foscat 2025.5.0__py3-none-any.whl → 2025.6.1__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
foscat/heal_NN.py ADDED
@@ -0,0 +1,432 @@
1
+ import pickle
2
+
3
+ import numpy as np
4
+
5
+ import foscat.scat_cov as sc
6
+
7
+ class CNN:
8
+
9
+ def __init__(
10
+ self,
11
+ nparam=1,
12
+ KERNELSZ=3,
13
+ NORIENT=4,
14
+ chanlist=[],
15
+ in_nside=1,
16
+ n_chan_in=1,
17
+ SEED=1234,
18
+ all_type='float32',
19
+ filename=None,
20
+ scat_operator=None,
21
+ BACKEND='tensorflow'
22
+ ):
23
+
24
+ if filename is not None:
25
+ outlist = pickle.load(open("%s.pkl" % (filename), "rb"))
26
+ self.scat_operator = sc.funct(KERNELSZ=outlist[3],
27
+ NORIENT= outlist[9],
28
+ all_type=outlist[7])
29
+ self.KERNELSZ = self.scat_operator.KERNELSZ
30
+ self.all_type = self.scat_operator.all_type
31
+ self.npar = outlist[2]
32
+ self.nscale = outlist[5]
33
+ self.chanlist = outlist[0]
34
+ self.in_nside = outlist[4]
35
+ self.nbatch = outlist[1]
36
+ self.n_chan_in = outlist[8]
37
+ self.NORIENT = outlist[9]
38
+ self.x = self.scat_operator.backend.bk_cast(outlist[6])
39
+ self.out_nside = self.in_nside // (2**(self.nscale+1))
40
+ else:
41
+ self.nscale = len(chanlist)-1
42
+ self.npar = nparam
43
+ self.n_chan_in = n_chan_in
44
+ if scat_operator is None:
45
+ self.scat_operator = sc.funct(
46
+ KERNELSZ=KERNELSZ,
47
+ NORIENT=NORIENT,
48
+ all_type=all_type)
49
+ else:
50
+ self.scat_operator = scat_operator
51
+
52
+ self.chanlist = chanlist
53
+ self.KERNELSZ = self.scat_operator.KERNELSZ
54
+ self.NORIENT = self.scat_operator.NORIENT
55
+ self.all_type = self.scat_operator.all_type
56
+ self.in_nside = in_nside
57
+ self.out_nside = self.in_nside // (2**(self.nscale+1))
58
+ self.backend = self.scat_operator.backend
59
+ np.random.seed(SEED)
60
+ self.x = self.scat_operator.backend.bk_cast(
61
+ np.random.rand(self.get_number_of_weights())
62
+ )
63
+ self.mpi_size = self.scat_operator.mpi_size
64
+ self.mpi_rank = self.scat_operator.mpi_rank
65
+ self.BACKEND = BACKEND
66
+ self.gpupos = self.scat_operator.gpupos
67
+ self.ngpu = self.scat_operator.ngpu
68
+ self.gpulist = self.scat_operator.gpulist
69
+
70
+ def save(self, filename):
71
+
72
+ outlist = [
73
+ self.chanlist,
74
+ self.nbatch,
75
+ self.npar,
76
+ self.KERNELSZ,
77
+ self.in_nside,
78
+ self.nscale,
79
+ self.get_weights().numpy(),
80
+ self.all_type,
81
+ self.n_chan_in,
82
+ self.NORIENT,
83
+ ]
84
+
85
+ myout = open("%s.pkl" % (filename), "wb")
86
+ pickle.dump(outlist, myout)
87
+ myout.close()
88
+
89
+ def get_number_of_weights(self):
90
+ totnchan = 0
91
+ for i in range(self.nscale):
92
+ totnchan = totnchan + self.chanlist[i] * self.chanlist[i + 1]
93
+ return (
94
+ self.npar * 12 * self.out_nside**2 * self.chanlist[self.nscale]*self.NORIENT
95
+ + totnchan * self.KERNELSZ * (self.KERNELSZ//2+1)*self.NORIENT*self.NORIENT
96
+ + self.KERNELSZ * (self.KERNELSZ//2+1) * self.n_chan_in * self.chanlist[0]*self.NORIENT
97
+ )
98
+
99
+ def set_weights(self, x):
100
+ self.x = x
101
+
102
+ def get_weights(self):
103
+ return self.x
104
+
105
+ def init_wave(self):
106
+ w0=np.zeros([self.n_chan_in, self.KERNELSZ * (self.KERNELSZ//2+1), self.chanlist[0], self.NORIENT])
107
+ if self.KERNELSZ==3:
108
+ w0[:,0]=-0.2
109
+ w0[:,1]=-0.5
110
+ w0[:,2]=-0.2
111
+ w0[:,3]=0.2
112
+ w0[:,4]=0.5
113
+ w0[:,5]=0.2
114
+ if self.KERNELSZ==5:
115
+ w0[:,0]=-0.1
116
+ w0[:,1]=-0.2
117
+ w0[:,2]=-0.5
118
+ w0[:,3]=-0.2
119
+ w0[:,4]=-0.1
120
+ w0[:,10]=0.1
121
+ w0[:,11]=0.2
122
+ w0[:,12]=0.5
123
+ w0[:,13]=0.2
124
+ w0[:,14]=0.1
125
+
126
+ a=2*np.sqrt(6/(12 * self.out_nside**2 * self.chanlist[self.nscale]*self.NORIENT*self.npar))
127
+ x=(np.random.rand(self.get_number_of_weights())-0.5)*a
128
+
129
+ w0=w0.flatten()
130
+ x[0:w0.shape[0]]=w0
131
+ nn = self.KERNELSZ * (self.KERNELSZ//2+1) * self.n_chan_in * self.chanlist[0]*self.NORIENT
132
+
133
+ for k in range(self.nscale):
134
+ ww = np.zeros([self.chanlist[k], self.NORIENT, self.KERNELSZ * (self.KERNELSZ//2+1), self.chanlist[k + 1], self.NORIENT])
135
+
136
+ if self.KERNELSZ==3:
137
+ ww[:,:,0]=-0.2
138
+ ww[:,:,1]=-0.5
139
+ ww[:,:,2]=-0.2
140
+ ww[:,:,3]=0.2
141
+ ww[:,:,4]=0.5
142
+ ww[:,:,5]=0.2
143
+ if self.KERNELSZ==5:
144
+ ww[:,:,0]=-0.1
145
+ ww[:,:,1]=-0.2
146
+ ww[:,:,2]=-0.5
147
+ ww[:,:,3]=-0.2
148
+ ww[:,:,4]=-0.1
149
+ ww[:,:,10]=0.1
150
+ ww[:,:,11]=0.2
151
+ ww[:,:,12]=0.5
152
+ ww[:,:,13]=0.2
153
+ ww[:,:,14]=0.1
154
+ x[nn : nn + self.KERNELSZ
155
+ * (self.KERNELSZ//2+1)
156
+ * self.NORIENT*self.NORIENT
157
+ * self.chanlist[k]
158
+ * self.chanlist[k + 1]
159
+ ]=ww.flatten()
160
+
161
+ nn = nn + (self.KERNELSZ * (self.KERNELSZ//2+1)
162
+ * self.NORIENT*self.NORIENT
163
+ * self.chanlist[k]
164
+ * self.chanlist[k + 1])
165
+
166
+ self.x = self.scat_operator.backend.bk_cast(x)
167
+
168
+ def calc_matrix_first_layer(self,noise_map):
169
+ # Décalage circulaire par matrice de permutation
170
+ def circ_shift_matrix(N,k):
171
+ return np.roll(np.eye(N), shift=-k, axis=1)
172
+
173
+ im=self.scat_operator.convol(noise_map)
174
+ mm=np.mean(abs(im.cpu().numpy()),0)
175
+ Norient=mm.shape[1]
176
+ xx=np.cos(np.arange(Norient)/Norient*2*np.pi)
177
+ yy=np.sin(np.arange(Norient)/Norient*2*np.pi)
178
+
179
+ a=np.sum(mm*xx[None,:,None],1)
180
+ b=np.sum(mm*yy[None,:,None],1)
181
+ o=np.fmod(Norient*np.arctan2(-b,a)/(2*np.pi)+Norient,Norient)
182
+ xx=np.arange(Norient)
183
+ alpha = o[:,None,:]-xx[None,:,None]
184
+ beta = np.fmod(1+o[:,None,:]-xx[None,:,None],Norient)
185
+ alpha=(1-alpha)*(alpha<1)*(alpha>0)+beta*(beta<1)*(beta>0)
186
+
187
+ m=np.zeros([mm.shape[0],4,4,mm.shape[2]])
188
+ for k in range(4):
189
+ m[:,k,:,:]=np.roll(alpha,k,1)
190
+ m=np.mean(m,0)
191
+ return self.scat_operator.backend.bk_cast(m[None,None,...])
192
+
193
+ def eval(self, im,
194
+ indices=None,
195
+ weights=None,
196
+ out_map=False,
197
+ first_layer_rot=None,
198
+ activation='relu'):
199
+
200
+ x = self.x
201
+ ww = self.backend.bk_reshape(
202
+ x[0 : self.KERNELSZ * (self.KERNELSZ//2+1) * self.n_chan_in * self.chanlist[0]*self.NORIENT],
203
+ [self.n_chan_in, 1 , self.KERNELSZ * (self.KERNELSZ//2+1), self.chanlist[0], self.NORIENT],
204
+ )
205
+ nn = self.KERNELSZ * (self.KERNELSZ//2+1) * self.n_chan_in * self.chanlist[0]*self.NORIENT
206
+
207
+ im = self.scat_operator.healpix_layer(im[:,:,None,:], ww)
208
+
209
+ if first_layer_rot is not None:
210
+ im = self.backend.bk_reshape(im,[im.shape[0],im.shape[1],self.NORIENT,1,im.shape[3]])
211
+ im = self.backend.bk_reduce_sum(im*first_layer_rot,2)
212
+
213
+ if out_map:
214
+ return im
215
+
216
+ if activation=='relu':
217
+ im = self.backend.bk_relu(im)
218
+ elif activation=='abs':
219
+ im = self.backend.bk_abs(im)
220
+
221
+ im = self.backend.bk_reduce_sum(self.backend.bk_reshape(im,[im.shape[0],im.shape[1],self.NORIENT,im.shape[3]//4,4]),4)
222
+
223
+ for k in range(self.nscale):
224
+ ww = self.scat_operator.backend.bk_reshape(
225
+ x[
226
+ nn : nn
227
+ + self.KERNELSZ
228
+ * (self.KERNELSZ//2+1)
229
+ * self.NORIENT*self.NORIENT
230
+ * self.chanlist[k]
231
+ * self.chanlist[k + 1]
232
+ ],
233
+ [self.chanlist[k], self.NORIENT, self.KERNELSZ * (self.KERNELSZ//2+1), self.chanlist[k + 1], self.NORIENT],
234
+ )
235
+ nn = (
236
+ nn
237
+ + self.KERNELSZ
238
+ * (self.KERNELSZ//2+1)
239
+ * self.NORIENT*self.NORIENT
240
+ * self.chanlist[k]
241
+ * self.chanlist[k + 1]
242
+ )
243
+ if indices is None:
244
+ im = self.scat_operator.healpix_layer(im, ww)
245
+ else:
246
+ im = self.scat_operator.healpix_layer(
247
+ im, ww, indices=indices[k], weights=weights[k]
248
+ )
249
+
250
+ if activation=='relu':
251
+ im = self.backend.bk_relu(im)
252
+ elif activation=='abs':
253
+ im = self.backend.bk_abs(im)
254
+ im = self.backend.bk_reduce_sum(self.backend.bk_reshape(im,[im.shape[0],im.shape[1],self.NORIENT,im.shape[3]//4,4]),4)
255
+
256
+ ww = self.scat_operator.backend.bk_reshape(
257
+ x[
258
+ nn : nn
259
+ + self.npar * 12 * self.out_nside**2 * self.chanlist[self.nscale]*self.NORIENT
260
+ ],
261
+ [12 * self.out_nside**2 * self.chanlist[self.nscale]*self.NORIENT, self.npar],
262
+ )
263
+
264
+ im = self.scat_operator.backend.bk_matmul(
265
+ self.scat_operator.backend.bk_reshape(
266
+ im, [im.shape[0], im.shape[1] * im.shape[2] * im.shape[3]]
267
+ ),
268
+ ww,
269
+ )
270
+ #im = self.scat_operator.backend.bk_reshape(im, [self.npar])
271
+ #im = self.scat_operator.backend.bk_relu(im)
272
+ return im
273
+
274
+ class GCNN:
275
+
276
+ def __init__(
277
+ self,
278
+ nparam=1,
279
+ KERNELSZ=3,
280
+ NORIENT=4,
281
+ chanlist=[],
282
+ in_nside=1,
283
+ out_chan=1,
284
+ SEED=1234,
285
+ all_type='float32',
286
+ filename=None,
287
+ scat_operator=None,
288
+ BACKEND='tensorflow'
289
+ ):
290
+
291
+ if filename is not None:
292
+ outlist = pickle.load(open("%s.pkl" % (filename), "rb"))
293
+ self.scat_operator = sc.funct(KERNELSZ=outlist[3],NORIENT=outlist[8], all_type=outlist[7])
294
+ self.KERNELSZ = self.scat_operator.KERNELSZ
295
+ self.all_type = self.scat_operator.all_type
296
+ self.npar = outlist[2]
297
+ self.nscale = outlist[5]
298
+ self.chanlist = outlist[0]
299
+ self.in_nside = outlist[4]
300
+ self.nbatch = outlist[1]
301
+ self.NORIENT = outlist[8]
302
+ self.out_chan = outlist[9]
303
+ self.x = self.scat_operator.backend.bk_cast(outlist[6])
304
+ self.out_nside = self.in_nside // (2**self.nscale)
305
+ else:
306
+ self.nscale = len(chanlist)-1
307
+ self.npar = nparam
308
+
309
+ if scat_operator is None:
310
+ self.scat_operator = sc.funct(
311
+ KERNELSZ=KERNELSZ,
312
+ NORIENT=NORIENT,
313
+ all_type=all_type)
314
+ else:
315
+ self.scat_operator = scat_operator
316
+
317
+ self.chanlist = chanlist
318
+ self.KERNELSZ = self.scat_operator.KERNELSZ
319
+ self.NORIENT = self.scat_operator.NORIENT
320
+ self.all_type = self.scat_operator.all_type
321
+ self.in_nside = in_nside
322
+ self.out_nside = self.in_nside * (2**self.nscale)
323
+ self.out_chan = out_chan
324
+ self.backend = self.scat_operator.backend
325
+ np.random.seed(SEED)
326
+ self.x = self.scat_operator.backend.bk_cast(
327
+ np.random.rand(self.get_number_of_weights())
328
+ )
329
+ self.mpi_size = self.scat_operator.mpi_size
330
+ self.mpi_rank = self.scat_operator.mpi_rank
331
+ self.BACKEND = BACKEND
332
+ self.gpupos = self.scat_operator.gpupos
333
+ self.ngpu = self.scat_operator.ngpu
334
+ self.gpulist = self.scat_operator.gpulist
335
+
336
+ def save(self, filename):
337
+
338
+ outlist = [
339
+ self.chanlist,
340
+ self.nbatch,
341
+ self.npar,
342
+ self.KERNELSZ,
343
+ self.in_nside,
344
+ self.nscale,
345
+ self.get_weights().numpy(),
346
+ self.all_type,
347
+ self.NORIENT,
348
+ self.out_chan
349
+ ]
350
+
351
+ myout = open("%s.pkl" % (filename), "wb")
352
+ pickle.dump(outlist, myout)
353
+ myout.close()
354
+
355
+ def get_number_of_weights(self):
356
+ totnchan = 0
357
+ for i in range(self.nscale):
358
+ totnchan = totnchan + self.chanlist[i] * self.chanlist[i + 1]
359
+ return (
360
+ self.npar * 12 * self.in_nside**2 * self.chanlist[0]*self.NORIENT
361
+ + totnchan * self.KERNELSZ * (self.KERNELSZ//2+1)*self.NORIENT*self.NORIENT
362
+ + self.chanlist[-1]*self.out_chan*self.NORIENT
363
+ )
364
+
365
+ def set_weights(self, x):
366
+ self.x = x
367
+
368
+ def get_weights(self):
369
+ return self.x
370
+
371
+ def eval(self, im, indices=None, weights=None):
372
+
373
+ x = self.x
374
+
375
+ ww = self.backend.bk_reshape(
376
+ x[0:self.npar * 12 * self.in_nside**2 * self.chanlist[0]*self.NORIENT],
377
+ [self.npar,12 * self.in_nside**2 * self.chanlist[0]*self.NORIENT],
378
+ )
379
+
380
+ im = self.scat_operator.backend.bk_matmul(im,ww)
381
+
382
+ im = self.backend.bk_reshape(im,[im.shape[0],self.chanlist[0],self.NORIENT,12 * self.in_nside**2])
383
+
384
+ nn = self.npar * 12 * self.in_nside**2 * self.chanlist[0]
385
+
386
+ for k in range(self.nscale):
387
+
388
+ im = self.scat_operator.backend.bk_relu(im)
389
+
390
+ im = self.backend.bk_reshape(
391
+ self.scat_operator.backend.bk_repeat(im,4,axis=-1),
392
+ [im.shape[0],im.shape[1],self.NORIENT,im.shape[3]*4])
393
+
394
+ ww = self.scat_operator.backend.bk_reshape(
395
+ x[
396
+ nn : nn
397
+ + self.KERNELSZ
398
+ * (self.KERNELSZ//2+1)
399
+ * self.NORIENT *self.NORIENT
400
+ * self.chanlist[k]
401
+ * self.chanlist[k + 1]
402
+ ],
403
+ [self.chanlist[k] , self.NORIENT, self.KERNELSZ * (self.KERNELSZ//2+1), self.chanlist[k + 1],self.NORIENT],
404
+ )
405
+ nn = (
406
+ nn
407
+ + self.KERNELSZ
408
+ * (self.KERNELSZ//2+1)
409
+ * self.NORIENT *self.NORIENT
410
+ * self.chanlist[k]
411
+ * self.chanlist[k + 1]
412
+ )
413
+
414
+ if indices is None:
415
+ im = self.scat_operator.healpix_layer(im, ww)
416
+ else:
417
+ im = self.scat_operator.healpix_layer(
418
+ im, ww, indices=indices[k], weights=weights[k]
419
+ )
420
+
421
+ ww = self.scat_operator.backend.bk_reshape(
422
+ x[
423
+ nn : nn
424
+ + self.chanlist[-1]*self.NORIENT
425
+ * self.out_chan
426
+ ],
427
+ [1,self.chanlist[-1],self.NORIENT, self.out_chan, 1],
428
+ )
429
+ im = self.backend.bk_reduce_mean(im[:,:,:,None]*ww,[1,2])
430
+ #im = self.scat_operator.backend.bk_relu(im)
431
+
432
+ return im