foscat 3.1.6__py3-none-any.whl → 3.2.0__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- foscat/CNN.py +129 -90
- foscat/CircSpline.py +6 -3
- foscat/FoCUS.py +2216 -1500
- foscat/GCNN.py +201 -134
- foscat/Softmax.py +27 -22
- foscat/Spline1D.py +8 -4
- foscat/Synthesis.py +325 -270
- foscat/backend.py +839 -685
- foscat/backend_tens.py +43 -30
- foscat/loss_backend_tens.py +48 -38
- foscat/loss_backend_torch.py +32 -57
- foscat/scat.py +1591 -1020
- foscat/scat1D.py +1221 -814
- foscat/scat2D.py +9 -7
- foscat/scat_cov.py +2595 -1556
- foscat/scat_cov1D.py +9 -7
- foscat/scat_cov2D.py +9 -7
- foscat/scat_cov_map.py +67 -41
- foscat/scat_cov_map2D.py +69 -39
- foscat-3.2.0.dist-info/LICENCE +13 -0
- foscat-3.2.0.dist-info/METADATA +174 -0
- foscat-3.2.0.dist-info/RECORD +26 -0
- {foscat-3.1.6.dist-info → foscat-3.2.0.dist-info}/WHEEL +1 -1
- foscat/GetGPUinfo.py +0 -36
- foscat-3.1.6.dist-info/METADATA +0 -23
- foscat-3.1.6.dist-info/RECORD +0 -26
- {foscat-3.1.6.dist-info → foscat-3.2.0.dist-info}/top_level.txt +0 -0
foscat/CNN.py
CHANGED
|
@@ -1,112 +1,151 @@
|
|
|
1
|
-
import numpy as np
|
|
2
1
|
import pickle
|
|
2
|
+
|
|
3
|
+
import numpy as np
|
|
4
|
+
|
|
3
5
|
import foscat.scat_cov as sc
|
|
4
|
-
|
|
6
|
+
|
|
5
7
|
|
|
6
8
|
class CNN:
|
|
7
|
-
|
|
8
|
-
def __init__(
|
|
9
|
-
|
|
10
|
-
|
|
11
|
-
|
|
12
|
-
|
|
13
|
-
|
|
14
|
-
|
|
15
|
-
|
|
16
|
-
|
|
17
|
-
|
|
9
|
+
|
|
10
|
+
def __init__(
|
|
11
|
+
self,
|
|
12
|
+
scat_operator=None,
|
|
13
|
+
nparam=1,
|
|
14
|
+
nscale=1,
|
|
15
|
+
chanlist=[],
|
|
16
|
+
in_nside=1,
|
|
17
|
+
n_chan_in=1,
|
|
18
|
+
nbatch=1,
|
|
19
|
+
SEED=1234,
|
|
20
|
+
filename=None,
|
|
21
|
+
):
|
|
18
22
|
|
|
19
23
|
if filename is not None:
|
|
20
|
-
outlist=pickle.load(open("%s.pkl"%(filename),"rb"))
|
|
21
|
-
self.scat_operator=sc.funct(KERNELSZ=outlist[3],all_type=outlist[7])
|
|
22
|
-
self.KERNELSZ= self.scat_operator.KERNELSZ
|
|
23
|
-
self.all_type= self.scat_operator.all_type
|
|
24
|
-
self.npar=outlist[2]
|
|
25
|
-
self.nscale=outlist[5]
|
|
26
|
-
self.chanlist=outlist[0]
|
|
27
|
-
self.in_nside=outlist[4]
|
|
28
|
-
self.nbatch=outlist[1]
|
|
29
|
-
self.n_chan_in=outlist[8]
|
|
30
|
-
self.x=self.scat_operator.backend.bk_cast(outlist[6])
|
|
31
|
-
self.out_nside=self.in_nside//(2**self.nscale)
|
|
24
|
+
outlist = pickle.load(open("%s.pkl" % (filename), "rb"))
|
|
25
|
+
self.scat_operator = sc.funct(KERNELSZ=outlist[3], all_type=outlist[7])
|
|
26
|
+
self.KERNELSZ = self.scat_operator.KERNELSZ
|
|
27
|
+
self.all_type = self.scat_operator.all_type
|
|
28
|
+
self.npar = outlist[2]
|
|
29
|
+
self.nscale = outlist[5]
|
|
30
|
+
self.chanlist = outlist[0]
|
|
31
|
+
self.in_nside = outlist[4]
|
|
32
|
+
self.nbatch = outlist[1]
|
|
33
|
+
self.n_chan_in = outlist[8]
|
|
34
|
+
self.x = self.scat_operator.backend.bk_cast(outlist[6])
|
|
35
|
+
self.out_nside = self.in_nside // (2**self.nscale)
|
|
32
36
|
else:
|
|
33
|
-
self.nscale=nscale
|
|
34
|
-
self.nbatch=nbatch
|
|
35
|
-
self.npar=nparam
|
|
36
|
-
self.n_chan_in=n_chan_in
|
|
37
|
-
self.scat_operator=scat_operator
|
|
38
|
-
if len(chanlist)!=nscale+1:
|
|
39
|
-
print(
|
|
37
|
+
self.nscale = nscale
|
|
38
|
+
self.nbatch = nbatch
|
|
39
|
+
self.npar = nparam
|
|
40
|
+
self.n_chan_in = n_chan_in
|
|
41
|
+
self.scat_operator = scat_operator
|
|
42
|
+
if len(chanlist) != nscale + 1:
|
|
43
|
+
print(
|
|
44
|
+
"len of chanlist (here %d) should of nscale+1 (here %d)"
|
|
45
|
+
% (len(chanlist), nscale + 1)
|
|
46
|
+
)
|
|
40
47
|
return None
|
|
41
|
-
|
|
42
|
-
self.chanlist=chanlist
|
|
43
|
-
self.KERNELSZ= scat_operator.KERNELSZ
|
|
44
|
-
self.all_type= scat_operator.all_type
|
|
45
|
-
self.in_nside=in_nside
|
|
46
|
-
self.out_nside=self.in_nside//(2**self.nscale)
|
|
48
|
+
|
|
49
|
+
self.chanlist = chanlist
|
|
50
|
+
self.KERNELSZ = scat_operator.KERNELSZ
|
|
51
|
+
self.all_type = scat_operator.all_type
|
|
52
|
+
self.in_nside = in_nside
|
|
53
|
+
self.out_nside = self.in_nside // (2**self.nscale)
|
|
47
54
|
|
|
48
55
|
np.random.seed(SEED)
|
|
49
|
-
self.x=scat_operator.backend.bk_cast(
|
|
50
|
-
|
|
51
|
-
|
|
52
|
-
|
|
53
|
-
|
|
54
|
-
|
|
55
|
-
|
|
56
|
-
|
|
57
|
-
|
|
58
|
-
|
|
59
|
-
|
|
60
|
-
|
|
61
|
-
|
|
62
|
-
|
|
63
|
-
|
|
64
|
-
|
|
65
|
-
|
|
66
|
-
|
|
56
|
+
self.x = scat_operator.backend.bk_cast(
|
|
57
|
+
np.random.randn(self.get_number_of_weights())
|
|
58
|
+
/ (self.KERNELSZ * self.KERNELSZ)
|
|
59
|
+
)
|
|
60
|
+
|
|
61
|
+
def save(self, filename):
|
|
62
|
+
|
|
63
|
+
outlist = [
|
|
64
|
+
self.chanlist,
|
|
65
|
+
self.nbatch,
|
|
66
|
+
self.npar,
|
|
67
|
+
self.KERNELSZ,
|
|
68
|
+
self.in_nside,
|
|
69
|
+
self.nscale,
|
|
70
|
+
self.get_weights().numpy(),
|
|
71
|
+
self.all_type,
|
|
72
|
+
self.n_chan_in,
|
|
73
|
+
]
|
|
74
|
+
|
|
75
|
+
myout = open("%s.pkl" % (filename), "wb")
|
|
76
|
+
pickle.dump(outlist, myout)
|
|
67
77
|
myout.close()
|
|
68
|
-
|
|
78
|
+
|
|
69
79
|
def get_number_of_weights(self):
|
|
70
|
-
totnchan=0
|
|
80
|
+
totnchan = 0
|
|
71
81
|
for i in range(self.nscale):
|
|
72
|
-
totnchan=totnchan+self.chanlist[i]*self.chanlist[i+1]
|
|
73
|
-
return
|
|
74
|
-
|
|
82
|
+
totnchan = totnchan + self.chanlist[i] * self.chanlist[i + 1]
|
|
83
|
+
return (
|
|
84
|
+
self.npar * 12 * self.out_nside**2 * self.chanlist[self.nscale]
|
|
85
|
+
+ totnchan * self.KERNELSZ * self.KERNELSZ
|
|
86
|
+
+ self.KERNELSZ * self.KERNELSZ * self.n_chan_in * self.chanlist[0]
|
|
87
|
+
)
|
|
88
|
+
|
|
89
|
+
def set_weights(self, x):
|
|
90
|
+
self.x = x
|
|
75
91
|
|
|
76
|
-
def set_weights(self,x):
|
|
77
|
-
self.x=x
|
|
78
|
-
|
|
79
92
|
def get_weights(self):
|
|
80
93
|
return self.x
|
|
81
|
-
|
|
82
|
-
def eval(self,im,indices=None,weights=None):
|
|
83
94
|
|
|
84
|
-
|
|
85
|
-
|
|
86
|
-
|
|
87
|
-
|
|
95
|
+
def eval(self, im, indices=None, weights=None):
|
|
96
|
+
|
|
97
|
+
x = self.x
|
|
98
|
+
ww = self.scat_operator.backend.bk_reshape(
|
|
99
|
+
x[0 : self.KERNELSZ * self.KERNELSZ * self.n_chan_in * self.chanlist[0]],
|
|
100
|
+
[self.KERNELSZ * self.KERNELSZ, self.n_chan_in, self.chanlist[0]],
|
|
101
|
+
)
|
|
102
|
+
nn = self.KERNELSZ * self.KERNELSZ * self.n_chan_in * self.chanlist[0]
|
|
103
|
+
|
|
104
|
+
im = self.scat_operator.healpix_layer(im, ww)
|
|
105
|
+
im = self.scat_operator.backend.bk_relu(im)
|
|
88
106
|
|
|
89
|
-
im=self.scat_operator.healpix_layer(im,ww)
|
|
90
|
-
im=self.scat_operator.backend.bk_relu(im)
|
|
91
|
-
|
|
92
107
|
for k in range(self.nscale):
|
|
93
|
-
ww=self.scat_operator.backend.bk_reshape(
|
|
94
|
-
|
|
95
|
-
|
|
108
|
+
ww = self.scat_operator.backend.bk_reshape(
|
|
109
|
+
x[
|
|
110
|
+
nn : nn
|
|
111
|
+
+ self.KERNELSZ
|
|
112
|
+
* self.KERNELSZ
|
|
113
|
+
* self.chanlist[k]
|
|
114
|
+
* self.chanlist[k + 1]
|
|
115
|
+
],
|
|
116
|
+
[self.KERNELSZ * self.KERNELSZ, self.chanlist[k], self.chanlist[k + 1]],
|
|
117
|
+
)
|
|
118
|
+
nn = (
|
|
119
|
+
nn
|
|
120
|
+
+ self.KERNELSZ
|
|
121
|
+
* self.KERNELSZ
|
|
122
|
+
* self.chanlist[k]
|
|
123
|
+
* self.chanlist[k + 1]
|
|
124
|
+
)
|
|
96
125
|
if indices is None:
|
|
97
|
-
im=self.scat_operator.healpix_layer(im,ww)
|
|
126
|
+
im = self.scat_operator.healpix_layer(im, ww)
|
|
98
127
|
else:
|
|
99
|
-
im=self.scat_operator.healpix_layer(
|
|
100
|
-
|
|
101
|
-
|
|
102
|
-
|
|
103
|
-
|
|
104
|
-
|
|
105
|
-
|
|
106
|
-
|
|
107
|
-
|
|
108
|
-
|
|
109
|
-
|
|
110
|
-
|
|
128
|
+
im = self.scat_operator.healpix_layer(
|
|
129
|
+
im, ww, indices=indices[k], weights=weights[k]
|
|
130
|
+
)
|
|
131
|
+
im = self.scat_operator.backend.bk_relu(im)
|
|
132
|
+
im = self.scat_operator.ud_grade_2(im, axis=0)
|
|
133
|
+
|
|
134
|
+
ww = self.scat_operator.backend.bk_reshape(
|
|
135
|
+
x[
|
|
136
|
+
nn : nn
|
|
137
|
+
+ self.npar * 12 * self.out_nside**2 * self.chanlist[self.nscale]
|
|
138
|
+
],
|
|
139
|
+
[12 * self.out_nside**2 * self.chanlist[self.nscale], self.npar],
|
|
140
|
+
)
|
|
141
|
+
|
|
142
|
+
im = self.scat_operator.backend.bk_matmul(
|
|
143
|
+
self.scat_operator.backend.bk_reshape(
|
|
144
|
+
im, [1, 12 * self.out_nside**2 * self.chanlist[self.nscale]]
|
|
145
|
+
),
|
|
146
|
+
ww,
|
|
147
|
+
)
|
|
148
|
+
im = self.scat_operator.backend.bk_reshape(im, [self.npar])
|
|
149
|
+
im = self.scat_operator.backend.bk_relu(im)
|
|
150
|
+
|
|
111
151
|
return im
|
|
112
|
-
|
foscat/CircSpline.py
CHANGED
|
@@ -1,6 +1,6 @@
|
|
|
1
|
-
|
|
2
1
|
import math
|
|
3
2
|
|
|
3
|
+
|
|
4
4
|
class CircSpline:
|
|
5
5
|
def __init__(self, nodes, degree=3):
|
|
6
6
|
"""
|
|
@@ -14,7 +14,11 @@ class CircSpline:
|
|
|
14
14
|
"""
|
|
15
15
|
Compute normalization factor for the ith element.
|
|
16
16
|
"""
|
|
17
|
-
return
|
|
17
|
+
return (
|
|
18
|
+
pow(-1, i)
|
|
19
|
+
* (self.degree + 1)
|
|
20
|
+
/ (math.factorial(self.degree + 1 - i) * math.factorial(i))
|
|
21
|
+
)
|
|
18
22
|
|
|
19
23
|
def yplus(self, x):
|
|
20
24
|
"""
|
|
@@ -48,4 +52,3 @@ class CircSpline:
|
|
|
48
52
|
tmp = 0.0
|
|
49
53
|
y[self.nodes - 1 - i] += tmp
|
|
50
54
|
return y
|
|
51
|
-
|