foscat 2025.6.1__py3-none-any.whl → 2025.6.3__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- foscat/BkTorch.py +1 -0
- foscat/FoCUS.py +537 -578
- foscat/heal_NN.py +43 -24
- foscat/scat_cov.py +154 -154
- {foscat-2025.6.1.dist-info → foscat-2025.6.3.dist-info}/METADATA +1 -1
- {foscat-2025.6.1.dist-info → foscat-2025.6.3.dist-info}/RECORD +9 -9
- {foscat-2025.6.1.dist-info → foscat-2025.6.3.dist-info}/WHEEL +0 -0
- {foscat-2025.6.1.dist-info → foscat-2025.6.3.dist-info}/licenses/LICENSE +0 -0
- {foscat-2025.6.1.dist-info → foscat-2025.6.3.dist-info}/top_level.txt +0 -0
foscat/FoCUS.py
CHANGED
|
@@ -10,32 +10,32 @@ TMPFILE_VERSION = "V5_0"
|
|
|
10
10
|
|
|
11
11
|
class FoCUS:
|
|
12
12
|
def __init__(
|
|
13
|
-
|
|
14
|
-
|
|
15
|
-
|
|
16
|
-
|
|
17
|
-
|
|
18
|
-
|
|
19
|
-
|
|
20
|
-
|
|
21
|
-
|
|
22
|
-
|
|
23
|
-
|
|
24
|
-
|
|
25
|
-
|
|
26
|
-
|
|
27
|
-
|
|
28
|
-
|
|
29
|
-
|
|
30
|
-
|
|
31
|
-
|
|
32
|
-
|
|
33
|
-
|
|
34
|
-
|
|
35
|
-
|
|
13
|
+
self,
|
|
14
|
+
NORIENT=4,
|
|
15
|
+
LAMBDA=1.2,
|
|
16
|
+
KERNELSZ=3,
|
|
17
|
+
slope=1.0,
|
|
18
|
+
all_type="float32",
|
|
19
|
+
nstep_max=20,
|
|
20
|
+
padding="SAME",
|
|
21
|
+
gpupos=0,
|
|
22
|
+
mask_thres=None,
|
|
23
|
+
mask_norm=False,
|
|
24
|
+
isMPI=False,
|
|
25
|
+
TEMPLATE_PATH="data",
|
|
26
|
+
BACKEND="torch",
|
|
27
|
+
use_2D=False,
|
|
28
|
+
use_1D=False,
|
|
29
|
+
return_data=False,
|
|
30
|
+
JmaxDelta=0,
|
|
31
|
+
DODIV=False,
|
|
32
|
+
InitWave=None,
|
|
33
|
+
silent=True,
|
|
34
|
+
mpi_size=1,
|
|
35
|
+
mpi_rank=0
|
|
36
36
|
):
|
|
37
37
|
|
|
38
|
-
self.__version__ = "2025.06.
|
|
38
|
+
self.__version__ = "2025.06.3"
|
|
39
39
|
# P00 coeff for normalization for scat_cov
|
|
40
40
|
self.TMPFILE_VERSION = TMPFILE_VERSION
|
|
41
41
|
self.P1_dic = None
|
|
@@ -369,39 +369,8 @@ class FoCUS:
|
|
|
369
369
|
self.pix_interp_val = {}
|
|
370
370
|
self.weight_interp_val = {}
|
|
371
371
|
self.ring2nest = {}
|
|
372
|
-
self.nest2R = {}
|
|
373
|
-
self.nest2R1 = {}
|
|
374
|
-
self.nest2R2 = {}
|
|
375
|
-
self.nest2R3 = {}
|
|
376
|
-
self.nest2R4 = {}
|
|
377
|
-
self.inv_nest2R = {}
|
|
378
|
-
self.remove_border = {}
|
|
379
|
-
|
|
380
372
|
self.ampnorm = {}
|
|
381
373
|
|
|
382
|
-
for i in range(nstep_max):
|
|
383
|
-
lout = 2**i
|
|
384
|
-
self.pix_interp_val[lout] = {}
|
|
385
|
-
self.weight_interp_val[lout] = {}
|
|
386
|
-
for j in range(nstep_max):
|
|
387
|
-
lout2 = 2**j
|
|
388
|
-
self.pix_interp_val[lout][lout2] = None
|
|
389
|
-
self.weight_interp_val[lout][lout2] = None
|
|
390
|
-
self.ring2nest[lout] = None
|
|
391
|
-
self.Idx_Neighbours[lout] = None
|
|
392
|
-
self.nest2R[lout] = None
|
|
393
|
-
self.nest2R1[lout] = None
|
|
394
|
-
self.nest2R2[lout] = None
|
|
395
|
-
self.nest2R3[lout] = None
|
|
396
|
-
self.nest2R4[lout] = None
|
|
397
|
-
self.inv_nest2R[lout] = None
|
|
398
|
-
self.remove_border[lout] = None
|
|
399
|
-
self.ww_CNN_Transpose[lout] = None
|
|
400
|
-
self.ww_CNN[lout] = None
|
|
401
|
-
self.X_CNN[lout] = None
|
|
402
|
-
self.Y_CNN[lout] = None
|
|
403
|
-
self.Z_CNN[lout] = None
|
|
404
|
-
|
|
405
374
|
self.loss = {}
|
|
406
375
|
|
|
407
376
|
def get_type(self):
|
|
@@ -543,7 +512,7 @@ class FoCUS:
|
|
|
543
512
|
def toring(self, image, axis=0):
|
|
544
513
|
lout = int(np.sqrt(image.shape[axis] // 12))
|
|
545
514
|
|
|
546
|
-
if self.ring2nest
|
|
515
|
+
if lout not in self.ring2nest:
|
|
547
516
|
self.ring2nest[lout] = hp.ring2nest(lout, np.arange(12 * lout**2))
|
|
548
517
|
|
|
549
518
|
return image.numpy()[self.ring2nest[lout]]
|
|
@@ -639,30 +608,10 @@ class FoCUS:
|
|
|
639
608
|
if cell_ids is not None:
|
|
640
609
|
sim, new_cell_ids = self.backend.binned_mean(im, cell_ids)
|
|
641
610
|
return sim, new_cell_ids
|
|
642
|
-
|
|
643
|
-
|
|
644
|
-
|
|
645
|
-
|
|
646
|
-
if axis > 0:
|
|
647
|
-
oshape[0:axis] = shape[0:axis]
|
|
648
|
-
oshape[axis] = 12 * lout * lout // 4
|
|
649
|
-
oshape[axis + 1] = 4
|
|
650
|
-
if len(shape) > axis:
|
|
651
|
-
oshape[axis + 2 :] = shape[axis + 1 :]
|
|
652
|
-
else:
|
|
653
|
-
if axis > 0:
|
|
654
|
-
oshape = shape[0:axis] + [12 * lout * lout // 4, 4]
|
|
655
|
-
else:
|
|
656
|
-
oshape = [12 * lout * lout // 4, 4]
|
|
657
|
-
if len(shape) > axis:
|
|
658
|
-
oshape = oshape + shape[axis + 1 :]
|
|
659
|
-
|
|
660
|
-
return (
|
|
661
|
-
self.backend.bk_reduce_mean(
|
|
662
|
-
self.backend.bk_reshape(im, oshape), axis=axis + 1
|
|
663
|
-
),
|
|
664
|
-
None,
|
|
665
|
-
)
|
|
611
|
+
|
|
612
|
+
return self.backend.bk_reduce_mean(
|
|
613
|
+
self.backend.bk_reshape(im, shape[0:-1]+[shape[-1]//4,4]), axis=-1
|
|
614
|
+
),None
|
|
666
615
|
|
|
667
616
|
# --------------------------------------------------------
|
|
668
617
|
def up_grade(self, im, nout, axis=0, nouty=None):
|
|
@@ -773,9 +722,9 @@ class FoCUS:
|
|
|
773
722
|
|
|
774
723
|
else:
|
|
775
724
|
|
|
776
|
-
lout = int(np.sqrt(im.shape[
|
|
725
|
+
lout = int(np.sqrt(im.shape[-1] // 12))
|
|
777
726
|
|
|
778
|
-
if
|
|
727
|
+
if (lout,nout) not in self.pix_interp_val:
|
|
779
728
|
if not self.silent:
|
|
780
729
|
print("compute lout nout", lout, nout)
|
|
781
730
|
th, ph = hp.pix2ang(
|
|
@@ -794,104 +743,51 @@ class FoCUS:
|
|
|
794
743
|
t = t + np.repeat(np.arange(12 * nout * nout) * 4, 4)
|
|
795
744
|
p = p.flatten()[t]
|
|
796
745
|
w = w.flatten()[t]
|
|
797
|
-
indice[:,
|
|
798
|
-
indice[:,
|
|
746
|
+
indice[:, 1] = np.repeat(np.arange(12 * nout**2), 4)
|
|
747
|
+
indice[:, 0] = p
|
|
799
748
|
|
|
800
|
-
self.pix_interp_val[lout
|
|
801
|
-
self.weight_interp_val[lout
|
|
749
|
+
self.pix_interp_val[(lout,nout)] = 1
|
|
750
|
+
self.weight_interp_val[(lout,nout)] = self.backend.bk_SparseTensor(
|
|
802
751
|
self.backend.bk_constant(indice),
|
|
803
752
|
self.backend.bk_constant(self.backend.bk_cast(w.flatten())),
|
|
804
|
-
dense_shape=[12 *
|
|
753
|
+
dense_shape=[12 * lout**2,12 * nout**2],
|
|
805
754
|
)
|
|
806
755
|
|
|
807
756
|
if lout == nout:
|
|
808
757
|
imout = im
|
|
809
758
|
else:
|
|
810
|
-
|
|
759
|
+
# work only on the last column
|
|
760
|
+
|
|
811
761
|
ishape = list(im.shape)
|
|
812
|
-
odata = 1
|
|
813
|
-
for k in range(axis + 1, len(ishape)):
|
|
814
|
-
odata = odata * ishape[k]
|
|
815
762
|
|
|
816
763
|
ndata = 1
|
|
817
|
-
for k in range(
|
|
764
|
+
for k in range(len(ishape)-1):
|
|
818
765
|
ndata = ndata * ishape[k]
|
|
819
766
|
tim = self.backend.bk_reshape(
|
|
820
|
-
self.backend.bk_cast(im), [ndata, 12 * lout**2
|
|
767
|
+
self.backend.bk_cast(im), [ndata, 12 * lout**2]
|
|
821
768
|
)
|
|
822
769
|
if tim.dtype == self.all_cbk_type:
|
|
823
|
-
rr = self.backend.
|
|
824
|
-
|
|
825
|
-
self.weight_interp_val[lout
|
|
826
|
-
|
|
827
|
-
|
|
828
|
-
|
|
829
|
-
|
|
830
|
-
|
|
831
|
-
self.backend.bk_sparse_dense_matmul(
|
|
832
|
-
self.weight_interp_val[lout][nout],
|
|
833
|
-
self.backend.bk_imag(tim[0]),
|
|
834
|
-
),
|
|
835
|
-
[1, 12 * nout**2, odata],
|
|
836
|
-
)
|
|
770
|
+
rr = self.backend.bk_sparse_dense_matmul(
|
|
771
|
+
self.backend.bk_real(tim),
|
|
772
|
+
self.weight_interp_val[(lout,nout)],
|
|
773
|
+
)
|
|
774
|
+
ii = self.backend.bk_sparse_dense_matmul(
|
|
775
|
+
self.backend.bk_real(tim),
|
|
776
|
+
self.weight_interp_val[(lout,nout)],
|
|
777
|
+
)
|
|
837
778
|
imout = self.backend.bk_complex(rr, ii)
|
|
838
779
|
else:
|
|
839
|
-
imout = self.backend.
|
|
840
|
-
|
|
841
|
-
|
|
842
|
-
),
|
|
843
|
-
[1, 12 * nout**2, odata],
|
|
780
|
+
imout = self.backend.bk_sparse_dense_matmul(
|
|
781
|
+
tim,
|
|
782
|
+
self.weight_interp_val[(lout,nout)],
|
|
844
783
|
)
|
|
845
784
|
|
|
846
|
-
|
|
847
|
-
|
|
848
|
-
rr = self.backend.bk_reshape(
|
|
849
|
-
self.backend.bk_sparse_dense_matmul(
|
|
850
|
-
self.weight_interp_val[lout][nout],
|
|
851
|
-
self.backend.bk_real(tim[k]),
|
|
852
|
-
),
|
|
853
|
-
[1, 12 * nout**2, odata],
|
|
854
|
-
)
|
|
855
|
-
ii = self.backend.bk_reshape(
|
|
856
|
-
self.backend.bk_sparse_dense_matmul(
|
|
857
|
-
self.weight_interp_val[lout][nout],
|
|
858
|
-
self.backend.bk_imag(tim[k]),
|
|
859
|
-
),
|
|
860
|
-
[1, 12 * nout**2, odata],
|
|
861
|
-
)
|
|
862
|
-
imout = self.backend.bk_concat(
|
|
863
|
-
[imout, self.backend.bk_complex(rr, ii)], 0
|
|
864
|
-
)
|
|
865
|
-
else:
|
|
866
|
-
imout = self.backend.bk_concat(
|
|
867
|
-
[
|
|
868
|
-
imout,
|
|
869
|
-
self.backend.bk_reshape(
|
|
870
|
-
self.backend.bk_sparse_dense_matmul(
|
|
871
|
-
self.weight_interp_val[lout][nout], tim[k]
|
|
872
|
-
),
|
|
873
|
-
[1, 12 * nout**2, odata],
|
|
874
|
-
),
|
|
875
|
-
],
|
|
876
|
-
0,
|
|
877
|
-
)
|
|
878
|
-
|
|
879
|
-
if axis == 0:
|
|
880
|
-
if len(ishape) == 1:
|
|
881
|
-
return self.backend.bk_reshape(imout, [12 * nout**2])
|
|
882
|
-
else:
|
|
883
|
-
return self.backend.bk_reshape(
|
|
884
|
-
imout, [12 * nout**2] + ishape[axis + 1 :]
|
|
885
|
-
)
|
|
785
|
+
if len(ishape) == 1:
|
|
786
|
+
return self.backend.bk_reshape(imout, [12 * nout**2])
|
|
886
787
|
else:
|
|
887
|
-
|
|
888
|
-
|
|
889
|
-
|
|
890
|
-
)
|
|
891
|
-
else:
|
|
892
|
-
return self.backend.bk_reshape(
|
|
893
|
-
imout, ishape[0:axis] + [12 * nout**2] + ishape[axis + 1 :]
|
|
894
|
-
)
|
|
788
|
+
return self.backend.bk_reshape(
|
|
789
|
+
imout, ishape[0:axis-1]+[12 * nout**2]
|
|
790
|
+
)
|
|
895
791
|
return imout
|
|
896
792
|
|
|
897
793
|
# --------------------------------------------------------
|
|
@@ -1164,7 +1060,7 @@ class FoCUS:
|
|
|
1164
1060
|
return res
|
|
1165
1061
|
|
|
1166
1062
|
# ---------------------------------------------−---------
|
|
1167
|
-
def init_index(self, nside, kernel=-1, cell_ids=None):
|
|
1063
|
+
def init_index(self, nside, kernel=-1, cell_ids=None, spin=0):
|
|
1168
1064
|
|
|
1169
1065
|
if kernel == -1:
|
|
1170
1066
|
l_kernel = self.KERNELSZ
|
|
@@ -1197,297 +1093,372 @@ class FoCUS:
|
|
|
1197
1093
|
|
|
1198
1094
|
else:
|
|
1199
1095
|
tmp = np.load(
|
|
1200
|
-
"%s/FOSCAT_%s_W%d_%d_%d_PIDX.npy"
|
|
1096
|
+
"%s/FOSCAT_%s_W%d_%d_%d_PIDX-SPIN%d.npy"
|
|
1201
1097
|
% (
|
|
1202
1098
|
self.TEMPLATE_PATH,
|
|
1203
1099
|
TMPFILE_VERSION,
|
|
1204
1100
|
l_kernel**2,
|
|
1205
1101
|
self.NORIENT,
|
|
1206
|
-
nside, # if cell_ids computes the index
|
|
1102
|
+
nside,spin # if cell_ids computes the index
|
|
1207
1103
|
)
|
|
1208
1104
|
)
|
|
1105
|
+
|
|
1209
1106
|
except:
|
|
1210
1107
|
if not self.use_2D:
|
|
1211
|
-
|
|
1212
|
-
|
|
1213
|
-
|
|
1214
|
-
|
|
1215
|
-
|
|
1216
|
-
|
|
1217
|
-
|
|
1218
|
-
|
|
1219
|
-
|
|
1220
|
-
|
|
1221
|
-
|
|
1222
|
-
|
|
1223
|
-
|
|
1224
|
-
|
|
1225
|
-
|
|
1226
|
-
|
|
1227
|
-
|
|
1228
|
-
|
|
1229
|
-
|
|
1230
|
-
|
|
1231
|
-
|
|
1232
|
-
|
|
1233
|
-
|
|
1234
|
-
|
|
1235
|
-
|
|
1236
|
-
|
|
1237
|
-
|
|
1238
|
-
|
|
1239
|
-
|
|
1240
|
-
|
|
1241
|
-
|
|
1108
|
+
if spin!=0:
|
|
1109
|
+
try:
|
|
1110
|
+
tmp = np.load("%s/FOSCAT_%s_W%d_%d_%d_PIDX-SPIN0.npy"% (
|
|
1111
|
+
self.TEMPLATE_PATH,
|
|
1112
|
+
self.TMPFILE_VERSION,
|
|
1113
|
+
self.KERNELSZ**2,
|
|
1114
|
+
self.NORIENT,
|
|
1115
|
+
nside)
|
|
1116
|
+
)
|
|
1117
|
+
except:
|
|
1118
|
+
self.init_index(nside, kernel=kernel, spin=0)
|
|
1119
|
+
|
|
1120
|
+
tmp = np.load("%s/FOSCAT_%s_W%d_%d_%d_PIDX-SPIN0.npy"% (
|
|
1121
|
+
self.TEMPLATE_PATH,
|
|
1122
|
+
self.TMPFILE_VERSION,
|
|
1123
|
+
self.KERNELSZ**2,
|
|
1124
|
+
self.NORIENT,
|
|
1125
|
+
nside)
|
|
1126
|
+
)
|
|
1127
|
+
|
|
1128
|
+
tmpw = np.load("%s/FOSCAT_%s_W%d_%d_%d_WAVE-SPIN0.npy"% (
|
|
1129
|
+
self.TEMPLATE_PATH,
|
|
1130
|
+
self.TMPFILE_VERSION,
|
|
1131
|
+
self.KERNELSZ**2,
|
|
1132
|
+
self.NORIENT,
|
|
1133
|
+
nside,
|
|
1134
|
+
)
|
|
1135
|
+
)
|
|
1136
|
+
|
|
1137
|
+
nn=self.NORIENT*12*nside**2
|
|
1138
|
+
idxEB=np.concatenate([tmp,tmp,tmp,tmp],0)
|
|
1139
|
+
idxEB[tmp.shape[0]:2*tmp.shape[0],0]+=12*nside**2
|
|
1140
|
+
idxEB[3*tmp.shape[0]:,0]+=12*nside**2
|
|
1141
|
+
idxEB[2*tmp.shape[0]:,1]+=nn
|
|
1142
|
+
|
|
1143
|
+
tmpEB=np.zeros([tmpw.shape[0]*4],dtype='complex')
|
|
1144
|
+
|
|
1145
|
+
for k in range(self.NORIENT*12*nside**2):
|
|
1146
|
+
if k%(nside**2)==0:
|
|
1147
|
+
print('Init index 1/2 spin=%d Please wait %d done against %d nside=%d kernel=%d'%(spin,k//(nside**2),
|
|
1148
|
+
self.NORIENT*12,
|
|
1149
|
+
nside,
|
|
1150
|
+
self.KERNELSZ))
|
|
1151
|
+
idx=np.where(tmp[:,1]==k)[0]
|
|
1152
|
+
|
|
1153
|
+
im=np.zeros([12*nside**2])
|
|
1154
|
+
im[tmp[idx,0]]=tmpw[idx].real
|
|
1155
|
+
almR=hp.map2alm(hp.reorder(im,n2r=True))
|
|
1156
|
+
im[tmp[idx,0]]=tmpw[idx].imag
|
|
1157
|
+
almI=hp.map2alm(hp.reorder(im,n2r=True))
|
|
1158
|
+
|
|
1159
|
+
i,q,u=hp.alm2map_spin([almR,almR*0,0*almR],nside,spin,3*nside-1)
|
|
1160
|
+
i2,q2,u2=hp.alm2map_spin([almI,0*almI,0*almI],nside,spin,3*nside-1)
|
|
1161
|
+
|
|
1162
|
+
tmpEB[idx]=hp.reorder(i,r2n=True)[tmp[idx,0]]+1J*hp.reorder(i2,r2n=True)[tmp[idx,0]]
|
|
1163
|
+
tmpEB[idx+tmp.shape[0]]=hp.reorder(q,r2n=True)[tmp[idx,0]]+1J*hp.reorder(q2,r2n=True)[tmp[idx,0]]
|
|
1164
|
+
|
|
1165
|
+
i,q,u=hp.alm2map_spin([0*almR,almR,0*almR],nside,spin,3*nside-1)
|
|
1166
|
+
i2,q2,u2=hp.alm2map_spin([0*almI,almI,0*almI],nside,spin,3*nside-1)
|
|
1167
|
+
|
|
1168
|
+
tmpEB[idx+2*tmp.shape[0]]=hp.reorder(i,r2n=True)[tmp[idx,0]]+1J*hp.reorder(i2,r2n=True)[tmp[idx,0]]
|
|
1169
|
+
tmpEB[idx+3*tmp.shape[0]]=hp.reorder(q,r2n=True)[tmp[idx,0]]+1J*hp.reorder(q2,r2n=True)[tmp[idx,0]]
|
|
1170
|
+
|
|
1171
|
+
|
|
1172
|
+
np.save("%s/FOSCAT_%s_W%d_%d_%d_PIDX-SPIN%d.npy"% (self.TEMPLATE_PATH,
|
|
1173
|
+
self.TMPFILE_VERSION,
|
|
1174
|
+
self.KERNELSZ**2,
|
|
1175
|
+
self.NORIENT,
|
|
1176
|
+
nside,
|
|
1177
|
+
spin
|
|
1178
|
+
),
|
|
1179
|
+
idxEB
|
|
1180
|
+
)
|
|
1181
|
+
np.save("%s/FOSCAT_%s_W%d_%d_%d_WAVE-SPIN%d.npy"% (self.TEMPLATE_PATH,
|
|
1182
|
+
self.TMPFILE_VERSION,
|
|
1183
|
+
self.KERNELSZ**2,
|
|
1184
|
+
self.NORIENT,
|
|
1185
|
+
nside,
|
|
1186
|
+
spin,
|
|
1187
|
+
),
|
|
1188
|
+
tmpEB
|
|
1189
|
+
)
|
|
1190
|
+
tmp = np.load("%s/FOSCAT_%s_W%d_%d_%d_PIDX2-SPIN0.npy"%
|
|
1191
|
+
(
|
|
1192
|
+
self.TEMPLATE_PATH,
|
|
1193
|
+
self.TMPFILE_VERSION,
|
|
1194
|
+
self.KERNELSZ**2,
|
|
1195
|
+
self.NORIENT,
|
|
1196
|
+
nside,
|
|
1197
|
+
)
|
|
1198
|
+
)
|
|
1199
|
+
tmpw = np.load("%s/FOSCAT_%s_W%d_%d_%d_SMOO-SPIN0.npy"%
|
|
1200
|
+
(
|
|
1201
|
+
self.TEMPLATE_PATH,
|
|
1202
|
+
self.TMPFILE_VERSION,
|
|
1203
|
+
self.KERNELSZ**2,
|
|
1204
|
+
self.NORIENT,
|
|
1205
|
+
nside,
|
|
1206
|
+
)
|
|
1207
|
+
)
|
|
1208
|
+
|
|
1209
|
+
nn=12*nside**2
|
|
1210
|
+
idxEB=np.concatenate([tmp,tmp,tmp,tmp],0)
|
|
1211
|
+
idxEB[tmp.shape[0]:2*tmp.shape[0],0]+=12*nside**2
|
|
1212
|
+
idxEB[3*tmp.shape[0]:,0]+=12*nside**2
|
|
1213
|
+
idxEB[2*tmp.shape[0]:,1]+=nn
|
|
1214
|
+
|
|
1215
|
+
tmpEB=np.zeros([tmpw.shape[0]*4],dtype='complex')
|
|
1216
|
+
|
|
1217
|
+
for k in range(12*nside**2):
|
|
1218
|
+
if k%(nside**2)==0:
|
|
1219
|
+
print('Init index 2/2 spin=%d Please wait %d done against %d nside=%d kernel=%d'%(spin,k//(nside**2),
|
|
1220
|
+
12,
|
|
1221
|
+
nside,
|
|
1222
|
+
self.KERNELSZ))
|
|
1223
|
+
idx=np.where(tmp[:,1]==k)[0]
|
|
1224
|
+
|
|
1225
|
+
im=np.zeros([12*nside**2])
|
|
1226
|
+
im[tmp[idx,0]]=tmpw[idx].real
|
|
1227
|
+
almR=hp.map2alm(hp.reorder(im,n2r=True))
|
|
1228
|
+
im[tmp[idx,0]]=tmpw[idx].imag
|
|
1229
|
+
almI=hp.map2alm(hp.reorder(im,n2r=True))
|
|
1230
|
+
|
|
1231
|
+
i,q,u=hp.alm2map_spin([almR,almR*0,0*almR],nside,spin,3*nside-1)
|
|
1232
|
+
i2,q2,u2=hp.alm2map_spin([almI,0*almI,0*almI],nside,spin,3*nside-1)
|
|
1233
|
+
|
|
1234
|
+
tmpEB[idx]=hp.reorder(i,r2n=True)[tmp[idx,0]]+1J*hp.reorder(i2,r2n=True)[tmp[idx,0]]
|
|
1235
|
+
tmpEB[idx+tmp.shape[0]]=hp.reorder(q,r2n=True)[tmp[idx,0]]+1J*hp.reorder(q2,r2n=True)[tmp[idx,0]]
|
|
1236
|
+
|
|
1237
|
+
i,q,u=hp.alm2map_spin([0*almR,almR,0*almR],nside,spin,3*nside-1)
|
|
1238
|
+
i2,q2,u2=hp.alm2map_spin([0*almI,almI,0*almI],nside,spin,3*nside-1)
|
|
1239
|
+
|
|
1240
|
+
tmpEB[idx+2*tmp.shape[0]]=hp.reorder(i,r2n=True)[tmp[idx,0]]+1J*hp.reorder(i2,r2n=True)[tmp[idx,0]]
|
|
1241
|
+
tmpEB[idx+3*tmp.shape[0]]=hp.reorder(q,r2n=True)[tmp[idx,0]]+1J*hp.reorder(q2,r2n=True)[tmp[idx,0]]
|
|
1242
|
+
|
|
1243
|
+
|
|
1244
|
+
np.save("%s/FOSCAT_%s_W%d_%d_%d_PIDX2-SPIN%d.npy"%
|
|
1245
|
+
(
|
|
1246
|
+
self.TEMPLATE_PATH,
|
|
1247
|
+
self.TMPFILE_VERSION,
|
|
1248
|
+
self.KERNELSZ**2,
|
|
1249
|
+
self.NORIENT,
|
|
1250
|
+
nside,
|
|
1251
|
+
spin,
|
|
1252
|
+
),
|
|
1253
|
+
idxEB
|
|
1254
|
+
)
|
|
1255
|
+
np.save("%s/FOSCAT_%s_W%d_%d_%d_SMOO-SPIN%d.npy"%
|
|
1256
|
+
(
|
|
1257
|
+
self.TEMPLATE_PATH,
|
|
1258
|
+
self.TMPFILE_VERSION,
|
|
1259
|
+
self.KERNELSZ**2,
|
|
1260
|
+
self.NORIENT,
|
|
1261
|
+
nside,
|
|
1262
|
+
spin,
|
|
1263
|
+
),
|
|
1264
|
+
tmpEB
|
|
1265
|
+
)
|
|
1242
1266
|
else:
|
|
1243
1267
|
|
|
1244
|
-
|
|
1245
|
-
|
|
1246
|
-
|
|
1247
|
-
|
|
1248
|
-
phi = [p[k] / np.pi * 180 for k in range(12 * nside * nside)]
|
|
1249
|
-
thi = [t[k] / np.pi * 180 for k in range(12 * nside * nside)]
|
|
1268
|
+
if l_kernel == 5:
|
|
1269
|
+
pw = 0.5
|
|
1270
|
+
pw2 = 0.5
|
|
1271
|
+
threshold = 2e-4
|
|
1250
1272
|
|
|
1251
|
-
|
|
1252
|
-
|
|
1253
|
-
|
|
1254
|
-
|
|
1255
|
-
wav = np.zeros(
|
|
1256
|
-
[12 * nside * nside * 64 * self.NORIENT], dtype="complex"
|
|
1257
|
-
)
|
|
1258
|
-
wwav = np.zeros(
|
|
1259
|
-
[12 * nside * nside * 64 * self.NORIENT], dtype="float"
|
|
1260
|
-
)
|
|
1261
|
-
iv = 0
|
|
1262
|
-
iv2 = 0
|
|
1273
|
+
elif l_kernel == 3:
|
|
1274
|
+
pw = 1.0 / np.sqrt(2)
|
|
1275
|
+
pw2 = 1.0
|
|
1276
|
+
threshold = 1e-3
|
|
1263
1277
|
|
|
1264
|
-
|
|
1265
|
-
|
|
1266
|
-
|
|
1267
|
-
|
|
1268
|
-
print(
|
|
1269
|
-
"Pre-compute nside=%6d %.2f%%"
|
|
1270
|
-
% (nside, 100 * iii / (12 * nside * nside))
|
|
1271
|
-
)
|
|
1278
|
+
elif l_kernel == 7:
|
|
1279
|
+
pw = 0.5
|
|
1280
|
+
pw2 = 0.25
|
|
1281
|
+
threshold = 4e-5
|
|
1272
1282
|
|
|
1273
1283
|
if cell_ids is not None:
|
|
1274
|
-
|
|
1275
|
-
|
|
1276
|
-
|
|
1277
|
-
)
|
|
1278
|
-
else:
|
|
1279
|
-
hidx = hp.query_disc(
|
|
1280
|
-
nside,
|
|
1281
|
-
[x[iii], y[iii], z[iii]],
|
|
1282
|
-
2 * np.pi / nside,
|
|
1283
|
-
nest=True,
|
|
1284
|
-
)
|
|
1284
|
+
if not isinstance(cell_ids, np.ndarray):
|
|
1285
|
+
cell_ids = self.backend.to_numpy(cell_ids)
|
|
1286
|
+
th, ph = hp.pix2ang(nside, cell_ids, nest=True)
|
|
1287
|
+
x, y, z = hp.pix2vec(nside, cell_ids, nest=True)
|
|
1285
1288
|
|
|
1286
|
-
|
|
1289
|
+
t, p = hp.pix2ang(nside, cell_ids, nest=True)
|
|
1290
|
+
phi = [p[k] / np.pi * 180 for k in range(ncell)]
|
|
1291
|
+
thi = [t[k] / np.pi * 180 for k in range(ncell)]
|
|
1287
1292
|
|
|
1288
|
-
|
|
1293
|
+
indice2 = np.zeros([ncell * 64, 2], dtype="int")
|
|
1294
|
+
indice = np.zeros([ncell * 64 * self.NORIENT, 2], dtype="int")
|
|
1295
|
+
wav = np.zeros([ncell * 64 * self.NORIENT], dtype="complex")
|
|
1296
|
+
wwav = np.zeros([ncell * 64 * self.NORIENT], dtype="float")
|
|
1289
1297
|
|
|
1290
|
-
|
|
1291
|
-
|
|
1292
|
-
x2 = vec2[:, 0]
|
|
1293
|
-
y2 = vec2[:, 1]
|
|
1294
|
-
z2 = vec2[:, 2]
|
|
1298
|
+
else:
|
|
1295
1299
|
|
|
1296
|
-
|
|
1297
|
-
|
|
1298
|
-
* ((nside) ** 2)
|
|
1299
|
-
* ((x2) ** 2 + (y2) ** 2 + (z2 - 1.0) ** 2)
|
|
1300
|
-
)
|
|
1301
|
-
idx = np.where((ww**2) > threshold)[0]
|
|
1302
|
-
nval2 = len(idx)
|
|
1303
|
-
indice2[iv2 : iv2 + nval2, 1] = iii
|
|
1304
|
-
indice2[iv2 : iv2 + nval2, 0] = hidx[idx]
|
|
1305
|
-
wwav[iv2 : iv2 + nval2] = ww[idx] / np.sum(ww[idx])
|
|
1306
|
-
iv2 += nval2
|
|
1300
|
+
th, ph = hp.pix2ang(nside, np.arange(12 * nside**2), nest=True)
|
|
1301
|
+
x, y, z = hp.pix2vec(nside, np.arange(12 * nside**2), nest=True)
|
|
1307
1302
|
|
|
1308
|
-
|
|
1303
|
+
t, p = hp.pix2ang(nside, np.arange(12 * nside * nside), nest=True)
|
|
1304
|
+
phi = [p[k] / np.pi * 180 for k in range(12 * nside * nside)]
|
|
1305
|
+
thi = [t[k] / np.pi * 180 for k in range(12 * nside * nside)]
|
|
1309
1306
|
|
|
1310
|
-
|
|
1311
|
-
|
|
1312
|
-
|
|
1313
|
-
|
|
1307
|
+
indice2 = np.zeros([12 * nside * nside * 64, 2], dtype="int")
|
|
1308
|
+
indice = np.zeros(
|
|
1309
|
+
[12 * nside * nside * 64 * self.NORIENT, 2], dtype="int"
|
|
1310
|
+
)
|
|
1311
|
+
wav = np.zeros(
|
|
1312
|
+
[12 * nside * nside * 64 * self.NORIENT], dtype="complex"
|
|
1314
1313
|
)
|
|
1314
|
+
wwav = np.zeros(
|
|
1315
|
+
[12 * nside * nside * 64 * self.NORIENT], dtype="float"
|
|
1316
|
+
)
|
|
1317
|
+
iv = 0
|
|
1318
|
+
iv2 = 0
|
|
1319
|
+
|
|
1320
|
+
for iii in range(ncell):
|
|
1321
|
+
if cell_ids is None:
|
|
1322
|
+
if iii % (nside * nside) == nside * nside - 1:
|
|
1323
|
+
if not self.silent:
|
|
1324
|
+
print(
|
|
1325
|
+
"Pre-compute nside=%6d %.2f%%"
|
|
1326
|
+
% (nside, 100 * iii / (12 * nside * nside))
|
|
1327
|
+
)
|
|
1328
|
+
|
|
1329
|
+
if cell_ids is not None:
|
|
1330
|
+
hidx = np.where(
|
|
1331
|
+
(x - x[iii]) ** 2 + (y - y[iii]) ** 2 + (z - z[iii]) ** 2
|
|
1332
|
+
< (2 * np.pi / nside) ** 2
|
|
1333
|
+
)[0]
|
|
1334
|
+
else:
|
|
1335
|
+
hidx = hp.query_disc(
|
|
1336
|
+
nside,
|
|
1337
|
+
[x[iii], y[iii], z[iii]],
|
|
1338
|
+
2 * np.pi / nside,
|
|
1339
|
+
nest=True,
|
|
1340
|
+
)
|
|
1315
1341
|
|
|
1316
|
-
|
|
1342
|
+
R = hp.Rotator(rot=[phi[iii], -thi[iii]], eulertype="ZYZ")
|
|
1317
1343
|
|
|
1318
|
-
|
|
1319
|
-
wresr = ww * np.cos(pw * axes * (nside) * np.pi)
|
|
1320
|
-
wresi = ww * np.sin(pw * axes * (nside) * np.pi)
|
|
1344
|
+
t2, p2 = R(th[hidx], ph[hidx])
|
|
1321
1345
|
|
|
1322
|
-
|
|
1323
|
-
idx = np.where(vnorm > threshold)[0]
|
|
1346
|
+
vec2 = hp.ang2vec(t2, p2)
|
|
1324
1347
|
|
|
1325
|
-
|
|
1326
|
-
|
|
1327
|
-
|
|
1328
|
-
# print([hidx[k] for k in idx])
|
|
1329
|
-
# print(hp.query_disc(nside, [x[iii],y[iii],z[iii]], np.pi/nside,nest=True))
|
|
1330
|
-
normr = np.mean(wresr[idx])
|
|
1331
|
-
normi = np.mean(wresi[idx])
|
|
1348
|
+
x2 = vec2[:, 0]
|
|
1349
|
+
y2 = vec2[:, 1]
|
|
1350
|
+
z2 = vec2[:, 2]
|
|
1332
1351
|
|
|
1333
|
-
|
|
1334
|
-
|
|
1352
|
+
ww = np.exp(
|
|
1353
|
+
-pw2
|
|
1354
|
+
* ((nside) ** 2)
|
|
1355
|
+
* ((x2) ** 2 + (y2) ** 2 + (z2 - 1.0) ** 2)
|
|
1356
|
+
)
|
|
1357
|
+
idx = np.where((ww**2) > threshold)[0]
|
|
1358
|
+
nval2 = len(idx)
|
|
1359
|
+
indice2[iv2 : iv2 + nval2, 1] = iii
|
|
1360
|
+
indice2[iv2 : iv2 + nval2, 0] = hidx[idx]
|
|
1361
|
+
wwav[iv2 : iv2 + nval2] = ww[idx] / np.sum(ww[idx])
|
|
1362
|
+
iv2 += nval2
|
|
1363
|
+
|
|
1364
|
+
for l_rotation in range(self.NORIENT):
|
|
1365
|
+
|
|
1366
|
+
angle = (
|
|
1367
|
+
l_rotation / 4.0 * np.pi
|
|
1368
|
+
- phi[iii] / 180.0 * np.pi * (z[hidx] > 0)
|
|
1369
|
+
- (180.0 - phi[iii]) / 180.0 * np.pi * (z[hidx] < 0)
|
|
1370
|
+
)
|
|
1335
1371
|
|
|
1336
|
-
|
|
1337
|
-
val = val / r
|
|
1372
|
+
# posi=2*(0.5-(z[hidx]<0))
|
|
1338
1373
|
|
|
1339
|
-
|
|
1340
|
-
|
|
1374
|
+
axes = y2 * np.cos(angle) - x2 * np.sin(angle)
|
|
1375
|
+
wresr = ww * np.cos(pw * axes * (nside) * np.pi)
|
|
1376
|
+
wresi = ww * np.sin(pw * axes * (nside) * np.pi)
|
|
1341
1377
|
|
|
1342
|
-
|
|
1343
|
-
|
|
1344
|
-
indice2 = indice2[:iv2, :]
|
|
1345
|
-
wwav = wwav[:iv2]
|
|
1346
|
-
if not self.silent:
|
|
1347
|
-
print("Kernel Size ", iv / (self.NORIENT * 12 * nside * nside))
|
|
1348
|
-
"""
|
|
1349
|
-
# OLD VERSION OLD VERSION OLD VERSION (3.0)
|
|
1350
|
-
if self.KERNELSZ*self.KERNELSZ>12*nside*nside:
|
|
1351
|
-
l_kernel=3
|
|
1352
|
-
|
|
1353
|
-
aa=np.cos(np.arange(self.NORIENT)/self.NORIENT*np.pi).reshape(1,self.NORIENT)
|
|
1354
|
-
bb=np.sin(np.arange(self.NORIENT)/self.NORIENT*np.pi).reshape(1,self.NORIENT)
|
|
1355
|
-
x,y,z=hp.pix2vec(nside,np.arange(12*nside*nside),nest=True)
|
|
1356
|
-
to,po=hp.pix2ang(nside,np.arange(12*nside*nside),nest=True)
|
|
1357
|
-
|
|
1358
|
-
wav=np.zeros([12*nside*nside,l_kernel**2,self.NORIENT],dtype='complex')
|
|
1359
|
-
wwav=np.zeros([12*nside*nside,l_kernel**2])
|
|
1360
|
-
iwav=np.zeros([12*nside*nside,l_kernel**2],dtype='int')
|
|
1361
|
-
|
|
1362
|
-
scale=4
|
|
1363
|
-
if nside>scale*2:
|
|
1364
|
-
th,ph=hp.pix2ang(nside//scale,np.arange(12*(nside//scale)**2),nest=True)
|
|
1365
|
-
else:
|
|
1366
|
-
lidx=np.arange(12*nside*nside)
|
|
1378
|
+
vnorm = wresr * wresr + wresi * wresi
|
|
1379
|
+
idx = np.where(vnorm > threshold)[0]
|
|
1367
1380
|
|
|
1368
|
-
|
|
1369
|
-
|
|
1370
|
-
|
|
1381
|
+
nval = len(idx)
|
|
1382
|
+
indice[iv : iv + nval, 1] = iii + l_rotation * ncell
|
|
1383
|
+
indice[iv : iv + nval, 0] = hidx[idx]
|
|
1384
|
+
# print([hidx[k] for k in idx])
|
|
1385
|
+
# print(hp.query_disc(nside, [x[iii],y[iii],z[iii]], np.pi/nside,nest=True))
|
|
1386
|
+
normr = np.mean(wresr[idx])
|
|
1387
|
+
normi = np.mean(wresi[idx])
|
|
1371
1388
|
|
|
1372
|
-
|
|
1373
|
-
|
|
1374
|
-
pw2=1/2.25
|
|
1375
|
-
amp=1.0/9.2038
|
|
1389
|
+
val = wresr[idx] - normr + 1j * (wresi[idx] - normi)
|
|
1390
|
+
r = abs(val).sum()
|
|
1376
1391
|
|
|
1377
|
-
|
|
1378
|
-
|
|
1379
|
-
pw2=1.0
|
|
1380
|
-
amp=1/8.45
|
|
1392
|
+
if r > 0:
|
|
1393
|
+
val = val / r
|
|
1381
1394
|
|
|
1382
|
-
|
|
1383
|
-
|
|
1384
|
-
pw2=1.0/3.0
|
|
1395
|
+
wav[iv : iv + nval] = val
|
|
1396
|
+
iv += nval
|
|
1385
1397
|
|
|
1386
|
-
|
|
1387
|
-
|
|
1388
|
-
|
|
1389
|
-
|
|
1390
|
-
if nside>scale*2:
|
|
1391
|
-
lidx=hp.get_all_neighbours(nside//scale,th[k//(scale*scale)],ph[k//(scale*scale)],nest=True)
|
|
1392
|
-
lidx=np.concatenate([lidx,np.array([(k//(scale*scale))])],0)
|
|
1393
|
-
lidx=np.repeat(lidx*(scale*scale),(scale*scale))+ \
|
|
1394
|
-
np.tile(np.arange((scale*scale)),lidx.shape[0])
|
|
1395
|
-
|
|
1396
|
-
delta=(x[lidx]-x[k])**2+(y[lidx]-y[k])**2+(z[lidx]-z[k])**2
|
|
1397
|
-
pidx=np.where(delta<(10)/(nside**2))[0]
|
|
1398
|
-
if len(pidx)<l_kernel**2:
|
|
1399
|
-
pidx=np.arange(delta.shape[0])
|
|
1400
|
-
|
|
1401
|
-
w=np.exp(-pw2*delta[pidx]*(nside**2))
|
|
1402
|
-
pidx=pidx[np.argsort(-w)[0:l_kernel**2]]
|
|
1403
|
-
pidx=pidx[np.argsort(lidx[pidx])]
|
|
1404
|
-
|
|
1405
|
-
w=np.exp(-pw2*delta[pidx]*(nside**2))
|
|
1406
|
-
iwav[k]=lidx[pidx]
|
|
1407
|
-
wwav[k]=w
|
|
1408
|
-
rot=[po[k]/np.pi*180.0,90+(-to[k])/np.pi*180.0]
|
|
1409
|
-
r=hp.Rotator(rot=rot)
|
|
1410
|
-
ty,tx=r(to[iwav[k]],po[iwav[k]])
|
|
1411
|
-
ty=ty-np.pi/2
|
|
1412
|
-
|
|
1413
|
-
xx=np.expand_dims(pw*nside*np.pi*tx/np.cos(ty),-1)
|
|
1414
|
-
yy=np.expand_dims(pw*nside*np.pi*ty,-1)
|
|
1415
|
-
|
|
1416
|
-
wav[k,:,:]=(np.cos(xx*aa+yy*bb)+complex(0.0,1.0)*np.sin(xx*aa+yy*bb))*np.expand_dims(w,-1)
|
|
1417
|
-
|
|
1418
|
-
wav=wav-np.expand_dims(np.mean(wav,1),1)
|
|
1419
|
-
wav=amp*wav/np.expand_dims(np.std(wav,1),1)
|
|
1420
|
-
wwav=wwav/np.expand_dims(np.sum(wwav,1),1)
|
|
1421
|
-
|
|
1422
|
-
nk=l_kernel*l_kernel
|
|
1423
|
-
indice=np.zeros([12*nside*nside*nk*self.NORIENT,2],dtype='int')
|
|
1424
|
-
lidx=np.arange(self.NORIENT)
|
|
1425
|
-
for i in range(12*nside*nside):
|
|
1426
|
-
indice[i*nk*self.NORIENT:i*nk*self.NORIENT+nk*self.NORIENT,0]=i*self.NORIENT+np.repeat(lidx,nk)
|
|
1427
|
-
indice[i*nk*self.NORIENT:i*nk*self.NORIENT+nk*self.NORIENT,1]=np.tile(iwav[i],self.NORIENT)
|
|
1428
|
-
|
|
1429
|
-
indice2=np.zeros([12*nside*nside*nk,2],dtype='int')
|
|
1430
|
-
for i in range(12*nside*nside):
|
|
1431
|
-
indice2[i*nk:i*nk+nk,0]=i
|
|
1432
|
-
indice2[i*nk:i*nk+nk,1]=iwav[i]
|
|
1433
|
-
|
|
1434
|
-
w=np.zeros([12*nside*nside,wav.shape[2],wav.shape[1]],dtype='complex')
|
|
1435
|
-
for i in range(wav.shape[1]):
|
|
1436
|
-
for j in range(wav.shape[2]):
|
|
1437
|
-
w[:,j,i]=wav[:,i,j]
|
|
1438
|
-
wav=w.flatten()
|
|
1439
|
-
wwav=wwav.flatten()
|
|
1440
|
-
"""
|
|
1441
|
-
if cell_ids is None:
|
|
1398
|
+
indice = indice[:iv, :]
|
|
1399
|
+
wav = wav[:iv]
|
|
1400
|
+
indice2 = indice2[:iv2, :]
|
|
1401
|
+
wwav = wwav[:iv2]
|
|
1442
1402
|
if not self.silent:
|
|
1443
|
-
print(
|
|
1444
|
-
|
|
1445
|
-
|
|
1403
|
+
print("Kernel Size ", iv / (self.NORIENT * 12 * nside * nside))
|
|
1404
|
+
|
|
1405
|
+
if cell_ids is None:
|
|
1406
|
+
if not self.silent:
|
|
1407
|
+
print(
|
|
1408
|
+
"Write FOSCAT_%s_W%d_%d_%d_PIDX-SPIN%d.npy"
|
|
1409
|
+
% (TMPFILE_VERSION, self.KERNELSZ**2,
|
|
1410
|
+
self.NORIENT,
|
|
1411
|
+
nside,
|
|
1412
|
+
spin,)
|
|
1413
|
+
)
|
|
1414
|
+
np.save(
|
|
1415
|
+
"%s/FOSCAT_%s_W%d_%d_%d_PIDX-SPIN%d.npy"
|
|
1416
|
+
% (
|
|
1417
|
+
self.TEMPLATE_PATH,
|
|
1418
|
+
TMPFILE_VERSION,
|
|
1419
|
+
self.KERNELSZ**2,
|
|
1420
|
+
self.NORIENT,
|
|
1421
|
+
nside,
|
|
1422
|
+
spin,
|
|
1423
|
+
),
|
|
1424
|
+
indice,
|
|
1425
|
+
)
|
|
1426
|
+
np.save(
|
|
1427
|
+
"%s/FOSCAT_%s_W%d_%d_%d_WAVE-SPIN%d.npy"
|
|
1428
|
+
% (
|
|
1429
|
+
self.TEMPLATE_PATH,
|
|
1430
|
+
TMPFILE_VERSION,
|
|
1431
|
+
self.KERNELSZ**2,
|
|
1432
|
+
self.NORIENT,
|
|
1433
|
+
nside,
|
|
1434
|
+
spin,
|
|
1435
|
+
),
|
|
1436
|
+
wav,
|
|
1437
|
+
)
|
|
1438
|
+
np.save(
|
|
1439
|
+
"%s/FOSCAT_%s_W%d_%d_%d_PIDX2-SPIN%d.npy"
|
|
1440
|
+
% (
|
|
1441
|
+
self.TEMPLATE_PATH,
|
|
1442
|
+
TMPFILE_VERSION,
|
|
1443
|
+
self.KERNELSZ**2,
|
|
1444
|
+
self.NORIENT,
|
|
1445
|
+
nside,
|
|
1446
|
+
spin,
|
|
1447
|
+
),
|
|
1448
|
+
indice2,
|
|
1449
|
+
)
|
|
1450
|
+
np.save(
|
|
1451
|
+
"%s/FOSCAT_%s_W%d_%d_%d_SMOO-SPIN%d.npy"
|
|
1452
|
+
% (
|
|
1453
|
+
self.TEMPLATE_PATH,
|
|
1454
|
+
TMPFILE_VERSION,
|
|
1455
|
+
self.KERNELSZ**2,
|
|
1456
|
+
self.NORIENT,
|
|
1457
|
+
nside,
|
|
1458
|
+
spin,
|
|
1459
|
+
),
|
|
1460
|
+
wwav,
|
|
1446
1461
|
)
|
|
1447
|
-
np.save(
|
|
1448
|
-
"%s/FOSCAT_%s_W%d_%d_%d_PIDX.npy"
|
|
1449
|
-
% (
|
|
1450
|
-
self.TEMPLATE_PATH,
|
|
1451
|
-
TMPFILE_VERSION,
|
|
1452
|
-
self.KERNELSZ**2,
|
|
1453
|
-
self.NORIENT,
|
|
1454
|
-
nside,
|
|
1455
|
-
),
|
|
1456
|
-
indice,
|
|
1457
|
-
)
|
|
1458
|
-
np.save(
|
|
1459
|
-
"%s/FOSCAT_%s_W%d_%d_%d_WAVE.npy"
|
|
1460
|
-
% (
|
|
1461
|
-
self.TEMPLATE_PATH,
|
|
1462
|
-
TMPFILE_VERSION,
|
|
1463
|
-
self.KERNELSZ**2,
|
|
1464
|
-
self.NORIENT,
|
|
1465
|
-
nside,
|
|
1466
|
-
),
|
|
1467
|
-
wav,
|
|
1468
|
-
)
|
|
1469
|
-
np.save(
|
|
1470
|
-
"%s/FOSCAT_%s_W%d_%d_%d_PIDX2.npy"
|
|
1471
|
-
% (
|
|
1472
|
-
self.TEMPLATE_PATH,
|
|
1473
|
-
TMPFILE_VERSION,
|
|
1474
|
-
self.KERNELSZ**2,
|
|
1475
|
-
self.NORIENT,
|
|
1476
|
-
nside,
|
|
1477
|
-
),
|
|
1478
|
-
indice2,
|
|
1479
|
-
)
|
|
1480
|
-
np.save(
|
|
1481
|
-
"%s/FOSCAT_%s_W%d_%d_%d_SMOO.npy"
|
|
1482
|
-
% (
|
|
1483
|
-
self.TEMPLATE_PATH,
|
|
1484
|
-
TMPFILE_VERSION,
|
|
1485
|
-
self.KERNELSZ**2,
|
|
1486
|
-
self.NORIENT,
|
|
1487
|
-
nside,
|
|
1488
|
-
),
|
|
1489
|
-
wwav,
|
|
1490
|
-
)
|
|
1491
1462
|
if self.use_2D:
|
|
1492
1463
|
if l_kernel**2 == 9:
|
|
1493
1464
|
if self.rank == 0:
|
|
@@ -1508,58 +1479,68 @@ class FoCUS:
|
|
|
1508
1479
|
self.barrier()
|
|
1509
1480
|
if self.use_2D:
|
|
1510
1481
|
tmp = np.load(
|
|
1511
|
-
"%s/W%d_%s_%d_IDX.npy"
|
|
1512
|
-
% (
|
|
1482
|
+
"%s/W%d_%s_%d_IDX-SPIN%d.npy"
|
|
1483
|
+
% (
|
|
1484
|
+
self.TEMPLATE_PATH,
|
|
1485
|
+
l_kernel**2,
|
|
1486
|
+
TMPFILE_VERSION,
|
|
1487
|
+
nside,
|
|
1488
|
+
spin)
|
|
1513
1489
|
)
|
|
1514
1490
|
else:
|
|
1515
1491
|
tmp = np.load(
|
|
1516
|
-
"%s/FOSCAT_%s_W%d_%d_%d_PIDX.npy"
|
|
1492
|
+
"%s/FOSCAT_%s_W%d_%d_%d_PIDX-SPIN%d.npy"
|
|
1517
1493
|
% (
|
|
1518
1494
|
self.TEMPLATE_PATH,
|
|
1519
1495
|
TMPFILE_VERSION,
|
|
1520
1496
|
self.KERNELSZ**2,
|
|
1521
1497
|
self.NORIENT,
|
|
1522
1498
|
nside,
|
|
1499
|
+
spin,
|
|
1523
1500
|
)
|
|
1524
1501
|
)
|
|
1525
1502
|
tmp2 = np.load(
|
|
1526
|
-
"%s/FOSCAT_%s_W%d_%d_%d_PIDX2.npy"
|
|
1503
|
+
"%s/FOSCAT_%s_W%d_%d_%d_PIDX2-SPIN%d.npy"
|
|
1527
1504
|
% (
|
|
1528
1505
|
self.TEMPLATE_PATH,
|
|
1529
1506
|
TMPFILE_VERSION,
|
|
1530
1507
|
self.KERNELSZ**2,
|
|
1531
1508
|
self.NORIENT,
|
|
1532
1509
|
nside,
|
|
1510
|
+
spin,
|
|
1533
1511
|
)
|
|
1534
1512
|
)
|
|
1535
1513
|
wr = np.load(
|
|
1536
|
-
"%s/FOSCAT_%s_W%d_%d_%d_WAVE.npy"
|
|
1514
|
+
"%s/FOSCAT_%s_W%d_%d_%d_WAVE-SPIN%d.npy"
|
|
1537
1515
|
% (
|
|
1538
1516
|
self.TEMPLATE_PATH,
|
|
1539
1517
|
TMPFILE_VERSION,
|
|
1540
1518
|
self.KERNELSZ**2,
|
|
1541
1519
|
self.NORIENT,
|
|
1542
1520
|
nside,
|
|
1521
|
+
spin,
|
|
1543
1522
|
)
|
|
1544
1523
|
).real
|
|
1545
1524
|
wi = np.load(
|
|
1546
|
-
"%s/FOSCAT_%s_W%d_%d_%d_WAVE.npy"
|
|
1525
|
+
"%s/FOSCAT_%s_W%d_%d_%d_WAVE-SPIN%d.npy"
|
|
1547
1526
|
% (
|
|
1548
1527
|
self.TEMPLATE_PATH,
|
|
1549
1528
|
TMPFILE_VERSION,
|
|
1550
1529
|
self.KERNELSZ**2,
|
|
1551
1530
|
self.NORIENT,
|
|
1552
1531
|
nside,
|
|
1532
|
+
spin,
|
|
1553
1533
|
)
|
|
1554
1534
|
).imag
|
|
1555
1535
|
ws = self.slope * np.load(
|
|
1556
|
-
"%s/FOSCAT_%s_W%d_%d_%d_SMOO.npy"
|
|
1536
|
+
"%s/FOSCAT_%s_W%d_%d_%d_SMOO-SPIN%d.npy"
|
|
1557
1537
|
% (
|
|
1558
1538
|
self.TEMPLATE_PATH,
|
|
1559
1539
|
TMPFILE_VERSION,
|
|
1560
1540
|
self.KERNELSZ**2,
|
|
1561
1541
|
self.NORIENT,
|
|
1562
1542
|
nside,
|
|
1543
|
+
spin,
|
|
1563
1544
|
)
|
|
1564
1545
|
)
|
|
1565
1546
|
else:
|
|
@@ -1569,21 +1550,38 @@ class FoCUS:
|
|
|
1569
1550
|
wi = wav.imag
|
|
1570
1551
|
ws = self.slope * wwav
|
|
1571
1552
|
|
|
1572
|
-
|
|
1573
|
-
self.backend.
|
|
1574
|
-
|
|
1575
|
-
|
|
1576
|
-
|
|
1577
|
-
|
|
1578
|
-
self.backend.
|
|
1579
|
-
|
|
1580
|
-
|
|
1581
|
-
|
|
1582
|
-
|
|
1583
|
-
self.backend.
|
|
1584
|
-
|
|
1585
|
-
|
|
1586
|
-
|
|
1553
|
+
if spin==0:
|
|
1554
|
+
wr = self.backend.bk_SparseTensor(
|
|
1555
|
+
self.backend.bk_constant(tmp),
|
|
1556
|
+
self.backend.bk_constant(self.backend.bk_cast(wr)),
|
|
1557
|
+
dense_shape=[ncell, self.NORIENT * ncell],
|
|
1558
|
+
)
|
|
1559
|
+
wi = self.backend.bk_SparseTensor(
|
|
1560
|
+
self.backend.bk_constant(tmp),
|
|
1561
|
+
self.backend.bk_constant(self.backend.bk_cast(wi)),
|
|
1562
|
+
dense_shape=[ncell, self.NORIENT * ncell],
|
|
1563
|
+
)
|
|
1564
|
+
ws = self.backend.bk_SparseTensor(
|
|
1565
|
+
self.backend.bk_constant(tmp2),
|
|
1566
|
+
self.backend.bk_constant(self.backend.bk_cast(ws)),
|
|
1567
|
+
dense_shape=[ncell, ncell],
|
|
1568
|
+
)
|
|
1569
|
+
else:
|
|
1570
|
+
wr = self.backend.bk_SparseTensor(
|
|
1571
|
+
self.backend.bk_constant(tmp),
|
|
1572
|
+
self.backend.bk_constant(self.backend.bk_cast(wr)),
|
|
1573
|
+
dense_shape=[2*ncell, 2*self.NORIENT * ncell],
|
|
1574
|
+
)
|
|
1575
|
+
wi = self.backend.bk_SparseTensor(
|
|
1576
|
+
self.backend.bk_constant(tmp),
|
|
1577
|
+
self.backend.bk_constant(self.backend.bk_cast(wi)),
|
|
1578
|
+
dense_shape=[2*ncell, 2*self.NORIENT * ncell],
|
|
1579
|
+
)
|
|
1580
|
+
ws = self.backend.bk_SparseTensor(
|
|
1581
|
+
self.backend.bk_constant(tmp2),
|
|
1582
|
+
self.backend.bk_constant(self.backend.bk_cast(ws)),
|
|
1583
|
+
dense_shape=[2*ncell, 2*ncell],
|
|
1584
|
+
)
|
|
1587
1585
|
|
|
1588
1586
|
if kernel == -1:
|
|
1589
1587
|
self.Idx_Neighbours[nside] = tmp
|
|
@@ -1840,10 +1838,10 @@ class FoCUS:
|
|
|
1840
1838
|
return self.backend.bk_transpose(x, thelist)
|
|
1841
1839
|
|
|
1842
1840
|
# ---------------------------------------------−---------
|
|
1843
|
-
# Mean using mask x [
|
|
1841
|
+
# Mean using mask x [n_b,....,Npix], mask[Nmask,Npix] to [n_b,Nmask,....]
|
|
1844
1842
|
# if use_2D
|
|
1845
|
-
# Mean using mask x [
|
|
1846
|
-
def masked_mean(self, x, mask,
|
|
1843
|
+
# Mean using mask x [n_b,....,N_1,N_2], mask[Nmask,N_1,N_2] to [n_b,Nmask,....]
|
|
1844
|
+
def masked_mean(self, x, mask, rank=0, calc_var=False):
|
|
1847
1845
|
|
|
1848
1846
|
# ==========================================================================
|
|
1849
1847
|
# in input data=[Nbatch,...,NORIENT[,NORIENT],X[,Y]]
|
|
@@ -1855,7 +1853,7 @@ class FoCUS:
|
|
|
1855
1853
|
shape = list(x.shape)
|
|
1856
1854
|
|
|
1857
1855
|
if not self.use_2D and not self.use_1D:
|
|
1858
|
-
nside = int(np.sqrt(x.shape[
|
|
1856
|
+
nside = int(np.sqrt(x.shape[-1] // 12))
|
|
1859
1857
|
|
|
1860
1858
|
l_mask = mask
|
|
1861
1859
|
if self.mask_norm:
|
|
@@ -1949,16 +1947,24 @@ class FoCUS:
|
|
|
1949
1947
|
l_x = self.backend.bk_reshape(
|
|
1950
1948
|
l_x[:, :, self.KERNELSZ // 2 : -self.KERNELSZ // 2 + 1, :], oshape
|
|
1951
1949
|
)
|
|
1952
|
-
else:
|
|
1950
|
+
else:
|
|
1953
1951
|
ichannel = 1
|
|
1954
|
-
|
|
1955
|
-
ichannel
|
|
1952
|
+
if len(shape)>1:
|
|
1953
|
+
ichannel = shape[0]
|
|
1954
|
+
|
|
1955
|
+
ochannel = 1
|
|
1956
|
+
for i in range(1,len(shape)-1):
|
|
1957
|
+
ochannel *= shape[i]
|
|
1956
1958
|
|
|
1957
|
-
l_x = self.backend.bk_reshape(x, [ichannel,
|
|
1959
|
+
l_x = self.backend.bk_reshape(x, [ichannel,1,ochannel,shape[-1]])
|
|
1958
1960
|
|
|
1959
|
-
# data=[Nbatch,...,NORIENT[,NORIENT],X[,Y]] => data=[Nbatch,
|
|
1961
|
+
# data=[Nbatch,...,NORIENT[,NORIENT],X[,Y]] => data=[Nbatch,...,1,NORIENT[,NORIENT],X[,Y]]
|
|
1960
1962
|
# mask=[Nmask,X[,Y]] => mask=[1,Nmask,....,X[,Y]]
|
|
1961
|
-
|
|
1963
|
+
|
|
1964
|
+
if self.use_2D:
|
|
1965
|
+
l_mask = self.backend.bk_expand_dims(self.backend.bk_expand_dims(l_mask,0),-3)
|
|
1966
|
+
else:
|
|
1967
|
+
l_mask = self.backend.bk_expand_dims(self.backend.bk_expand_dims(l_mask,0),-2)
|
|
1962
1968
|
|
|
1963
1969
|
if l_x.dtype == self.all_cbk_type:
|
|
1964
1970
|
l_mask = self.backend.bk_complex(l_mask, self.backend.bk_cast(0.0 * l_mask))
|
|
@@ -1989,6 +1995,8 @@ class FoCUS:
|
|
|
1989
1995
|
|
|
1990
1996
|
if len(x.shape[axis:-2]) > 0:
|
|
1991
1997
|
oshape = oshape + list(x.shape[axis:-2])
|
|
1998
|
+
else:
|
|
1999
|
+
oshape = oshape + [1]
|
|
1992
2000
|
|
|
1993
2001
|
if calc_var:
|
|
1994
2002
|
if self.backend.bk_is_complex(vtmp):
|
|
@@ -2018,7 +2026,7 @@ class FoCUS:
|
|
|
2018
2026
|
elif self.use_1D:
|
|
2019
2027
|
mtmp = l_mask
|
|
2020
2028
|
vtmp = l_x
|
|
2021
|
-
v1 = self.backend.bk_reduce_sum(
|
|
2029
|
+
v1 = self.backend.bk_reduce_sum(l_mask[1,:,...,:] * vtmp, axis=-1)
|
|
2022
2030
|
v2 = self.backend.bk_reduce_sum(mtmp * vtmp * vtmp, axis=-1)
|
|
2023
2031
|
vh = self.backend.bk_reduce_sum(mtmp, axis=-1)
|
|
2024
2032
|
|
|
@@ -2027,6 +2035,8 @@ class FoCUS:
|
|
|
2027
2035
|
oshape = [x.shape[0]] + [mask.shape[0]]
|
|
2028
2036
|
if len(x.shape) > 1:
|
|
2029
2037
|
oshape = oshape + list(x.shape[1:-1])
|
|
2038
|
+
else:
|
|
2039
|
+
oshape = oshape + [1]
|
|
2030
2040
|
|
|
2031
2041
|
if calc_var:
|
|
2032
2042
|
if self.backend.bk_is_complex(vtmp):
|
|
@@ -2060,13 +2070,16 @@ class FoCUS:
|
|
|
2060
2070
|
res = v1 / vh
|
|
2061
2071
|
|
|
2062
2072
|
oshape = []
|
|
2063
|
-
if
|
|
2073
|
+
if len(shape) > 1:
|
|
2064
2074
|
oshape = [x.shape[0]]
|
|
2065
2075
|
else:
|
|
2066
2076
|
oshape = [1]
|
|
2077
|
+
|
|
2067
2078
|
oshape = oshape + [mask.shape[0]]
|
|
2068
|
-
if
|
|
2069
|
-
oshape = oshape +
|
|
2079
|
+
if len(shape) > 2:
|
|
2080
|
+
oshape = oshape + shape[1:-1]
|
|
2081
|
+
else:
|
|
2082
|
+
oshape = oshape + [1]
|
|
2070
2083
|
|
|
2071
2084
|
if calc_var:
|
|
2072
2085
|
if self.backend.bk_is_complex(l_x):
|
|
@@ -2220,7 +2233,7 @@ class FoCUS:
|
|
|
2220
2233
|
return self.backend.bk_reduce_sum(r)
|
|
2221
2234
|
|
|
2222
2235
|
# ---------------------------------------------−---------
|
|
2223
|
-
def convol(self, in_image, axis=0, cell_ids=None, nside=None):
|
|
2236
|
+
def convol(self, in_image, axis=0, cell_ids=None, nside=None, spin=0):
|
|
2224
2237
|
|
|
2225
2238
|
image = self.backend.bk_cast(in_image)
|
|
2226
2239
|
|
|
@@ -2283,77 +2296,37 @@ class FoCUS:
|
|
|
2283
2296
|
|
|
2284
2297
|
else:
|
|
2285
2298
|
ishape = list(image.shape)
|
|
2286
|
-
|
|
2287
|
-
|
|
2288
|
-
if cell_ids.shape[0] not in self.padding_conv:
|
|
2289
|
-
print(image.shape,cell_ids.shape)
|
|
2290
|
-
import healpix_convolution as hc
|
|
2291
|
-
from xdggs.healpix import HealpixInfo
|
|
2299
|
+
if nside is None:
|
|
2300
|
+
nside = int(np.sqrt(image.shape[-1] // 12))
|
|
2292
2301
|
|
|
2293
|
-
|
|
2294
|
-
|
|
2295
|
-
|
|
2302
|
+
if spin==0:
|
|
2303
|
+
if nside not in self.Idx_Neighbours:
|
|
2304
|
+
if self.InitWave is None:
|
|
2305
|
+
wr, wi, ws, widx = self.init_index(nside, cell_ids=cell_ids)
|
|
2306
|
+
else:
|
|
2307
|
+
wr, wi, ws, widx = self.InitWave(nside, cell_ids=cell_ids)
|
|
2296
2308
|
|
|
2297
|
-
|
|
2298
|
-
|
|
2299
|
-
|
|
2309
|
+
self.Idx_Neighbours[nside] = 1 # self.backend.bk_constant(tmp)
|
|
2310
|
+
self.ww_Real[nside] = wr
|
|
2311
|
+
self.ww_Imag[nside] = wi
|
|
2312
|
+
self.w_smooth[nside] = ws
|
|
2300
2313
|
|
|
2301
|
-
|
|
2302
|
-
|
|
2303
|
-
|
|
2304
|
-
|
|
2305
|
-
|
|
2306
|
-
|
|
2307
|
-
).to(image.device)
|
|
2308
|
-
self.kernelI_conv[(cell_ids.shape[0], k)] = kernelI.to(
|
|
2309
|
-
self.backend.all_bk_type
|
|
2310
|
-
).to(image.device)
|
|
2311
|
-
self.padding_conv[(cell_ids.shape[0], k)] = hc.pad(
|
|
2312
|
-
cell_ids,
|
|
2313
|
-
grid_info=grid_info,
|
|
2314
|
-
ring=5 // 2, # wavelet kernel_size=5 is hard coded
|
|
2315
|
-
mode="mean",
|
|
2316
|
-
constant_value=0,
|
|
2317
|
-
)
|
|
2318
|
-
|
|
2319
|
-
for k in range(self.NORIENT):
|
|
2320
|
-
|
|
2321
|
-
kernelR = self.kernelR_conv[(cell_ids.shape[0], k)]
|
|
2322
|
-
kernelI = self.kernelI_conv[(cell_ids.shape[0], k)]
|
|
2323
|
-
padding = self.padding_conv[(cell_ids.shape[0], k)]
|
|
2324
|
-
if len(ishape) == 2:
|
|
2325
|
-
for l in range(ishape[0]):
|
|
2326
|
-
padded_data = padding.apply(image[l], is_torch=True)
|
|
2327
|
-
res[l, :, k] = kernelR.matmul(
|
|
2328
|
-
padded_data
|
|
2329
|
-
) + 1j * kernelI.matmul(padded_data)
|
|
2314
|
+
l_ww_real = self.ww_Real[nside]
|
|
2315
|
+
l_ww_imag = self.ww_Imag[nside]
|
|
2316
|
+
else:
|
|
2317
|
+
if (spin,nside) not in self.Idx_Neighbours:
|
|
2318
|
+
if self.InitWave is None:
|
|
2319
|
+
wr, wi, ws, widx = self.init_index(nside, cell_ids=cell_ids,spin=spin)
|
|
2330
2320
|
else:
|
|
2331
|
-
|
|
2332
|
-
for k2 in range(ishape[2]):
|
|
2333
|
-
padded_data = padding.apply(
|
|
2334
|
-
image[l, :, k2], is_torch=True
|
|
2335
|
-
)
|
|
2336
|
-
res[l, :, k2, k] = kernelR.matmul(
|
|
2337
|
-
padded_data
|
|
2338
|
-
) + 1j * kernelI.matmul(padded_data)
|
|
2339
|
-
return res
|
|
2340
|
-
"""
|
|
2341
|
-
if nside is None:
|
|
2342
|
-
nside = int(np.sqrt(image.shape[-1] // 12))
|
|
2343
|
-
|
|
2344
|
-
if self.Idx_Neighbours[nside] is None:
|
|
2345
|
-
if self.InitWave is None:
|
|
2346
|
-
wr, wi, ws, widx = self.init_index(nside, cell_ids=cell_ids)
|
|
2347
|
-
else:
|
|
2348
|
-
wr, wi, ws, widx = self.InitWave(nside, cell_ids=cell_ids)
|
|
2321
|
+
wr, wi, ws, widx = self.InitWave(nside, cell_ids=cell_ids,spin=spin)
|
|
2349
2322
|
|
|
2350
|
-
|
|
2351
|
-
|
|
2352
|
-
|
|
2353
|
-
|
|
2323
|
+
self.Idx_Neighbours[(spin,nside)] = 1 # self.backend.bk_constant(tmp)
|
|
2324
|
+
self.ww_Real[(spin,nside)] = wr
|
|
2325
|
+
self.ww_Imag[(spin,nside)] = wi
|
|
2326
|
+
self.w_smooth[(spin,nside)] = ws
|
|
2354
2327
|
|
|
2355
|
-
|
|
2356
|
-
|
|
2328
|
+
l_ww_real = self.ww_Real[(spin,nside)]
|
|
2329
|
+
l_ww_imag = self.ww_Imag[(spin,nside)]
|
|
2357
2330
|
|
|
2358
2331
|
# always convolve the last dimension
|
|
2359
2332
|
|
|
@@ -2361,9 +2334,14 @@ class FoCUS:
|
|
|
2361
2334
|
if len(ishape) > 1:
|
|
2362
2335
|
for k in range(len(ishape) - 1):
|
|
2363
2336
|
ndata = ndata * ishape[k]
|
|
2364
|
-
|
|
2365
|
-
self.backend.
|
|
2366
|
-
|
|
2337
|
+
if spin>0:
|
|
2338
|
+
tim = self.backend.bk_reshape(
|
|
2339
|
+
self.backend.bk_cast(image), [ndata//2,2*ishape[-1]]
|
|
2340
|
+
)
|
|
2341
|
+
else:
|
|
2342
|
+
tim = self.backend.bk_reshape(
|
|
2343
|
+
self.backend.bk_cast(image), [ndata, ishape[-1]]
|
|
2344
|
+
)
|
|
2367
2345
|
|
|
2368
2346
|
if tim.dtype == self.all_cbk_type:
|
|
2369
2347
|
rr1 = self.backend.bk_reshape(
|
|
@@ -2405,17 +2383,27 @@ class FoCUS:
|
|
|
2405
2383
|
[ndata, self.NORIENT, ishape[-1]],
|
|
2406
2384
|
)
|
|
2407
2385
|
res = self.backend.bk_complex(rr, ii)
|
|
2408
|
-
|
|
2409
|
-
|
|
2410
|
-
|
|
2411
|
-
|
|
2386
|
+
|
|
2387
|
+
if spin==0:
|
|
2388
|
+
if len(ishape) > 1:
|
|
2389
|
+
return self.backend.bk_reshape(
|
|
2390
|
+
res, ishape[0:-1] + [self.NORIENT, ishape[-1]]
|
|
2391
|
+
)
|
|
2392
|
+
else:
|
|
2393
|
+
return self.backend.bk_reshape(res, [self.NORIENT, ishape[-1]])
|
|
2412
2394
|
else:
|
|
2413
|
-
|
|
2395
|
+
if len(ishape) > 2:
|
|
2396
|
+
return self.backend.bk_reshape(
|
|
2397
|
+
res, ishape[0:-2] + [2,self.NORIENT, ishape[-1]]
|
|
2398
|
+
)
|
|
2399
|
+
else:
|
|
2400
|
+
return self.backend.bk_reshape(res, [2,self.NORIENT, ishape[-1]])
|
|
2401
|
+
|
|
2414
2402
|
|
|
2415
2403
|
return res
|
|
2416
2404
|
|
|
2417
2405
|
# ---------------------------------------------−---------
|
|
2418
|
-
def smooth(self, in_image, axis=0, cell_ids=None, nside=None):
|
|
2406
|
+
def smooth(self, in_image, axis=0, cell_ids=None, nside=None, spin=0):
|
|
2419
2407
|
|
|
2420
2408
|
image = self.backend.bk_cast(in_image)
|
|
2421
2409
|
|
|
@@ -2475,64 +2463,35 @@ class FoCUS:
|
|
|
2475
2463
|
else:
|
|
2476
2464
|
|
|
2477
2465
|
ishape = list(image.shape)
|
|
2478
|
-
|
|
2479
|
-
if cell_ids is not None:
|
|
2480
|
-
if cell_ids.shape[0] not in self.padding_smooth:
|
|
2481
|
-
import healpix_convolution as hc
|
|
2482
|
-
from xdggs.healpix import HealpixInfo
|
|
2483
|
-
|
|
2484
|
-
grid_info = HealpixInfo(
|
|
2485
|
-
level=int(np.log(nside) / np.log(2)), indexing_scheme="nested"
|
|
2486
|
-
)
|
|
2487
|
-
|
|
2488
|
-
kernel = hc.kernels.wavelet_smooth_kernel(
|
|
2489
|
-
cell_ids, grid_info=grid_info, is_torch=True
|
|
2490
|
-
)
|
|
2491
|
-
|
|
2492
|
-
self.kernel_smooth[cell_ids.shape[0]] = kernel.to(
|
|
2493
|
-
self.backend.all_bk_type
|
|
2494
|
-
).to(image.device)
|
|
2495
|
-
|
|
2496
|
-
self.padding_smooth[cell_ids.shape[0]] = hc.pad(
|
|
2497
|
-
cell_ids,
|
|
2498
|
-
grid_info=grid_info,
|
|
2499
|
-
ring=5 // 2, # wavelet kernel_size=5 is hard coded
|
|
2500
|
-
mode="mean",
|
|
2501
|
-
constant_value=0,
|
|
2502
|
-
)
|
|
2503
|
-
|
|
2504
|
-
kernel = self.kernel_smooth[cell_ids.shape[0]]
|
|
2505
|
-
padding = self.padding_smooth[cell_ids.shape[0]]
|
|
2506
|
-
|
|
2507
|
-
res = self.backend.bk_zeros(ishape, dtype=self.backend.all_cbk_type)
|
|
2508
|
-
|
|
2509
|
-
if len(ishape) == 2:
|
|
2510
|
-
for l in range(ishape[0]):
|
|
2511
|
-
padded_data = padding.apply(image[l], is_torch=True)
|
|
2512
|
-
res[l] = kernel.matmul(padded_data)
|
|
2513
|
-
else:
|
|
2514
|
-
for l in range(ishape[0]):
|
|
2515
|
-
for k2 in range(ishape[2]):
|
|
2516
|
-
padded_data = padding.apply(image[l, :, k2], is_torch=True)
|
|
2517
|
-
res[l, :, k2] = kernel.matmul(padded_data)
|
|
2518
|
-
return res
|
|
2519
|
-
"""
|
|
2466
|
+
|
|
2520
2467
|
if nside is None:
|
|
2521
2468
|
nside = int(np.sqrt(image.shape[-1] // 12))
|
|
2522
2469
|
|
|
2523
|
-
if
|
|
2470
|
+
if spin==0:
|
|
2471
|
+
if nside not in self.Idx_Neighbours:
|
|
2472
|
+
if self.InitWave is None:
|
|
2473
|
+
wr, wi, ws, widx = self.init_index(nside, cell_ids=cell_ids)
|
|
2474
|
+
else:
|
|
2475
|
+
wr, wi, ws, widx = self.InitWave(nside, cell_ids=cell_ids)
|
|
2524
2476
|
|
|
2525
|
-
|
|
2526
|
-
|
|
2527
|
-
|
|
2528
|
-
|
|
2477
|
+
self.Idx_Neighbours[nside] = 1 # self.backend.bk_constant(tmp)
|
|
2478
|
+
self.ww_Real[nside] = wr
|
|
2479
|
+
self.ww_Imag[nside] = wi
|
|
2480
|
+
self.w_smooth[nside] = ws
|
|
2529
2481
|
|
|
2530
|
-
self.
|
|
2531
|
-
|
|
2532
|
-
|
|
2533
|
-
|
|
2482
|
+
l_w_smooth = self.w_smooth[nside]
|
|
2483
|
+
else:
|
|
2484
|
+
if (spin,nside) not in self.Idx_Neighbours:
|
|
2485
|
+
if self.InitWave is None:
|
|
2486
|
+
wr, wi, ws, widx = self.init_index(nside, cell_ids=cell_ids,spin=spin)
|
|
2487
|
+
else:
|
|
2488
|
+
wr, wi, ws, widx = self.InitWave(nside, cell_ids=cell_ids,spin=spin)
|
|
2534
2489
|
|
|
2535
|
-
|
|
2490
|
+
self.Idx_Neighbours[(spin,nside)] = 1 # self.backend.bk_constant(tmp)
|
|
2491
|
+
self.ww_Real[(spin,nside)] = wr
|
|
2492
|
+
self.ww_Imag[(spin,nside)] = wi
|
|
2493
|
+
self.w_smooth[(spin,nside)] = ws
|
|
2494
|
+
l_w_smooth = self.w_smooth[(spin,nside)]
|
|
2536
2495
|
|
|
2537
2496
|
odata = 1
|
|
2538
2497
|
for k in range(0, len(ishape) - 1):
|