
|
|
525
588
|
if map2 is not None:
|
|
526
|
-
i_map2=self.backend.bk_cast(map2)
|
|
527
|
-
|
|
528
|
-
doT=True
|
|
529
|
-
if len(i_im.shape)==1:
|
|
530
|
-
nside=int(np.sqrt(i_im.shape[0]//12))
|
|
589
|
+
i_map2 = self.backend.bk_cast(map2)
|
|
590
|
+
|
|
591
|
+
doT = True
|
|
592
|
+
if len(i_im.shape) == 1: # nopol
|
|
593
|
+
nside = int(np.sqrt(i_im.shape[0] // 12))
|
|
531
594
|
else:
|
|
532
|
-
if i_im.shape[0]==2:
|
|
533
|
-
doT=False
|
|
534
|
-
nside=int(np.sqrt(i_im.shape[1]//12))
|
|
535
|
-
|
|
595
|
+
if i_im.shape[0] == 2:
|
|
596
|
+
doT = False
|
|
597
|
+
nside = int(np.sqrt(i_im.shape[1] // 12))
|
|
598
|
+
|
|
536
599
|
self.shift_ph(nside)
|
|
537
|
-
|
|
538
|
-
if doT:
|
|
539
|
-
if len(i_im.shape)==2:
|
|
540
|
-
l_im=i_im[0]
|
|
600
|
+
|
|
601
|
+
if doT: # nopol
|
|
602
|
+
if len(i_im.shape) == 2: # pol
|
|
603
|
+
l_im = i_im[0]
|
|
541
604
|
if map2 is not None:
|
|
542
|
-
l_map2=i_map2[0]
|
|
605
|
+
l_map2 = i_map2[0]
|
|
543
606
|
else:
|
|
544
|
-
l_im=i_im
|
|
607
|
+
l_im = i_im
|
|
545
608
|
if map2 is not None:
|
|
546
|
-
l_map2=i_map2
|
|
547
|
-
|
|
609
|
+
l_map2 = i_map2
|
|
610
|
+
|
|
548
611
|
if nest:
|
|
549
|
-
idx=hp.ring2nest(nside,np.arange(12*nside**2))
|
|
550
|
-
if len(i_im.shape)==1:
|
|
551
|
-
ft_im=self.comp_tf(
|
|
612
|
+
idx = hp.ring2nest(nside, np.arange(12 * nside**2))
|
|
613
|
+
if len(i_im.shape) == 1: # nopol
|
|
614
|
+
ft_im = self.comp_tf(
|
|
615
|
+
self.backend.bk_gather(l_im, idx), nside, realfft=True
|
|
616
|
+
)
|
|
552
617
|
if map2 is not None:
|
|
553
|
-
ft_im2=self.comp_tf(
|
|
618
|
+
ft_im2 = self.comp_tf(
|
|
619
|
+
self.backend.bk_gather(l_map2, idx), nside, realfft=True
|
|
620
|
+
)
|
|
554
621
|
else:
|
|
555
|
-
ft_im=self.comp_tf(l_im,nside,realfft=True)
|
|
622
|
+
ft_im = self.comp_tf(l_im, nside, realfft=True)
|
|
556
623
|
if map2 is not None:
|
|
557
|
-
ft_im2=self.comp_tf(l_map2,nside,realfft=True)
|
|
558
|
-
|
|
559
|
-
lth=self.ring_th(nside)
|
|
560
|
-
|
|
561
|
-
co_th=np.cos(lth)
|
|
562
|
-
|
|
563
|
-
lmax=3*nside-1
|
|
564
|
-
|
|
565
|
-
cl2=None
|
|
566
|
-
cl2_L1=None
|
|
567
|
-
dt2=0
|
|
568
|
-
dt3=0
|
|
569
|
-
dt4=0
|
|
570
|
-
if len(i_im.shape)==2:
|
|
571
|
-
|
|
572
|
-
self.init_Ys(spin,nside)
|
|
573
|
-
|
|
624
|
+
ft_im2 = self.comp_tf(l_map2, nside, realfft=True)
|
|
625
|
+
|
|
626
|
+
lth = self.ring_th(nside)
|
|
627
|
+
|
|
628
|
+
co_th = np.cos(lth)
|
|
629
|
+
|
|
630
|
+
lmax = 3 * nside - 1
|
|
631
|
+
|
|
632
|
+
cl2 = None
|
|
633
|
+
cl2_L1 = None
|
|
634
|
+
dt2 = 0
|
|
635
|
+
dt3 = 0
|
|
636
|
+
dt4 = 0
|
|
637
|
+
if len(i_im.shape) == 2: # nopol
|
|
638
|
+
|
|
639
|
+
self.init_Ys(spin, nside)
|
|
640
|
+
|
|
574
641
|
if nest:
|
|
575
|
-
idx=hp.ring2nest(nside,np.arange(12*nside**2))
|
|
576
|
-
l_Q=self.backend.bk_gather(i_im[int(doT)],idx)
|
|
577
|
-
l_U=self.backend.bk_gather(i_im[1+int(doT)],idx)
|
|
578
|
-
ft_im_Pp=self.comp_tf(self.backend.bk_complex(l_Q,l_U),nside)
|
|
579
|
-
ft_im_Pm=self.comp_tf(self.backend.bk_complex(l_Q
|
|
642
|
+
idx = hp.ring2nest(nside, np.arange(12 * nside**2))
|
|
643
|
+
l_Q = self.backend.bk_gather(i_im[int(doT)], idx)
|
|
644
|
+
l_U = self.backend.bk_gather(i_im[1 + int(doT)], idx)
|
|
645
|
+
ft_im_Pp = self.comp_tf(self.backend.bk_complex(l_Q, l_U), nside)
|
|
646
|
+
ft_im_Pm = self.comp_tf(self.backend.bk_complex(l_Q, -l_U), nside)
|
|
580
647
|
if map2 is not None:
|
|
581
|
-
l_Q=self.backend.bk_gather(i_map2[int(doT)],idx)
|
|
582
|
-
l_U=self.backend.bk_gather(i_map2[1+int(doT)],idx)
|
|
583
|
-
ft_im2_Pp=self.comp_tf(self.backend.bk_complex(l_Q,l_U),nside)
|
|
584
|
-
ft_im2_Pm=self.comp_tf(self.backend.bk_complex(l_Q
|
|
648
|
+
l_Q = self.backend.bk_gather(i_map2[int(doT)], idx)
|
|
649
|
+
l_U = self.backend.bk_gather(i_map2[1 + int(doT)], idx)
|
|
650
|
+
ft_im2_Pp = self.comp_tf(self.backend.bk_complex(l_Q, l_U), nside)
|
|
651
|
+
ft_im2_Pm = self.comp_tf(self.backend.bk_complex(l_Q, -l_U), nside)
|
|
585
652
|
else:
|
|
586
|
-
ft_im_Pp=self.comp_tf(
|
|
587
|
-
|
|
653
|
+
ft_im_Pp = self.comp_tf(
|
|
654
|
+
self.backend.bk_complex(i_im[int(doT)], i_im[1 + int(doT)]), nside
|
|
655
|
+
)
|
|
656
|
+
ft_im_Pm = self.comp_tf(
|
|
657
|
+
self.backend.bk_complex(i_im[int(doT)], -i_im[1 + int(doT)]), nside
|
|
658
|
+
)
|
|
588
659
|
if map2 is not None:
|
|
589
|
-
ft_im2_Pp=self.comp_tf(
|
|
590
|
-
|
|
660
|
+
ft_im2_Pp = self.comp_tf(
|
|
661
|
+
self.backend.bk_complex(i_map2[int(doT)], i_map2[1 + int(doT)]),
|
|
662
|
+
nside,
|
|
663
|
+
)
|
|
664
|
+
ft_im2_Pm = self.comp_tf(
|
|
665
|
+
self.backend.bk_complex(
|
|
666
|
+
i_map2[int(doT)], -i_map2[1 + int(doT)]
|
|
667
|
+
),
|
|
668
|
+
nside,
|
|
669
|
+
)
|
|
670
|
+
|
|
671
|
+
for m in range(lmax + 1):
|
|
672
|
+
|
|
673
|
+
plm = self.compute_legendre_m(co_th, m, 3 * nside - 1, nside) / (
|
|
674
|
+
12 * nside**2
|
|
675
|
+
)
|
|
591
676
|
|
|
592
|
-
for m in range(lmax+1):
|
|
593
|
-
|
|
594
|
-
plm=self.compute_legendre_m(co_th,m,3*nside-1,nside)/(12*nside**2)
|
|
595
|
-
|
|
596
677
|
if doT:
|
|
597
|
-
tmp=self.backend.bk_reduce_sum(plm*ft_im[:,m],1)
|
|
678
|
+
tmp = self.backend.bk_reduce_sum(plm * ft_im[:, m], 1)
|
|
598
679
|
|
|
599
680
|
if map2 is not None:
|
|
600
|
-
tmp2=self.backend.bk_reduce_sum(plm*ft_im2[:,m],1)
|
|
681
|
+
tmp2 = self.backend.bk_reduce_sum(plm * ft_im2[:, m], 1)
|
|
601
682
|
else:
|
|
602
|
-
tmp2=tmp
|
|
603
|
-
|
|
604
|
-
if len(i_im.shape)==2:
|
|
605
|
-
plmp=self.Yp[spin,nside][m]
|
|
606
|
-
plmm=self.Ym[spin,nside][m]
|
|
607
|
-
|
|
608
|
-
tmpp=self.backend.bk_reduce_sum(plmp*ft_im_Pp[:,m],1)
|
|
609
|
-
tmpm=self.backend.bk_reduce_sum(plmm*ft_im_Pm[:,m],1)
|
|
610
|
-
|
|
611
|
-
almE
|
|
612
|
-
almB=(tmpp-tmpm)/(
|
|
613
|
-
|
|
683
|
+
tmp2 = tmp
|
|
684
|
+
|
|
685
|
+
if len(i_im.shape) == 2: # pol
|
|
686
|
+
plmp = self.Yp[spin, nside][m]
|
|
687
|
+
plmm = self.Ym[spin, nside][m]
|
|
688
|
+
|
|
689
|
+
tmpp = self.backend.bk_reduce_sum(plmp * ft_im_Pp[:, m], 1)
|
|
690
|
+
tmpm = self.backend.bk_reduce_sum(plmm * ft_im_Pm[:, m], 1)
|
|
691
|
+
|
|
692
|
+
almE = -(tmpp + tmpm) / 2.0
|
|
693
|
+
almB = (tmpp - tmpm) / (2j)
|
|
694
|
+
|
|
614
695
|
if map2 is not None:
|
|
615
|
-
tmpp2=self.backend.bk_reduce_sum(plmp*ft_im2_Pp[:,m],1)
|
|
616
|
-
tmpm2=self.backend.bk_reduce_sum(plmm*ft_im2_Pm[:,m],1)
|
|
617
|
-
|
|
618
|
-
almE2
|
|
619
|
-
almB2=(tmpp2-tmpm2)/(
|
|
696
|
+
tmpp2 = self.backend.bk_reduce_sum(plmp * ft_im2_Pp[:, m], 1)
|
|
697
|
+
tmpm2 = self.backend.bk_reduce_sum(plmm * ft_im2_Pm[:, m], 1)
|
|
698
|
+
|
|
699
|
+
almE2 = -(tmpp2 + tmpm2) / 2.0
|
|
700
|
+
almB2 = (tmpp2 - tmpm2) / (2j)
|
|
620
701
|
else:
|
|
621
|
-
almE2=almE
|
|
622
|
-
almB2=almB
|
|
623
|
-
|
|
702
|
+
almE2 = almE
|
|
703
|
+
almB2 = almB
|
|
704
|
+
|
|
624
705
|
if doT:
|
|
625
|
-
tmpTT=self.backend.bk_real(
|
|
626
|
-
|
|
627
|
-
|
|
628
|
-
|
|
629
|
-
|
|
630
|
-
|
|
631
|
-
|
|
632
|
-
|
|
706
|
+
tmpTT = self.backend.bk_real(
|
|
707
|
+
(tmp * self.backend.bk_conjugate(tmp2))
|
|
708
|
+
)
|
|
709
|
+
tmpTE = self.backend.bk_real(
|
|
710
|
+
(tmp * self.backend.bk_conjugate(almE2))
|
|
711
|
+
)
|
|
712
|
+
tmpTB = -self.backend.bk_real(
|
|
713
|
+
(tmp * self.backend.bk_conjugate(almB2))
|
|
714
|
+
)
|
|
715
|
+
|
|
716
|
+
tmpEE = self.backend.bk_real((almE * self.backend.bk_conjugate(almE2)))
|
|
717
|
+
tmpBB = self.backend.bk_real((almB * self.backend.bk_conjugate(almB2)))
|
|
718
|
+
tmpEB = -self.backend.bk_real((almE * self.backend.bk_conjugate(almB2)))
|
|
719
|
+
|
|
633
720
|
if map2 is not None:
|
|
634
|
-
tmpEB=(
|
|
635
|
-
|
|
636
|
-
|
|
637
|
-
|
|
638
|
-
|
|
639
|
-
|
|
721
|
+
tmpEB = (
|
|
722
|
+
tmpEB
|
|
723
|
+
- self.backend.bk_real(
|
|
724
|
+
(almE2 * self.backend.bk_conjugate(almB))
|
|
725
|
+
)
|
|
726
|
+
) / 2
|
|
640
727
|
|
|
641
|
-
if m==0:
|
|
642
728
|
if doT:
|
|
643
|
-
|
|
729
|
+
tmpTE = (
|
|
730
|
+
tmpTE
|
|
731
|
+
+ self.backend.bk_real(
|
|
732
|
+
(tmp2 * self.backend.bk_conjugate(almE))
|
|
733
|
+
)
|
|
734
|
+
) / 2
|
|
735
|
+
tmpTB = (
|
|
736
|
+
tmpTB
|
|
737
|
+
- self.backend.bk_real(
|
|
738
|
+
(tmp2 * self.backend.bk_conjugate(almB))
|
|
739
|
+
)
|
|
740
|
+
) / 2
|
|
741
|
+
|
|
742
|
+
if m == 0:
|
|
743
|
+
if doT:
|
|
744
|
+
l_cl = self.backend.bk_concat(
|
|
745
|
+
[tmpTT, tmpEE, tmpBB, tmpTE, tmpEB, tmpTB], 0
|
|
746
|
+
)
|
|
644
747
|
else:
|
|
645
|
-
l_cl=self.backend.bk_concat([tmpEE,tmpBB,tmpEB],0)
|
|
748
|
+
l_cl = self.backend.bk_concat([tmpEE, tmpBB, tmpEB], 0)
|
|
646
749
|
else:
|
|
647
|
-
offset_tensor=self.backend.bk_zeros(
|
|
750
|
+
offset_tensor = self.backend.bk_zeros(
|
|
751
|
+
(m), dtype=self.backend.all_bk_type
|
|
752
|
+
)
|
|
648
753
|
if doT:
|
|
649
|
-
l_cl=self.backend.bk_concat(
|
|
650
|
-
|
|
651
|
-
|
|
652
|
-
|
|
653
|
-
|
|
654
|
-
|
|
754
|
+
l_cl = self.backend.bk_concat(
|
|
755
|
+
[
|
|
756
|
+
self.backend.bk_concat([offset_tensor, tmpTT], axis=0),
|
|
757
|
+
self.backend.bk_concat([offset_tensor, tmpEE], axis=0),
|
|
758
|
+
self.backend.bk_concat([offset_tensor, tmpBB], axis=0),
|
|
759
|
+
self.backend.bk_concat([offset_tensor, tmpTE], axis=0),
|
|
760
|
+
self.backend.bk_concat([offset_tensor, tmpEB], axis=0),
|
|
761
|
+
self.backend.bk_concat([offset_tensor, tmpTB], axis=0),
|
|
762
|
+
],
|
|
763
|
+
axis=0,
|
|
764
|
+
)
|
|
655
765
|
else:
|
|
656
|
-
l_cl=self.backend.bk_concat(
|
|
657
|
-
|
|
658
|
-
|
|
659
|
-
|
|
766
|
+
l_cl = self.backend.bk_concat(
|
|
767
|
+
[
|
|
768
|
+
self.backend.bk_concat([offset_tensor, tmpEE], axis=0),
|
|
769
|
+
self.backend.bk_concat([offset_tensor, tmpBB], axis=0),
|
|
770
|
+
self.backend.bk_concat([offset_tensor, tmpEB], axis=0),
|
|
771
|
+
],
|
|
772
|
+
axis=0,
|
|
773
|
+
)
|
|
774
|
+
|
|
660
775
|
if doT:
|
|
661
|
-
l_cl=self.backend.bk_reshape(l_cl,[6,lmax+1])
|
|
776
|
+
l_cl = self.backend.bk_reshape(l_cl, [6, lmax + 1])
|
|
662
777
|
else:
|
|
663
|
-
l_cl=self.backend.bk_reshape(l_cl,[3,lmax+1])
|
|
778
|
+
l_cl = self.backend.bk_reshape(l_cl, [3, lmax + 1])
|
|
664
779
|
else:
|
|
665
|
-
tmp=self.backend.bk_real((tmp*self.backend.bk_conjugate(tmp2)))
|
|
666
|
-
if m==0:
|
|
667
|
-
l_cl=tmp
|
|
780
|
+
tmp = self.backend.bk_real((tmp * self.backend.bk_conjugate(tmp2)))
|
|
781
|
+
if m == 0:
|
|
782
|
+
l_cl = tmp
|
|
668
783
|
else:
|
|
669
|
-
offset_tensor=self.backend.bk_zeros(
|
|
670
|
-
|
|
671
|
-
|
|
784
|
+
offset_tensor = self.backend.bk_zeros(
|
|
785
|
+
(m), dtype=self.backend.all_bk_type
|
|
786
|
+
)
|
|
787
|
+
l_cl = self.backend.bk_concat([offset_tensor, tmp], axis=0)
|
|
788
|
+
|
|
672
789
|
if cl2 is None:
|
|
673
|
-
cl2=l_cl
|
|
790
|
+
cl2 = l_cl
|
|
674
791
|
else:
|
|
675
|
-
cl2+=2*l_cl
|
|
676
|
-
|
|
677
|
-
#cl2=cl2*(4*np.pi) #self.backend.bk_sqrt(self.backend.bk_cast(4*np.pi)) #(2*np.arange(cl2.shape[0])+1)))
|
|
678
|
-
|
|
679
|
-
cl2_l1=self.backend.bk_L1(cl2)
|
|
680
|
-
|
|
681
|
-
return cl2,cl2_l1
|
|
682
|
-
|
|
683
|
-
def map2alm(self,im,nest=False):
|
|
684
|
-
nside=int(np.sqrt(im.shape[0]//12))
|
|
685
|
-
|
|
686
|
-
ph=self.shift_ph(nside)
|
|
687
|
-
|
|
792
|
+
cl2 += 2 * l_cl
|
|
793
|
+
|
|
794
|
+
# cl2=cl2*(4*np.pi) #self.backend.bk_sqrt(self.backend.bk_cast(4*np.pi)) #(2*np.arange(cl2.shape[0])+1)))
|
|
795
|
+
|
|
796
|
+
cl2_l1 = self.backend.bk_L1(cl2)
|
|
797
|
+
|
|
798
|
+
return cl2, cl2_l1
|
|
799
|
+
|
|
800
|
+
def map2alm(self, im, nest=False):
|
|
801
|
+
nside = int(np.sqrt(im.shape[0] // 12))
|
|
802
|
+
|
|
803
|
+
ph = self.shift_ph(nside)
|
|
804
|
+
|
|
688
805
|
if nest:
|
|
689
|
-
idx=hp.ring2nest(nside,np.arange(12*nside**2))
|
|
690
|
-
ft_im=self.comp_tf(
|
|
806
|
+
idx = hp.ring2nest(nside, np.arange(12 * nside**2))
|
|
807
|
+
ft_im = self.comp_tf(
|
|
808
|
+
self.backend.bk_cast(self.backend.bk_gather(im, idx)),
|
|
809
|
+
nside,
|
|
810
|
+
realfft=True,
|
|
811
|
+
)
|
|
691
812
|
else:
|
|
692
|
-
ft_im=self.comp_tf(self.backend.bk_cast(im),nside,realfft=True)
|
|
693
|
-
|
|
694
|
-
lth=self.ring_th(nside)
|
|
695
|
-
|
|
696
|
-
co_th=np.cos(lth)
|
|
697
|
-
|
|
698
|
-
lmax=3*nside-1
|
|
699
|
-
|
|
700
|
-
alm=None
|
|
701
|
-
for m in range(lmax+1):
|
|
702
|
-
plm=self.compute_legendre_m(co_th,m,3*nside-1,nside)/(
|
|
703
|
-
|
|
704
|
-
|
|
705
|
-
|
|
706
|
-
|
|
813
|
+
ft_im = self.comp_tf(self.backend.bk_cast(im), nside, realfft=True)
|
|
814
|
+
|
|
815
|
+
lth = self.ring_th(nside)
|
|
816
|
+
|
|
817
|
+
co_th = np.cos(lth)
|
|
818
|
+
|
|
819
|
+
lmax = 3 * nside - 1
|
|
820
|
+
|
|
821
|
+
alm = None
|
|
822
|
+
for m in range(lmax + 1):
|
|
823
|
+
plm = self.compute_legendre_m(co_th, m, 3 * nside - 1, nside) / (
|
|
824
|
+
12 * nside**2
|
|
825
|
+
)
|
|
826
|
+
|
|
827
|
+
tmp = self.backend.bk_reduce_sum(plm * ft_im[:, m], 1)
|
|
828
|
+
if m == 0:
|
|
829
|
+
alm = tmp
|
|
707
830
|
else:
|
|
708
|
-
alm=self.backend.bk_concat([alm,tmp],axis=0)
|
|
709
|
-
|
|
831
|
+
alm = self.backend.bk_concat([alm, tmp], axis=0)
|
|
832
|
+
|
|
710
833
|
return alm
|
|
711
834
|
|
|
712
|
-
|
|
713
|
-
|
|
835
|
+
def alm2map(self, nside, alm):
|
|
836
|
+
|
|
837
|
+
lth = self.ring_th(nside)
|
|
838
|
+
|
|
839
|
+
co_th = np.cos(lth)
|
|
714
840
|
|
|
715
|
-
|
|
841
|
+
ft_im = []
|
|
716
842
|
|
|
717
|
-
|
|
718
|
-
|
|
719
|
-
ft_im=[]
|
|
843
|
+
n = 0
|
|
720
844
|
|
|
721
|
-
|
|
845
|
+
lmax = 3 * nside - 1
|
|
722
846
|
|
|
723
|
-
lmax
|
|
724
|
-
|
|
725
|
-
|
|
726
|
-
|
|
847
|
+
for m in range(lmax + 1):
|
|
848
|
+
plm = self.compute_legendre_m(co_th, m, 3 * nside - 1, nside) / (
|
|
849
|
+
12 * nside**2
|
|
850
|
+
)
|
|
727
851
|
|
|
728
|
-
print(alm[n:n+lmax-m+1].shape,plm.shape)
|
|
729
|
-
ft_im.append(
|
|
852
|
+
print(alm[n : n + lmax - m + 1].shape, plm.shape)
|
|
853
|
+
ft_im.append(
|
|
854
|
+
self.backend.bk_reduce_sum(
|
|
855
|
+
self.backend.bk_reshape(
|
|
856
|
+
alm[n : n + lmax - m + 1], [lmax - m + 1, 1]
|
|
857
|
+
)
|
|
858
|
+
* plm,
|
|
859
|
+
0,
|
|
860
|
+
)
|
|
861
|
+
)
|
|
862
|
+
|
|
863
|
+
n = n + lmax - m + 1
|
|
864
|
+
|
|
865
|
+
return self.backend.bk_reshape(
|
|
866
|
+
self.backend.bk_concat(ft_im, 0), [lmax + 1, 4 * nside - 1]
|
|
867
|
+
)
|
|
730
868
|
|
|
731
|
-
n=n+lmax-m+1
|
|
732
|
-
|
|
733
|
-
return self.backend.bk_reshape(self.backend.bk_concat(ft_im,0),[lmax+1,4*nside-1])
|
|
734
|
-
|
|
735
|
-
|
|
736
869
|
if nest:
|
|
737
|
-
idx=hp.ring2nest(nside,np.arange(12*nside**2))
|
|
738
|
-
ft_im=self.comp_tf(
|
|
870
|
+
idx = hp.ring2nest(nside, np.arange(12 * nside**2))
|
|
871
|
+
ft_im = self.comp_tf(
|
|
872
|
+
self.backend.bk_cast(self.backend.bk_gather(im, idx)),
|
|
873
|
+
nside,
|
|
874
|
+
realfft=True,
|
|
875
|
+
)
|
|
739
876
|
else:
|
|
740
|
-
ft_im=self.comp_tf(self.backend.bk_cast(im),nside,realfft=True)
|
|
741
|
-
|
|
742
|
-
|
|
743
|
-
|
|
744
|
-
|
|
745
|
-
|
|
746
|
-
|
|
747
|
-
|
|
748
|
-
|
|
749
|
-
|
|
750
|
-
|
|
751
|
-
|
|
877
|
+
ft_im = self.comp_tf(self.backend.bk_cast(im), nside, realfft=True)
|
|
878
|
+
|
|
879
|
+
lmax = 3 * nside - 1
|
|
880
|
+
|
|
881
|
+
alm = None
|
|
882
|
+
for m in range(lmax + 1):
|
|
883
|
+
plm = self.compute_legendre_m(co_th, m, 3 * nside - 1, nside) / (
|
|
884
|
+
12 * nside**2
|
|
885
|
+
)
|
|
886
|
+
|
|
887
|
+
tmp = self.backend.bk_reduce_sum(plm * ft_im[:, m], 1)
|
|
888
|
+
if m == 0:
|
|
889
|
+
alm = tmp
|
|
752
890
|
else:
|
|
753
|
-
alm=self.backend.bk_concat([alm,tmp],axis=0)
|
|
754
|
-
|
|
891
|
+
alm = self.backend.bk_concat([alm, tmp], axis=0)
|
|
892
|
+
|
|
755
893
|
return o_map
|
|
756
894
|
|
|
757
|
-
def map2alm_spin(self,im_Q,im_U,spin=2,nest=False):
|
|
758
|
-
|
|
759
|
-
if spin==0:
|
|
760
|
-
return self.map2alm(im_Q,nest=nest),self.map2alm(im_U,nest=nest)
|
|
895
|
+
def map2alm_spin(self, im_Q, im_U, spin=2, nest=False):
|
|
896
|
+
|
|
897
|
+
if spin == 0:
|
|
898
|
+
return self.map2alm(im_Q, nest=nest), self.map2alm(im_U, nest=nest)
|
|
761
899
|
|
|
762
|
-
nside=int(np.sqrt(im_Q.shape[0]//12))
|
|
900
|
+
nside = int(np.sqrt(im_Q.shape[0] // 12))
|
|
901
|
+
|
|
902
|
+
lth = self.ring_th(nside)
|
|
903
|
+
|
|
904
|
+
co_th = np.cos(lth)
|
|
763
905
|
|
|
764
|
-
lth=self.ring_th(nside)
|
|
765
|
-
|
|
766
|
-
co_th=np.cos(lth)
|
|
767
|
-
|
|
768
906
|
if nest:
|
|
769
|
-
idx=hp.ring2nest(nside,np.arange(12*nside**2))
|
|
770
|
-
l_Q=self.backend.bk_gather(im_Q,idx)
|
|
771
|
-
l_U=self.backend.bk_gather(im_U,idx)
|
|
772
|
-
ft_im_1=self.comp_tf(self.backend.bk_complex(l_Q,l_U),nside)
|
|
773
|
-
ft_im_2=self.comp_tf(self.backend.bk_complex(l_Q
|
|
907
|
+
idx = hp.ring2nest(nside, np.arange(12 * nside**2))
|
|
908
|
+
l_Q = self.backend.bk_gather(im_Q, idx)
|
|
909
|
+
l_U = self.backend.bk_gather(im_U, idx)
|
|
910
|
+
ft_im_1 = self.comp_tf(self.backend.bk_complex(l_Q, l_U), nside)
|
|
911
|
+
ft_im_2 = self.comp_tf(self.backend.bk_complex(l_Q, -l_U), nside)
|
|
774
912
|
else:
|
|
775
|
-
ft_im_1=self.comp_tf(self.backend.bk_complex(im_Q,im_U),nside)
|
|
776
|
-
ft_im_2=self.comp_tf(self.backend.bk_complex(im_Q
|
|
777
|
-
|
|
778
|
-
lmax=3*nside-1
|
|
779
|
-
|
|
780
|
-
alm=None
|
|
781
|
-
for m in range(lmax+1):
|
|
782
|
-
#not yet debug use spherical
|
|
783
|
-
#plmp1,plmm1=self.compute_legendre_spin2_m(co_th,si_th,m,3*nside-1)
|
|
784
|
-
#plmp1/=(12*nside**2)
|
|
785
|
-
#plmm1/=(12*nside**2)
|
|
786
|
-
|
|
787
|
-
plmp=self.Yp[spin,nside][m]
|
|
788
|
-
plmm=self.Ym[spin,nside][m]
|
|
789
|
-
|
|
790
|
-
tmpp=self.backend.bk_reduce_sum(plmp*ft_im_1[:,m],1)
|
|
791
|
-
tmpm=self.backend.bk_reduce_sum(plmm*ft_im_2[:,m],1)
|
|
792
|
-
if m==0:
|
|
793
|
-
almE
|
|
794
|
-
almB=(tmpp-tmpm)/(
|
|
913
|
+
ft_im_1 = self.comp_tf(self.backend.bk_complex(im_Q, im_U), nside)
|
|
914
|
+
ft_im_2 = self.comp_tf(self.backend.bk_complex(im_Q, -im_U), nside)
|
|
915
|
+
|
|
916
|
+
lmax = 3 * nside - 1
|
|
917
|
+
|
|
918
|
+
alm = None
|
|
919
|
+
for m in range(lmax + 1):
|
|
920
|
+
# not yet debug use spherical
|
|
921
|
+
# plmp1,plmm1=self.compute_legendre_spin2_m(co_th,si_th,m,3*nside-1)
|
|
922
|
+
# plmp1/=(12*nside**2)
|
|
923
|
+
# plmm1/=(12*nside**2)
|
|
924
|
+
|
|
925
|
+
plmp = self.Yp[spin, nside][m]
|
|
926
|
+
plmm = self.Ym[spin, nside][m]
|
|
927
|
+
|
|
928
|
+
tmpp = self.backend.bk_reduce_sum(plmp * ft_im_1[:, m], 1)
|
|
929
|
+
tmpm = self.backend.bk_reduce_sum(plmm * ft_im_2[:, m], 1)
|
|
930
|
+
if m == 0:
|
|
931
|
+
almE = -(tmpp + tmpm) / 2.0
|
|
932
|
+
almB = (tmpp - tmpm) / (2j)
|
|
795
933
|
else:
|
|
796
|
-
almE=self.backend.bk_concat([almE
|
|
797
|
-
almB=self.backend.bk_concat([almB,(tmpp-tmpm)/(
|
|
798
|
-
|
|
799
|
-
return almE,almB
|
|
934
|
+
almE = self.backend.bk_concat([almE, -(tmpp + tmpm) / 2], axis=0)
|
|
935
|
+
almB = self.backend.bk_concat([almB, (tmpp - tmpm) / (2j)], axis=0)
|
|
936
|
+
|
|
937
|
+
return almE, almB
|