foscat 3.0.24__py3-none-any.whl → 3.0.26__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
foscat/FoCUS.py CHANGED
@@ -32,7 +32,7 @@ class FoCUS:
32
32
  mpi_size=1,
33
33
  mpi_rank=0):
34
34
 
35
- self.__version__ = '3.0.24'
35
+ self.__version__ = '3.0.26'
36
36
  # P00 coeff for normalization for scat_cov
37
37
  self.TMPFILE_VERSION=TMPFILE_VERSION
38
38
  self.P1_dic = None
foscat/Softmax.py CHANGED
@@ -16,7 +16,7 @@ class SoftmaxClassifier:
16
16
  Nhidden (int, optional): Number of neurons in the hidden layer. Defaults to 10.
17
17
  """
18
18
 
19
- def __init__(self, Nval, Nclass, Nhidden=10):
19
+ def __init__(self, Nval, Nclass, Nhidden=10,Nlevel=1):
20
20
  """
21
21
  Initializes the SoftmaxClassifier with a specified number of input features, classes, and hidden neurons.
22
22
 
@@ -28,11 +28,15 @@ class SoftmaxClassifier:
28
28
  Nhidden (int): Number of neurons in the hidden layer.
29
29
  """
30
30
  # Create the model
31
- self.model = Sequential([
32
- Dense(units=Nhidden, activation='relu', input_shape=(Nval,)), # A hidden layer with Nhidden neurons
33
- Dense(units=Nclass), # The output layer with Nclass neurons (for Nclass classes)
34
- Softmax() # Softmax activation for classification
35
- ])
31
+ TheModel=[Dense(units=Nhidden, activation='relu', input_shape=(Nval,))]
32
+
33
+ for k in range(1,Nlevel):
34
+ TheModel=TheModel+[Dense(units=Nhidden, activation='relu', input_shape=(Nhidden,))]
35
+
36
+ TheModel=TheModel+[Dense(units=Nclass), # The output layer with Nclass neurons (for Nclass classes)
37
+ Softmax() # Softmax activation for classification
38
+ ]
39
+ self.model = Sequential(TheModel)
36
40
 
37
41
  # Model compilation
38
42
  self.model.compile(
foscat/scat1D.py CHANGED
@@ -42,10 +42,10 @@ class scat1D:
42
42
  def flatten(self,S2L=False):
43
43
  if not S2L:
44
44
  if isinstance(self.P00,np.ndarray):
45
- return np.concatenate([self.build_flat(lf.S0),
46
- self.build_flat(lf.S1),
47
- self.build_flat(lf.P00),
48
- self.build_flat(lf.S2)],1)
45
+ return np.concatenate([self.build_flat(self.S0),
46
+ self.build_flat(self.S1),
47
+ self.build_flat(self.P00),
48
+ self.build_flat(self.S2)],1)
49
49
  else:
50
50
  return self.backend.bk_concat([self.build_flat(self.S0),
51
51
  self.build_flat(self.S1),
@@ -53,11 +53,11 @@ class scat1D:
53
53
  self.build_flat(self.S2)],1)
54
54
  else:
55
55
  if isinstance(self.P00,np.ndarray):
56
- return np.concatenate([self.build_flat(lf.S0),
57
- self.build_flat(lf.S1),
58
- self.build_flat(lf.P00),
59
- self.build_flat(lf.S2),
60
- self.build_flat(lf.S2L)],1)
56
+ return np.concatenate([self.build_flat(self.S0),
57
+ self.build_flat(self.S1),
58
+ self.build_flat(self.P00),
59
+ self.build_flat(self.S2),
60
+ self.build_flat(self.S2L)],1)
61
61
  else:
62
62
  return self.backend.bk_concat([self.build_flat(self.S0),
63
63
  self.build_flat(self.S1),
foscat/scat_cov1D.py CHANGED
@@ -375,14 +375,15 @@ class scat_cov1D:
375
375
  (self.C01 - other),
376
376
  c11,
377
377
  s1=s1, c10=c10,backend=self.backend)
378
- def domult(self,x,y):
378
+
379
+ def domult(self,x,y):
379
380
  try:
380
381
  return x*y
381
382
  except:
382
383
  if x.dtype==y.dtype:
383
384
  return x*y
384
385
  if self.backend.bk_is_complex(x):
385
-
386
+
386
387
  return self.backend.bk_complex(self.backend.bk_real(x)*y,self.backend.bk_imag(x)*y)
387
388
  else:
388
389
  return self.backend.bk_complex(self.backend.bk_real(y)*x,self.backend.bk_imag(y)*x)
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.1
2
2
  Name: foscat
3
- Version: 3.0.24
3
+ Version: 3.0.26
4
4
  Summary: Generate synthetic Healpix or 2D data using Cross Scattering Transform
5
5
  Home-page: https://github.com/jmdelouis/FOSCAT
6
6
  Author: Jean-Marc DELOUIS
@@ -1,9 +1,9 @@
1
1
  foscat/CNN.py,sha256=BVf-uD5K-_Tb_Q9xdckLF7PZq-Wcs6qexP9J2K8KCq0,4231
2
2
  foscat/CircSpline.py,sha256=610sgsWeZzRXYh7gYEqUmGQVrXoHSaFGKjH5mCdh4jU,1684
3
- foscat/FoCUS.py,sha256=QtMhh92kZ66BLEAjusZiuoBHz-qccwwuYU3h5DjUUvs,67309
3
+ foscat/FoCUS.py,sha256=EbsJyLCQnp9Xr0Sn93r342ZYAVhXeNx-E4kzP-qBrLw,67309
4
4
  foscat/GCNN.py,sha256=TEW81DGRM4WL7RzH50VKQ-_oHbl5i3iQKuhdkkgKEO8,3831
5
5
  foscat/GetGPUinfo.py,sha256=6sJWKO_OeiA0SoGQQdCT_h3D8rZtrv_4hpBc8H3nZls,731
6
- foscat/Softmax.py,sha256=aCghstI2fchd8FHsBUcmPR4FGlCH9DglS7XMEWlKr8A,2709
6
+ foscat/Softmax.py,sha256=UDc8Kbl0qWfH1bqDDwfLnkxhON7p93ueZ-Qg2oY4Ke4,2874
7
7
  foscat/Spline1D.py,sha256=9oeM8SSHjpfUE5z72YxGt1RVt22vJYM1zhHbNBW8phw,1232
8
8
  foscat/Synthesis.py,sha256=oYtHFVTqalVzBQs5okJBnP4pzXFhBMds-pytdEm4Bqs,12611
9
9
  foscat/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
@@ -12,14 +12,14 @@ foscat/backend_tens.py,sha256=zEFZ71j0nMNP9_91tz21ZVBTayr75l-sfONOLkJ8DyI,1432
12
12
  foscat/loss_backend_tens.py,sha256=WbGC4vy1pBg_bxUXnlCRiXX9WszN6MaUWUc_lUvZNvQ,1667
13
13
  foscat/loss_backend_torch.py,sha256=Fj_W3VwGgeD79eQ4jOxOmhZ548UKDRUb3JjUo2-gSWM,1755
14
14
  foscat/scat.py,sha256=Ht_xyo7XKJJrUIbQIeucjhIrJo4RGrE63EyhTH8IYig,60061
15
- foscat/scat1D.py,sha256=7egOWL7GXcJEenl8r1DSdArpE1Yvywgo-vxHAQ1gMzY,46269
15
+ foscat/scat1D.py,sha256=5RremQ9rG4ASkN01GYU1Vxo9myCiHEtj3V-ZWYXCOv0,46287
16
16
  foscat/scat2D.py,sha256=Xtisjc5KsbLQAlbn71P0Xg1UIu3r1gUKXoYG2vIMK1M,523
17
17
  foscat/scat_cov.py,sha256=uST8ij9o1sJh2AKhFffxMUr0WFQX9vz3VK4LGfiSOlE,110188
18
- foscat/scat_cov1D.py,sha256=inAy_TWtUwJr6l9hX3u7r2Jud7DGy_CkjCfcjaUIdJI,58885
18
+ foscat/scat_cov1D.py,sha256=wh65aUkqvkwDKykPrl7ZUpB-nw1Jf2zVOvcM0jHWY_k,58898
19
19
  foscat/scat_cov2D.py,sha256=8_XvC-lOEVUWP9vT3Wx10G_ATeVeh0SdrSWuBV7Xf5k,536
20
20
  foscat/scat_cov_map.py,sha256=ocU2xd41GtJhiU9S3dEv38KfPCvz0tJKY2f8lPxpm5c,2729
21
21
  foscat/scat_cov_map2D.py,sha256=t4llIt7DVIyU1b_u-dJSX4lBr2FhDict8RnNnHpRvHM,2754
22
- foscat-3.0.24.dist-info/METADATA,sha256=Ia5RjnEHMVUIHvkeO8cpYM1_1QI1V4-LLUO2rAO65QU,1013
23
- foscat-3.0.24.dist-info/WHEEL,sha256=oiQVh_5PnQM0E3gPdiz09WCNmwiHDMaGer_elqB3coM,92
24
- foscat-3.0.24.dist-info/top_level.txt,sha256=AGySXBBAlJgb8Tj8af6m_F-aiNg2zNTcybCUPVOKjAg,7
25
- foscat-3.0.24.dist-info/RECORD,,
22
+ foscat-3.0.26.dist-info/METADATA,sha256=NaQb70gRwWjXTfEUtDLEfpKtVthD0m9ZcaRnLXwtK7k,1013
23
+ foscat-3.0.26.dist-info/WHEEL,sha256=GJ7t_kWBFywbagK5eo9IoUwLW6oyOeTKmQ-9iHFVNxQ,92
24
+ foscat-3.0.26.dist-info/top_level.txt,sha256=AGySXBBAlJgb8Tj8af6m_F-aiNg2zNTcybCUPVOKjAg,7
25
+ foscat-3.0.26.dist-info/RECORD,,
@@ -1,5 +1,5 @@
1
1
  Wheel-Version: 1.0
2
- Generator: bdist_wheel (0.42.0)
2
+ Generator: bdist_wheel (0.43.0)
3
3
  Root-Is-Purelib: true
4
4
  Tag: py3-none-any
5
5