foscat 2025.5.2__py3-none-any.whl → 2025.6.1__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
foscat/heal_NN.py ADDED
@@ -0,0 +1,432 @@
1
+ import pickle
2
+
3
+ import numpy as np
4
+
5
+ import foscat.scat_cov as sc
6
+
7
+ class CNN:
8
+
9
+ def __init__(
10
+ self,
11
+ nparam=1,
12
+ KERNELSZ=3,
13
+ NORIENT=4,
14
+ chanlist=[],
15
+ in_nside=1,
16
+ n_chan_in=1,
17
+ SEED=1234,
18
+ all_type='float32',
19
+ filename=None,
20
+ scat_operator=None,
21
+ BACKEND='tensorflow'
22
+ ):
23
+
24
+ if filename is not None:
25
+ outlist = pickle.load(open("%s.pkl" % (filename), "rb"))
26
+ self.scat_operator = sc.funct(KERNELSZ=outlist[3],
27
+ NORIENT= outlist[9],
28
+ all_type=outlist[7])
29
+ self.KERNELSZ = self.scat_operator.KERNELSZ
30
+ self.all_type = self.scat_operator.all_type
31
+ self.npar = outlist[2]
32
+ self.nscale = outlist[5]
33
+ self.chanlist = outlist[0]
34
+ self.in_nside = outlist[4]
35
+ self.nbatch = outlist[1]
36
+ self.n_chan_in = outlist[8]
37
+ self.NORIENT = outlist[9]
38
+ self.x = self.scat_operator.backend.bk_cast(outlist[6])
39
+ self.out_nside = self.in_nside // (2**(self.nscale+1))
40
+ else:
41
+ self.nscale = len(chanlist)-1
42
+ self.npar = nparam
43
+ self.n_chan_in = n_chan_in
44
+ if scat_operator is None:
45
+ self.scat_operator = sc.funct(
46
+ KERNELSZ=KERNELSZ,
47
+ NORIENT=NORIENT,
48
+ all_type=all_type)
49
+ else:
50
+ self.scat_operator = scat_operator
51
+
52
+ self.chanlist = chanlist
53
+ self.KERNELSZ = self.scat_operator.KERNELSZ
54
+ self.NORIENT = self.scat_operator.NORIENT
55
+ self.all_type = self.scat_operator.all_type
56
+ self.in_nside = in_nside
57
+ self.out_nside = self.in_nside // (2**(self.nscale+1))
58
+ self.backend = self.scat_operator.backend
59
+ np.random.seed(SEED)
60
+ self.x = self.scat_operator.backend.bk_cast(
61
+ np.random.rand(self.get_number_of_weights())
62
+ )
63
+ self.mpi_size = self.scat_operator.mpi_size
64
+ self.mpi_rank = self.scat_operator.mpi_rank
65
+ self.BACKEND = BACKEND
66
+ self.gpupos = self.scat_operator.gpupos
67
+ self.ngpu = self.scat_operator.ngpu
68
+ self.gpulist = self.scat_operator.gpulist
69
+
70
+ def save(self, filename):
71
+
72
+ outlist = [
73
+ self.chanlist,
74
+ self.nbatch,
75
+ self.npar,
76
+ self.KERNELSZ,
77
+ self.in_nside,
78
+ self.nscale,
79
+ self.get_weights().numpy(),
80
+ self.all_type,
81
+ self.n_chan_in,
82
+ self.NORIENT,
83
+ ]
84
+
85
+ myout = open("%s.pkl" % (filename), "wb")
86
+ pickle.dump(outlist, myout)
87
+ myout.close()
88
+
89
+ def get_number_of_weights(self):
90
+ totnchan = 0
91
+ for i in range(self.nscale):
92
+ totnchan = totnchan + self.chanlist[i] * self.chanlist[i + 1]
93
+ return (
94
+ self.npar * 12 * self.out_nside**2 * self.chanlist[self.nscale]*self.NORIENT
95
+ + totnchan * self.KERNELSZ * (self.KERNELSZ//2+1)*self.NORIENT*self.NORIENT
96
+ + self.KERNELSZ * (self.KERNELSZ//2+1) * self.n_chan_in * self.chanlist[0]*self.NORIENT
97
+ )
98
+
99
+ def set_weights(self, x):
100
+ self.x = x
101
+
102
+ def get_weights(self):
103
+ return self.x
104
+
105
+ def init_wave(self):
106
+ w0=np.zeros([self.n_chan_in, self.KERNELSZ * (self.KERNELSZ//2+1), self.chanlist[0], self.NORIENT])
107
+ if self.KERNELSZ==3:
108
+ w0[:,0]=-0.2
109
+ w0[:,1]=-0.5
110
+ w0[:,2]=-0.2
111
+ w0[:,3]=0.2
112
+ w0[:,4]=0.5
113
+ w0[:,5]=0.2
114
+ if self.KERNELSZ==5:
115
+ w0[:,0]=-0.1
116
+ w0[:,1]=-0.2
117
+ w0[:,2]=-0.5
118
+ w0[:,3]=-0.2
119
+ w0[:,4]=-0.1
120
+ w0[:,10]=0.1
121
+ w0[:,11]=0.2
122
+ w0[:,12]=0.5
123
+ w0[:,13]=0.2
124
+ w0[:,14]=0.1
125
+
126
+ a=2*np.sqrt(6/(12 * self.out_nside**2 * self.chanlist[self.nscale]*self.NORIENT*self.npar))
127
+ x=(np.random.rand(self.get_number_of_weights())-0.5)*a
128
+
129
+ w0=w0.flatten()
130
+ x[0:w0.shape[0]]=w0
131
+ nn = self.KERNELSZ * (self.KERNELSZ//2+1) * self.n_chan_in * self.chanlist[0]*self.NORIENT
132
+
133
+ for k in range(self.nscale):
134
+ ww = np.zeros([self.chanlist[k], self.NORIENT, self.KERNELSZ * (self.KERNELSZ//2+1), self.chanlist[k + 1], self.NORIENT])
135
+
136
+ if self.KERNELSZ==3:
137
+ ww[:,:,0]=-0.2
138
+ ww[:,:,1]=-0.5
139
+ ww[:,:,2]=-0.2
140
+ ww[:,:,3]=0.2
141
+ ww[:,:,4]=0.5
142
+ ww[:,:,5]=0.2
143
+ if self.KERNELSZ==5:
144
+ ww[:,:,0]=-0.1
145
+ ww[:,:,1]=-0.2
146
+ ww[:,:,2]=-0.5
147
+ ww[:,:,3]=-0.2
148
+ ww[:,:,4]=-0.1
149
+ ww[:,:,10]=0.1
150
+ ww[:,:,11]=0.2
151
+ ww[:,:,12]=0.5
152
+ ww[:,:,13]=0.2
153
+ ww[:,:,14]=0.1
154
+ x[nn : nn + self.KERNELSZ
155
+ * (self.KERNELSZ//2+1)
156
+ * self.NORIENT*self.NORIENT
157
+ * self.chanlist[k]
158
+ * self.chanlist[k + 1]
159
+ ]=ww.flatten()
160
+
161
+ nn = nn + (self.KERNELSZ * (self.KERNELSZ//2+1)
162
+ * self.NORIENT*self.NORIENT
163
+ * self.chanlist[k]
164
+ * self.chanlist[k + 1])
165
+
166
+ self.x = self.scat_operator.backend.bk_cast(x)
167
+
168
+ def calc_matrix_first_layer(self,noise_map):
169
+ # Décalage circulaire par matrice de permutation
170
+ def circ_shift_matrix(N,k):
171
+ return np.roll(np.eye(N), shift=-k, axis=1)
172
+
173
+ im=self.scat_operator.convol(noise_map)
174
+ mm=np.mean(abs(im.cpu().numpy()),0)
175
+ Norient=mm.shape[1]
176
+ xx=np.cos(np.arange(Norient)/Norient*2*np.pi)
177
+ yy=np.sin(np.arange(Norient)/Norient*2*np.pi)
178
+
179
+ a=np.sum(mm*xx[None,:,None],1)
180
+ b=np.sum(mm*yy[None,:,None],1)
181
+ o=np.fmod(Norient*np.arctan2(-b,a)/(2*np.pi)+Norient,Norient)
182
+ xx=np.arange(Norient)
183
+ alpha = o[:,None,:]-xx[None,:,None]
184
+ beta = np.fmod(1+o[:,None,:]-xx[None,:,None],Norient)
185
+ alpha=(1-alpha)*(alpha<1)*(alpha>0)+beta*(beta<1)*(beta>0)
186
+
187
+ m=np.zeros([mm.shape[0],4,4,mm.shape[2]])
188
+ for k in range(4):
189
+ m[:,k,:,:]=np.roll(alpha,k,1)
190
+ m=np.mean(m,0)
191
+ return self.scat_operator.backend.bk_cast(m[None,None,...])
192
+
193
+ def eval(self, im,
194
+ indices=None,
195
+ weights=None,
196
+ out_map=False,
197
+ first_layer_rot=None,
198
+ activation='relu'):
199
+
200
+ x = self.x
201
+ ww = self.backend.bk_reshape(
202
+ x[0 : self.KERNELSZ * (self.KERNELSZ//2+1) * self.n_chan_in * self.chanlist[0]*self.NORIENT],
203
+ [self.n_chan_in, 1 , self.KERNELSZ * (self.KERNELSZ//2+1), self.chanlist[0], self.NORIENT],
204
+ )
205
+ nn = self.KERNELSZ * (self.KERNELSZ//2+1) * self.n_chan_in * self.chanlist[0]*self.NORIENT
206
+
207
+ im = self.scat_operator.healpix_layer(im[:,:,None,:], ww)
208
+
209
+ if first_layer_rot is not None:
210
+ im = self.backend.bk_reshape(im,[im.shape[0],im.shape[1],self.NORIENT,1,im.shape[3]])
211
+ im = self.backend.bk_reduce_sum(im*first_layer_rot,2)
212
+
213
+ if out_map:
214
+ return im
215
+
216
+ if activation=='relu':
217
+ im = self.backend.bk_relu(im)
218
+ elif activation=='abs':
219
+ im = self.backend.bk_abs(im)
220
+
221
+ im = self.backend.bk_reduce_sum(self.backend.bk_reshape(im,[im.shape[0],im.shape[1],self.NORIENT,im.shape[3]//4,4]),4)
222
+
223
+ for k in range(self.nscale):
224
+ ww = self.scat_operator.backend.bk_reshape(
225
+ x[
226
+ nn : nn
227
+ + self.KERNELSZ
228
+ * (self.KERNELSZ//2+1)
229
+ * self.NORIENT*self.NORIENT
230
+ * self.chanlist[k]
231
+ * self.chanlist[k + 1]
232
+ ],
233
+ [self.chanlist[k], self.NORIENT, self.KERNELSZ * (self.KERNELSZ//2+1), self.chanlist[k + 1], self.NORIENT],
234
+ )
235
+ nn = (
236
+ nn
237
+ + self.KERNELSZ
238
+ * (self.KERNELSZ//2+1)
239
+ * self.NORIENT*self.NORIENT
240
+ * self.chanlist[k]
241
+ * self.chanlist[k + 1]
242
+ )
243
+ if indices is None:
244
+ im = self.scat_operator.healpix_layer(im, ww)
245
+ else:
246
+ im = self.scat_operator.healpix_layer(
247
+ im, ww, indices=indices[k], weights=weights[k]
248
+ )
249
+
250
+ if activation=='relu':
251
+ im = self.backend.bk_relu(im)
252
+ elif activation=='abs':
253
+ im = self.backend.bk_abs(im)
254
+ im = self.backend.bk_reduce_sum(self.backend.bk_reshape(im,[im.shape[0],im.shape[1],self.NORIENT,im.shape[3]//4,4]),4)
255
+
256
+ ww = self.scat_operator.backend.bk_reshape(
257
+ x[
258
+ nn : nn
259
+ + self.npar * 12 * self.out_nside**2 * self.chanlist[self.nscale]*self.NORIENT
260
+ ],
261
+ [12 * self.out_nside**2 * self.chanlist[self.nscale]*self.NORIENT, self.npar],
262
+ )
263
+
264
+ im = self.scat_operator.backend.bk_matmul(
265
+ self.scat_operator.backend.bk_reshape(
266
+ im, [im.shape[0], im.shape[1] * im.shape[2] * im.shape[3]]
267
+ ),
268
+ ww,
269
+ )
270
+ #im = self.scat_operator.backend.bk_reshape(im, [self.npar])
271
+ #im = self.scat_operator.backend.bk_relu(im)
272
+ return im
273
+
274
+ class GCNN:
275
+
276
+ def __init__(
277
+ self,
278
+ nparam=1,
279
+ KERNELSZ=3,
280
+ NORIENT=4,
281
+ chanlist=[],
282
+ in_nside=1,
283
+ out_chan=1,
284
+ SEED=1234,
285
+ all_type='float32',
286
+ filename=None,
287
+ scat_operator=None,
288
+ BACKEND='tensorflow'
289
+ ):
290
+
291
+ if filename is not None:
292
+ outlist = pickle.load(open("%s.pkl" % (filename), "rb"))
293
+ self.scat_operator = sc.funct(KERNELSZ=outlist[3],NORIENT=outlist[8], all_type=outlist[7])
294
+ self.KERNELSZ = self.scat_operator.KERNELSZ
295
+ self.all_type = self.scat_operator.all_type
296
+ self.npar = outlist[2]
297
+ self.nscale = outlist[5]
298
+ self.chanlist = outlist[0]
299
+ self.in_nside = outlist[4]
300
+ self.nbatch = outlist[1]
301
+ self.NORIENT = outlist[8]
302
+ self.out_chan = outlist[9]
303
+ self.x = self.scat_operator.backend.bk_cast(outlist[6])
304
+ self.out_nside = self.in_nside // (2**self.nscale)
305
+ else:
306
+ self.nscale = len(chanlist)-1
307
+ self.npar = nparam
308
+
309
+ if scat_operator is None:
310
+ self.scat_operator = sc.funct(
311
+ KERNELSZ=KERNELSZ,
312
+ NORIENT=NORIENT,
313
+ all_type=all_type)
314
+ else:
315
+ self.scat_operator = scat_operator
316
+
317
+ self.chanlist = chanlist
318
+ self.KERNELSZ = self.scat_operator.KERNELSZ
319
+ self.NORIENT = self.scat_operator.NORIENT
320
+ self.all_type = self.scat_operator.all_type
321
+ self.in_nside = in_nside
322
+ self.out_nside = self.in_nside * (2**self.nscale)
323
+ self.out_chan = out_chan
324
+ self.backend = self.scat_operator.backend
325
+ np.random.seed(SEED)
326
+ self.x = self.scat_operator.backend.bk_cast(
327
+ np.random.rand(self.get_number_of_weights())
328
+ )
329
+ self.mpi_size = self.scat_operator.mpi_size
330
+ self.mpi_rank = self.scat_operator.mpi_rank
331
+ self.BACKEND = BACKEND
332
+ self.gpupos = self.scat_operator.gpupos
333
+ self.ngpu = self.scat_operator.ngpu
334
+ self.gpulist = self.scat_operator.gpulist
335
+
336
+ def save(self, filename):
337
+
338
+ outlist = [
339
+ self.chanlist,
340
+ self.nbatch,
341
+ self.npar,
342
+ self.KERNELSZ,
343
+ self.in_nside,
344
+ self.nscale,
345
+ self.get_weights().numpy(),
346
+ self.all_type,
347
+ self.NORIENT,
348
+ self.out_chan
349
+ ]
350
+
351
+ myout = open("%s.pkl" % (filename), "wb")
352
+ pickle.dump(outlist, myout)
353
+ myout.close()
354
+
355
+ def get_number_of_weights(self):
356
+ totnchan = 0
357
+ for i in range(self.nscale):
358
+ totnchan = totnchan + self.chanlist[i] * self.chanlist[i + 1]
359
+ return (
360
+ self.npar * 12 * self.in_nside**2 * self.chanlist[0]*self.NORIENT
361
+ + totnchan * self.KERNELSZ * (self.KERNELSZ//2+1)*self.NORIENT*self.NORIENT
362
+ + self.chanlist[-1]*self.out_chan*self.NORIENT
363
+ )
364
+
365
+ def set_weights(self, x):
366
+ self.x = x
367
+
368
+ def get_weights(self):
369
+ return self.x
370
+
371
+ def eval(self, im, indices=None, weights=None):
372
+
373
+ x = self.x
374
+
375
+ ww = self.backend.bk_reshape(
376
+ x[0:self.npar * 12 * self.in_nside**2 * self.chanlist[0]*self.NORIENT],
377
+ [self.npar,12 * self.in_nside**2 * self.chanlist[0]*self.NORIENT],
378
+ )
379
+
380
+ im = self.scat_operator.backend.bk_matmul(im,ww)
381
+
382
+ im = self.backend.bk_reshape(im,[im.shape[0],self.chanlist[0],self.NORIENT,12 * self.in_nside**2])
383
+
384
+ nn = self.npar * 12 * self.in_nside**2 * self.chanlist[0]
385
+
386
+ for k in range(self.nscale):
387
+
388
+ im = self.scat_operator.backend.bk_relu(im)
389
+
390
+ im = self.backend.bk_reshape(
391
+ self.scat_operator.backend.bk_repeat(im,4,axis=-1),
392
+ [im.shape[0],im.shape[1],self.NORIENT,im.shape[3]*4])
393
+
394
+ ww = self.scat_operator.backend.bk_reshape(
395
+ x[
396
+ nn : nn
397
+ + self.KERNELSZ
398
+ * (self.KERNELSZ//2+1)
399
+ * self.NORIENT *self.NORIENT
400
+ * self.chanlist[k]
401
+ * self.chanlist[k + 1]
402
+ ],
403
+ [self.chanlist[k] , self.NORIENT, self.KERNELSZ * (self.KERNELSZ//2+1), self.chanlist[k + 1],self.NORIENT],
404
+ )
405
+ nn = (
406
+ nn
407
+ + self.KERNELSZ
408
+ * (self.KERNELSZ//2+1)
409
+ * self.NORIENT *self.NORIENT
410
+ * self.chanlist[k]
411
+ * self.chanlist[k + 1]
412
+ )
413
+
414
+ if indices is None:
415
+ im = self.scat_operator.healpix_layer(im, ww)
416
+ else:
417
+ im = self.scat_operator.healpix_layer(
418
+ im, ww, indices=indices[k], weights=weights[k]
419
+ )
420
+
421
+ ww = self.scat_operator.backend.bk_reshape(
422
+ x[
423
+ nn : nn
424
+ + self.chanlist[-1]*self.NORIENT
425
+ * self.out_chan
426
+ ],
427
+ [1,self.chanlist[-1],self.NORIENT, self.out_chan, 1],
428
+ )
429
+ im = self.backend.bk_reduce_mean(im[:,:,:,None]*ww,[1,2])
430
+ #im = self.scat_operator.backend.bk_relu(im)
431
+
432
+ return im
foscat/scat_cov.py CHANGED
@@ -6079,7 +6079,38 @@ class funct(FOC.FoCUS):
6079
6079
  return scat_cov(
6080
6080
  s0, s2, s3, s4, s1=s1, s3p=s3p, backend=self.backend, use_1D=self.use_1D
6081
6081
  )
6082
-
6082
+ def calc_matrix_orientation(self,noise_map,image2=None):
6083
+ # Décalage circulaire par matrice de permutation
6084
+ def circ_shift_matrix(N,k):
6085
+ return np.roll(np.eye(N), shift=-k, axis=1)
6086
+ Norient = self.NORIENT
6087
+ im=self.convol(noise_map)
6088
+ if image2 is None:
6089
+ mm=np.mean(abs(self.backend.to_numpy(im)),0)
6090
+ else:
6091
+ im2=self.convol(self.backend.bk_cast(image2))
6092
+ mm=np.mean(self.backend.to_numpy(
6093
+ self.backend.bk_L1(im*self.backend.bk_conjugate(im2))).real,0)
6094
+
6095
+ Norient=mm.shape[0]
6096
+ xx=np.cos(np.arange(Norient)/Norient*2*np.pi)
6097
+ yy=np.sin(np.arange(Norient)/Norient*2*np.pi)
6098
+
6099
+ a=np.sum(mm*xx[:,None],0)
6100
+ b=np.sum(mm*yy[:,None],0)
6101
+
6102
+ o=np.fmod(Norient*np.arctan2(-b,a)/(2*np.pi)+Norient,Norient)
6103
+ xx=np.arange(Norient)
6104
+ alpha = o[None,:]-xx[:,None]
6105
+ beta = np.fmod(1+o[None,:]-xx[:,None],Norient)
6106
+ alpha=(1-alpha)*(alpha<1)*(alpha>0)+beta*(beta<1)*(beta>0)
6107
+
6108
+ m=np.zeros([Norient,Norient,mm.shape[1]])
6109
+ for k in range(Norient):
6110
+ m[k,:,:]=np.roll(alpha,k,0)
6111
+ #m=np.mean(m,0)
6112
+ return self.backend.bk_cast(m)
6113
+
6083
6114
  def synthesis(
6084
6115
  self,
6085
6116
  image_target,
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.4
2
2
  Name: foscat
3
- Version: 2025.5.2
3
+ Version: 2025.6.1
4
4
  Summary: Generate synthetic Healpix or 2D data using Cross Scattering Transform
5
5
  Author-email: Jean-Marc DELOUIS <jean.marc.delouis@ifremer.fr>
6
6
  Maintainer-email: Theo Foulquier <theo.foulquier@ifremer.fr>
@@ -1,30 +1,31 @@
1
1
  foscat/BkBase.py,sha256=TEhfqUpIOh_bGBCyQfRCs0yjKdhgELjFpvq_QiouX5A,21514
2
2
  foscat/BkNumpy.py,sha256=zRldS_-L6A7y1zDzEPZXQntuw3Paw2zHZowhD43FHRs,10589
3
3
  foscat/BkTensorflow.py,sha256=K2s3xYVMHqLlTyApQpeKf9dc3hbRv8EqtCA_gE1bRQA,19958
4
- foscat/BkTorch.py,sha256=7TwJxSw_XGyJyvombHrfsT7LFm4RNHt1sDQD53Fbll0,18105
5
- foscat/CNN.py,sha256=j0F2a4Xf3LijhyD_WVZ6Eg_IjGuXw3ddH6Iudj1xVaw,4874
4
+ foscat/BkTorch.py,sha256=OUpa1ajRFxes9v_T6jK0gLlJXzn_DhQ3rlrf-yTSFcY,18126
5
+ foscat/CNN.py,sha256=gQ9V76wmcowo2BaNp5sJYcSDCVOjc18TS9cE6-qEUso,5153
6
6
  foscat/CircSpline.py,sha256=CXi49FxF8ZoeZ17Ua8c1AZXe2B5ICEC9aCXb97atB3s,4028
7
- foscat/FoCUS.py,sha256=kKjuLvdCrR8VHjnxzdgYSCpe8LnNlHaDOV6Riu8UEO4,95289
8
- foscat/GCNN.py,sha256=5RV-FKuvqbD-k99TwiM4CttM2LMZE21WD0IK0j5Mkko,7599
9
- foscat/Softmax.py,sha256=aBLQauoG0q2SJYPotV6U-cxAhsJcspWHNRWdnA_nAiQ,2854
7
+ foscat/FoCUS.py,sha256=Ke_h6g4Fqn62OpCkVxfr5zIDnT5hd-b1vvkm9aB3LhY,97364
8
+ foscat/GCNN.py,sha256=q7yWHCMJpP7-m3WvR3OQnp5taeYWaMxIY2hQ6SIb9gs,4487
9
+ foscat/Softmax.py,sha256=UDZGrTroYtmGEyokGUVpwNO_cgbICi9QVuRr8Yx52_k,2917
10
10
  foscat/Spline1D.py,sha256=rKzzenduaZZ-yBDJd35it6Gyrj1spqb7hoIaUgISPzY,2983
11
11
  foscat/Synthesis.py,sha256=tC5hvpam19QwDdvghVax7dA7gMgKA6ZtxQEcV9HjdC0,13824
12
12
  foscat/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
13
- foscat/alm.py,sha256=qZlsYj5HzV1EY9Fdzt0U8bemrZHZziaMOKZ55FU8foM,33806
13
+ foscat/alm.py,sha256=XkK4rFVRoO-oJpr74iBffKt7hdS_iJkR016IlYm10gQ,33832
14
14
  foscat/backend.py,sha256=l3aMwDyXP6jURMIvratFMGWCTcQpaR68KnUuuGDezqE,45418
15
15
  foscat/backend_tens.py,sha256=9Dp136m9frkclkwifJQLLbIpl3ETI3_txdPUZcKfuMw,1618
16
+ foscat/heal_NN.py,sha256=BXAqBEftvxVNOEtwo6xid6gFLrve8I-9jPQ1xI0HTl0,15648
16
17
  foscat/loss_backend_tens.py,sha256=dCOVN6faDtIpN3VO78HTmYP2i5fnFAf-Ddy5qVBlGrM,1783
17
18
  foscat/loss_backend_torch.py,sha256=k3z18Dj3SaLKK6ZIKcm7GO4U_YKYVP6LtHG1aIbxkYk,1627
18
19
  foscat/scat.py,sha256=qGYiBIysPt65MdmF07WWA4piVlTfA9-lFDTaicnqC2w,72822
19
20
  foscat/scat1D.py,sha256=W5Uu6wdQ4ZsFKXpof0f1OBl-1wjJmW7ruvddRWxe7uM,53726
20
21
  foscat/scat2D.py,sha256=boKj0ASqMMSy7uQLK6hPniG87m3hZGJBYBiq5v8F9IQ,532
21
- foscat/scat_cov.py,sha256=tpuYqyPwYdG8vjm4uwYUjajeHzxYwCto-Bky475oPXA,259203
22
+ foscat/scat_cov.py,sha256=bdlaDoMmIDHMAQ7ZdkbtrIKr4Y-3w2xWO9e2_ZTeelk,260445
22
23
  foscat/scat_cov1D.py,sha256=XOxsZZ5TYq8f34i2tUgIfzyaqaTDlICB3HzD2l_puro,531
23
24
  foscat/scat_cov2D.py,sha256=pAm0fKw8wyXram0TFbtw8tGcc8QPKuPXpQk0kh10r4U,7078
24
25
  foscat/scat_cov_map.py,sha256=9MzpwT2g9S3dmnjHEMK7PPLQ27oGQg2VFVsP_TDUU5E,2869
25
26
  foscat/scat_cov_map2D.py,sha256=1dS4P1KHqZYkYCLA1sYpPSZulJrCTd_2eL8HFOjlcz4,2841
26
- foscat-2025.5.2.dist-info/licenses/LICENSE,sha256=i0ukIr8ZUpkSY2sZaE9XZK-6vuSU5iG6IgX_3pjatP8,1505
27
- foscat-2025.5.2.dist-info/METADATA,sha256=sbR5VT1kq7d1qrLd74c-CdprtKhpkC6eHQ1nE24nqtI,7215
28
- foscat-2025.5.2.dist-info/WHEEL,sha256=_zCd3N1l69ArxyTb8rzEoP9TpbYXkqRFSNOD5OuxnTs,91
29
- foscat-2025.5.2.dist-info/top_level.txt,sha256=AGySXBBAlJgb8Tj8af6m_F-aiNg2zNTcybCUPVOKjAg,7
30
- foscat-2025.5.2.dist-info/RECORD,,
27
+ foscat-2025.6.1.dist-info/licenses/LICENSE,sha256=i0ukIr8ZUpkSY2sZaE9XZK-6vuSU5iG6IgX_3pjatP8,1505
28
+ foscat-2025.6.1.dist-info/METADATA,sha256=0l5yu57MiVAHs7Q_Ar1I0CsksYBclfPs4Uq5me-4BnI,7215
29
+ foscat-2025.6.1.dist-info/WHEEL,sha256=_zCd3N1l69ArxyTb8rzEoP9TpbYXkqRFSNOD5OuxnTs,91
30
+ foscat-2025.6.1.dist-info/top_level.txt,sha256=AGySXBBAlJgb8Tj8af6m_F-aiNg2zNTcybCUPVOKjAg,7
31
+ foscat-2025.6.1.dist-info/RECORD,,