foscat 2025.11.1__py3-none-any.whl → 2026.1.1__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- foscat/FoCUS.py +57 -11
- foscat/SphereDownGeo.py +380 -0
- foscat/SphereUpGeo.py +175 -0
- foscat/SphericalStencil.py +27 -246
- foscat/alm_loc.py +270 -0
- foscat/healpix_vit_torch-old.py +658 -0
- foscat/scat_cov.py +22 -22
- {foscat-2025.11.1.dist-info → foscat-2026.1.1.dist-info}/METADATA +1 -69
- {foscat-2025.11.1.dist-info → foscat-2026.1.1.dist-info}/RECORD +12 -8
- {foscat-2025.11.1.dist-info → foscat-2026.1.1.dist-info}/WHEEL +1 -1
- {foscat-2025.11.1.dist-info → foscat-2026.1.1.dist-info}/licenses/LICENSE +0 -0
- {foscat-2025.11.1.dist-info → foscat-2026.1.1.dist-info}/top_level.txt +0 -0
foscat/FoCUS.py
CHANGED
|
@@ -5,8 +5,11 @@ import healpy as hp
|
|
|
5
5
|
import numpy as np
|
|
6
6
|
import foscat.HealSpline as HS
|
|
7
7
|
from scipy.interpolate import griddata
|
|
8
|
+
from foscat.SphereDownGeo import SphereDownGeo
|
|
9
|
+
from foscat.SphereUpGeo import SphereUpGeo
|
|
10
|
+
import torch
|
|
8
11
|
|
|
9
|
-
TMPFILE_VERSION = "
|
|
12
|
+
TMPFILE_VERSION = "V12_0"
|
|
10
13
|
|
|
11
14
|
|
|
12
15
|
class FoCUS:
|
|
@@ -36,7 +39,7 @@ class FoCUS:
|
|
|
36
39
|
mpi_rank=0
|
|
37
40
|
):
|
|
38
41
|
|
|
39
|
-
self.__version__ = "
|
|
42
|
+
self.__version__ = "2026.01.1"
|
|
40
43
|
# P00 coeff for normalization for scat_cov
|
|
41
44
|
self.TMPFILE_VERSION = TMPFILE_VERSION
|
|
42
45
|
self.P1_dic = None
|
|
@@ -57,7 +60,8 @@ class FoCUS:
|
|
|
57
60
|
self.kernelR_conv = {}
|
|
58
61
|
self.kernelI_conv = {}
|
|
59
62
|
self.padding_conv = {}
|
|
60
|
-
|
|
63
|
+
self.down = {}
|
|
64
|
+
self.up = {}
|
|
61
65
|
if not self.silent:
|
|
62
66
|
print("================================================")
|
|
63
67
|
print(" START FOSCAT CONFIGURATION")
|
|
@@ -648,6 +652,7 @@ class FoCUS:
|
|
|
648
652
|
return rim
|
|
649
653
|
|
|
650
654
|
# --------------------------------------------------------
|
|
655
|
+
|
|
651
656
|
def ud_grade_2(self, im, axis=0, cell_ids=None, nside=None,max_poll=False):
|
|
652
657
|
|
|
653
658
|
if self.use_2D:
|
|
@@ -721,6 +726,22 @@ class FoCUS:
|
|
|
721
726
|
|
|
722
727
|
else:
|
|
723
728
|
shape = list(im.shape)
|
|
729
|
+
if nside is None:
|
|
730
|
+
l_nside=int(np.sqrt(shape[-1]//12))
|
|
731
|
+
else:
|
|
732
|
+
l_nside=nside
|
|
733
|
+
|
|
734
|
+
nbatch=1
|
|
735
|
+
for k in range(len(shape)-1):
|
|
736
|
+
nbatch*=shape[k]
|
|
737
|
+
if l_nside not in self.down:
|
|
738
|
+
print('initialise down', l_nside)
|
|
739
|
+
self.down[l_nside] = SphereDownGeo(nside_in=l_nside, dtype=self.all_bk_type,mode="smooth", in_cell_ids=cell_ids)
|
|
740
|
+
|
|
741
|
+
res,out_cell=self.down[l_nside](self.backend.bk_reshape(im,[nbatch,1,shape[-1]]))
|
|
742
|
+
|
|
743
|
+
return self.backend.bk_reshape(res,shape[:-1]+[out_cell.shape[0]]),out_cell
|
|
744
|
+
'''
|
|
724
745
|
if self.use_median:
|
|
725
746
|
if cell_ids is not None:
|
|
726
747
|
sim, new_cell_ids = self.backend.binned_mean(im, cell_ids,reduce='median')
|
|
@@ -747,6 +768,7 @@ class FoCUS:
|
|
|
747
768
|
return self.backend.bk_reduce_mean(
|
|
748
769
|
self.backend.bk_reshape(im, shape[0:-1]+[shape[-1]//4,4]), axis=-1
|
|
749
770
|
),None
|
|
771
|
+
'''
|
|
750
772
|
|
|
751
773
|
# --------------------------------------------------------
|
|
752
774
|
def up_grade(self, im, nout,
|
|
@@ -836,6 +858,7 @@ class FoCUS:
|
|
|
836
858
|
else:
|
|
837
859
|
lout = nside
|
|
838
860
|
|
|
861
|
+
'''
|
|
839
862
|
if (lout,nout) not in self.pix_interp_val or force_init_index:
|
|
840
863
|
if not self.silent:
|
|
841
864
|
print("compute lout nout", lout, nout)
|
|
@@ -926,12 +949,32 @@ class FoCUS:
|
|
|
926
949
|
|
|
927
950
|
del w
|
|
928
951
|
del p
|
|
929
|
-
|
|
930
|
-
|
|
931
|
-
|
|
932
|
-
|
|
933
|
-
|
|
934
|
-
|
|
952
|
+
'''
|
|
953
|
+
shape=list(im.shape)
|
|
954
|
+
nbatch=1
|
|
955
|
+
for k in range(len(shape)-1):
|
|
956
|
+
nbatch*=shape[k]
|
|
957
|
+
|
|
958
|
+
im=self.backend.bk_reshape(im,[nbatch,1,shape[-1]])
|
|
959
|
+
|
|
960
|
+
while lout<nout:
|
|
961
|
+
if lout not in self.up:
|
|
962
|
+
if o_cell_ids is None:
|
|
963
|
+
l_o_cell_ids=torch.tensor(np.arange(12*(lout**2),dtype='int'),device=im.device)
|
|
964
|
+
else:
|
|
965
|
+
l_o_cell_ids=o_cell_ids
|
|
966
|
+
self.up[lout] = SphereUpGeo(nside_out=lout,
|
|
967
|
+
dtype=self.all_bk_type,
|
|
968
|
+
cell_ids_out=l_o_cell_ids,
|
|
969
|
+
up_norm="col_l1")
|
|
970
|
+
im, fine_ids = self.up[lout](self.backend.bk_cast(im))
|
|
971
|
+
lout*=2
|
|
972
|
+
if lout<nout and o_cell_ids is not None:
|
|
973
|
+
o_cell_ids=torch.repeat(fine_ids,4)*4+ \
|
|
974
|
+
torch.tile(torch.tensor([0,1,2,3],device=fine_ids.device,dtype=fine_ids.dtype),fine_ids.shape[0])
|
|
975
|
+
|
|
976
|
+
return self.backend.bk_reshape(im,shape[:-1]+[im.shape[-1]])
|
|
977
|
+
'''
|
|
935
978
|
ndata = 1
|
|
936
979
|
for k in range(len(ishape)-1):
|
|
937
980
|
ndata = ndata * ishape[k]
|
|
@@ -960,6 +1003,7 @@ class FoCUS:
|
|
|
960
1003
|
return self.backend.bk_reshape(
|
|
961
1004
|
imout, ishape[0:-1]+[imout.shape[-1]]
|
|
962
1005
|
)
|
|
1006
|
+
'''
|
|
963
1007
|
return imout
|
|
964
1008
|
|
|
965
1009
|
# --------------------------------------------------------
|
|
@@ -1354,7 +1398,9 @@ class FoCUS:
|
|
|
1354
1398
|
else:
|
|
1355
1399
|
l_cell_ids=cell_ids
|
|
1356
1400
|
|
|
1357
|
-
nvalid=self.KERNELSZ**2
|
|
1401
|
+
nvalid=4*self.KERNELSZ**2
|
|
1402
|
+
if nvalid>12*nside**2:
|
|
1403
|
+
nvalid=12*nside**2
|
|
1358
1404
|
idxEB=hconvol.idx_nn[:,0:nvalid]
|
|
1359
1405
|
tmpEB=np.zeros([self.NORIENT,4,l_cell_ids.shape[0],nvalid],dtype='complex')
|
|
1360
1406
|
tmpS=np.zeros([4,l_cell_ids.shape[0],nvalid],dtype='float')
|
|
@@ -1500,7 +1546,7 @@ class FoCUS:
|
|
|
1500
1546
|
|
|
1501
1547
|
else:
|
|
1502
1548
|
if l_kernel == 5:
|
|
1503
|
-
pw = 0.
|
|
1549
|
+
pw = 0.75
|
|
1504
1550
|
pw2 = 0.5
|
|
1505
1551
|
threshold = 2e-5
|
|
1506
1552
|
|
foscat/SphereDownGeo.py
ADDED
|
@@ -0,0 +1,380 @@
|
|
|
1
|
+
|
|
2
|
+
import torch
|
|
3
|
+
import torch.nn as nn
|
|
4
|
+
import numpy as np
|
|
5
|
+
import healpy as hp
|
|
6
|
+
|
|
7
|
+
|
|
8
|
+
class SphereDownGeo(nn.Module):
|
|
9
|
+
"""
|
|
10
|
+
Geometric HEALPix downsampling operator (NESTED indexing).
|
|
11
|
+
|
|
12
|
+
This module reduces resolution by a factor 2:
|
|
13
|
+
nside_out = nside_in // 2
|
|
14
|
+
|
|
15
|
+
Input conventions
|
|
16
|
+
-----------------
|
|
17
|
+
- If in_cell_ids is None:
|
|
18
|
+
x is expected to be full-sphere: [B, C, N_in]
|
|
19
|
+
output is [B, C, K_out] with K_out = len(cell_ids_out) (or N_out if None).
|
|
20
|
+
- If in_cell_ids is provided (fine pixels at nside_in, NESTED):
|
|
21
|
+
x can be either:
|
|
22
|
+
* compact: [B, C, K_in] where K_in = len(in_cell_ids), aligned with in_cell_ids order
|
|
23
|
+
* full-sphere: [B, C, N_in] (also supported)
|
|
24
|
+
output is [B, C, K_out] where cell_ids_out is derived as unique(in_cell_ids // 4),
|
|
25
|
+
unless you explicitly pass cell_ids_out (then it will be intersected with the derived set).
|
|
26
|
+
|
|
27
|
+
Modes
|
|
28
|
+
-----
|
|
29
|
+
- mode="smooth": linear downsampling y = M @ x (M sparse)
|
|
30
|
+
- mode="maxpool": non-linear max over available children (fast)
|
|
31
|
+
"""
|
|
32
|
+
|
|
33
|
+
def __init__(
|
|
34
|
+
self,
|
|
35
|
+
nside_in: int,
|
|
36
|
+
mode: str = "smooth",
|
|
37
|
+
radius_deg: float | None = None,
|
|
38
|
+
sigma_deg: float | None = None,
|
|
39
|
+
weight_norm: str = "l1",
|
|
40
|
+
cell_ids_out: np.ndarray | list[int] | None = None,
|
|
41
|
+
in_cell_ids: np.ndarray | list[int] | torch.Tensor | None = None,
|
|
42
|
+
use_csr=True,
|
|
43
|
+
device=None,
|
|
44
|
+
dtype: torch.dtype = torch.float32,
|
|
45
|
+
):
|
|
46
|
+
super().__init__()
|
|
47
|
+
|
|
48
|
+
if device is None:
|
|
49
|
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
|
50
|
+
self.device = device
|
|
51
|
+
self.dtype = dtype
|
|
52
|
+
|
|
53
|
+
self.nside_in = int(nside_in)
|
|
54
|
+
assert (self.nside_in & (self.nside_in - 1)) == 0, "nside_in must be a power of 2."
|
|
55
|
+
self.nside_out = self.nside_in // 2
|
|
56
|
+
assert self.nside_out >= 1, "nside_out must be >= 1."
|
|
57
|
+
|
|
58
|
+
self.N_in = 12 * self.nside_in * self.nside_in
|
|
59
|
+
self.N_out = 12 * self.nside_out * self.nside_out
|
|
60
|
+
|
|
61
|
+
self.mode = str(mode).lower()
|
|
62
|
+
assert self.mode in ("smooth", "maxpool"), "mode must be 'smooth' or 'maxpool'."
|
|
63
|
+
|
|
64
|
+
self.weight_norm = str(weight_norm).lower()
|
|
65
|
+
assert self.weight_norm in ("l1", "l2"), "weight_norm must be 'l1' or 'l2'."
|
|
66
|
+
|
|
67
|
+
# ---- Handle reduced-domain inputs (fine pixels) ----
|
|
68
|
+
self.in_cell_ids = self._validate_in_cell_ids(in_cell_ids)
|
|
69
|
+
self.has_in_subset = self.in_cell_ids is not None
|
|
70
|
+
if self.has_in_subset:
|
|
71
|
+
# derive parents
|
|
72
|
+
derived_out = np.unique(self.in_cell_ids // 4).astype(np.int64)
|
|
73
|
+
if cell_ids_out is None:
|
|
74
|
+
self.cell_ids_out = derived_out
|
|
75
|
+
else:
|
|
76
|
+
req_out = self._validate_cell_ids_out(cell_ids_out)
|
|
77
|
+
# keep only those compatible with derived_out (otherwise they'd be all-zero)
|
|
78
|
+
self.cell_ids_out = np.intersect1d(req_out, derived_out, assume_unique=False)
|
|
79
|
+
if self.cell_ids_out.size == 0:
|
|
80
|
+
raise ValueError(
|
|
81
|
+
"After intersecting cell_ids_out with unique(in_cell_ids//4), "
|
|
82
|
+
"no coarse pixel remains. Check your inputs."
|
|
83
|
+
)
|
|
84
|
+
else:
|
|
85
|
+
self.cell_ids_out = self._validate_cell_ids_out(cell_ids_out)
|
|
86
|
+
|
|
87
|
+
self.K_out = int(self.cell_ids_out.size)
|
|
88
|
+
|
|
89
|
+
# Column basis for smooth matrix:
|
|
90
|
+
# - full sphere: columns are 0..N_in-1
|
|
91
|
+
# - subset: columns are 0..K_in-1 aligned to self.in_cell_ids
|
|
92
|
+
self.K_in = int(self.in_cell_ids.size) if self.has_in_subset else self.N_in
|
|
93
|
+
|
|
94
|
+
if self.mode == "smooth":
|
|
95
|
+
if radius_deg is None:
|
|
96
|
+
# default: include roughly the 4 children footprint
|
|
97
|
+
# (healpy pixel size ~ sqrt(4pi/N), coarse pixel is 4x area)
|
|
98
|
+
radius_deg = 2.0 * hp.nside2resol(self.nside_out, arcmin=True) / 60.0
|
|
99
|
+
if sigma_deg is None:
|
|
100
|
+
sigma_deg = max(radius_deg / 2.0, 1e-6)
|
|
101
|
+
|
|
102
|
+
self.radius_deg = float(radius_deg)
|
|
103
|
+
self.sigma_deg = float(sigma_deg)
|
|
104
|
+
self.radius_rad = self.radius_deg * np.pi / 180.0
|
|
105
|
+
self.sigma_rad = self.sigma_deg * np.pi / 180.0
|
|
106
|
+
|
|
107
|
+
M = self._build_down_matrix() # shape (K_out, K_in or N_in)
|
|
108
|
+
|
|
109
|
+
self.M = M.coalesce()
|
|
110
|
+
|
|
111
|
+
if use_csr:
|
|
112
|
+
self.M = self.M.to_sparse_csr().to(self.device)
|
|
113
|
+
|
|
114
|
+
self.M_size = M.size()
|
|
115
|
+
|
|
116
|
+
else:
|
|
117
|
+
# Precompute children indices for maxpool
|
|
118
|
+
# For subset mode, store mapping from each parent to indices in compact vector,
|
|
119
|
+
# with -1 for missing children.
|
|
120
|
+
children = np.stack(
|
|
121
|
+
[4 * self.cell_ids_out + i for i in range(4)],
|
|
122
|
+
axis=1,
|
|
123
|
+
).astype(np.int64) # [K_out, 4] in fine pixel ids (full indexing)
|
|
124
|
+
|
|
125
|
+
if self.has_in_subset:
|
|
126
|
+
# map each child pixel id to position in in_cell_ids (compact index)
|
|
127
|
+
pos = self._positions_in_sorted(self.in_cell_ids, children.reshape(-1))
|
|
128
|
+
children_compact = pos.reshape(self.K_out, 4).astype(np.int64) # -1 if missing
|
|
129
|
+
self.register_buffer(
|
|
130
|
+
"children_compact",
|
|
131
|
+
torch.tensor(children_compact, dtype=torch.long, device=self.device),
|
|
132
|
+
)
|
|
133
|
+
else:
|
|
134
|
+
self.register_buffer(
|
|
135
|
+
"children_full",
|
|
136
|
+
torch.tensor(children, dtype=torch.long, device=self.device),
|
|
137
|
+
)
|
|
138
|
+
|
|
139
|
+
# expose ids as torch buffers for convenience
|
|
140
|
+
self.register_buffer(
|
|
141
|
+
"cell_ids_out_t",
|
|
142
|
+
torch.tensor(self.cell_ids_out.astype(np.int64), dtype=torch.long, device=self.device),
|
|
143
|
+
)
|
|
144
|
+
if self.has_in_subset:
|
|
145
|
+
self.register_buffer(
|
|
146
|
+
"in_cell_ids_t",
|
|
147
|
+
torch.tensor(self.in_cell_ids.astype(np.int64), dtype=torch.long, device=self.device),
|
|
148
|
+
)
|
|
149
|
+
|
|
150
|
+
# ---------------- validation helpers ----------------
|
|
151
|
+
def _validate_cell_ids_out(self, cell_ids_out):
|
|
152
|
+
"""Return a 1D np.int64 array of coarse cell ids (nside_out)."""
|
|
153
|
+
if cell_ids_out is None:
|
|
154
|
+
return np.arange(self.N_out, dtype=np.int64)
|
|
155
|
+
|
|
156
|
+
arr = np.asarray(cell_ids_out, dtype=np.int64).reshape(-1)
|
|
157
|
+
if arr.size == 0:
|
|
158
|
+
raise ValueError("cell_ids_out is empty: provide at least one coarse pixel id.")
|
|
159
|
+
arr = np.unique(arr)
|
|
160
|
+
if arr.min() < 0 or arr.max() >= self.N_out:
|
|
161
|
+
raise ValueError(f"cell_ids_out must be in [0, {self.N_out-1}] for nside_out={self.nside_out}.")
|
|
162
|
+
return arr
|
|
163
|
+
|
|
164
|
+
def _validate_in_cell_ids(self, in_cell_ids):
|
|
165
|
+
"""Return a 1D np.int64 array of fine cell ids (nside_in) or None."""
|
|
166
|
+
if in_cell_ids is None:
|
|
167
|
+
return None
|
|
168
|
+
if torch.is_tensor(in_cell_ids):
|
|
169
|
+
arr = in_cell_ids.detach().cpu().numpy()
|
|
170
|
+
else:
|
|
171
|
+
arr = np.asarray(in_cell_ids)
|
|
172
|
+
arr = np.asarray(arr, dtype=np.int64).reshape(-1)
|
|
173
|
+
if arr.size == 0:
|
|
174
|
+
raise ValueError("in_cell_ids is empty: provide at least one fine pixel id or None.")
|
|
175
|
+
arr = np.unique(arr)
|
|
176
|
+
if arr.min() < 0 or arr.max() >= self.N_in:
|
|
177
|
+
raise ValueError(f"in_cell_ids must be in [0, {self.N_in-1}] for nside_in={self.nside_in}.")
|
|
178
|
+
return arr
|
|
179
|
+
|
|
180
|
+
@staticmethod
|
|
181
|
+
def _positions_in_sorted(sorted_ids: np.ndarray, query_ids: np.ndarray) -> np.ndarray:
|
|
182
|
+
"""
|
|
183
|
+
For each query_id, return its index in sorted_ids if present, else -1.
|
|
184
|
+
sorted_ids must be sorted ascending unique.
|
|
185
|
+
"""
|
|
186
|
+
q = np.asarray(query_ids, dtype=np.int64)
|
|
187
|
+
idx = np.searchsorted(sorted_ids, q)
|
|
188
|
+
ok = (idx >= 0) & (idx < sorted_ids.size) & (sorted_ids[idx] == q)
|
|
189
|
+
out = np.full(q.shape, -1, dtype=np.int64)
|
|
190
|
+
out[ok] = idx[ok]
|
|
191
|
+
return out
|
|
192
|
+
|
|
193
|
+
# ---------------- weights and matrix build ----------------
|
|
194
|
+
def _normalize_weights(self, w: np.ndarray) -> np.ndarray:
|
|
195
|
+
w = np.asarray(w, dtype=np.float64)
|
|
196
|
+
if w.size == 0:
|
|
197
|
+
return w
|
|
198
|
+
w = np.maximum(w, 0.0)
|
|
199
|
+
|
|
200
|
+
if self.weight_norm == "l1":
|
|
201
|
+
s = w.sum()
|
|
202
|
+
if s <= 0.0:
|
|
203
|
+
return np.ones_like(w) / max(w.size, 1)
|
|
204
|
+
return w / s
|
|
205
|
+
|
|
206
|
+
# l2
|
|
207
|
+
s2 = (w * w).sum()
|
|
208
|
+
if s2 <= 0.0:
|
|
209
|
+
return np.ones_like(w) / max(np.sqrt(w.size), 1.0)
|
|
210
|
+
return w / np.sqrt(s2)
|
|
211
|
+
|
|
212
|
+
def _build_down_matrix(self) -> torch.Tensor:
|
|
213
|
+
"""Construct sparse matrix M (K_out, K_in or N_in) for the selected coarse pixels."""
|
|
214
|
+
nside_in = self.nside_in
|
|
215
|
+
nside_out = self.nside_out
|
|
216
|
+
|
|
217
|
+
radius_rad = self.radius_rad
|
|
218
|
+
sigma_rad = self.sigma_rad
|
|
219
|
+
|
|
220
|
+
rows: list[int] = []
|
|
221
|
+
cols: list[int] = []
|
|
222
|
+
vals: list[float] = []
|
|
223
|
+
|
|
224
|
+
# For subset columns, we use self.in_cell_ids as the basis
|
|
225
|
+
subset_cols = self.has_in_subset
|
|
226
|
+
in_ids = self.in_cell_ids # np.ndarray or None
|
|
227
|
+
|
|
228
|
+
for r, p_out in enumerate(self.cell_ids_out.tolist()):
|
|
229
|
+
theta0, phi0 = hp.pix2ang(nside_out, int(p_out), nest=True)
|
|
230
|
+
vec0 = hp.ang2vec(theta0, phi0)
|
|
231
|
+
|
|
232
|
+
neigh = hp.query_disc(nside_in, vec0, radius_rad, inclusive=True, nest=True)
|
|
233
|
+
neigh = np.asarray(neigh, dtype=np.int64)
|
|
234
|
+
|
|
235
|
+
if subset_cols:
|
|
236
|
+
# keep only valid fine pixels
|
|
237
|
+
# neigh is not sorted; intersect1d expects sorted
|
|
238
|
+
neigh_sorted = np.sort(neigh)
|
|
239
|
+
keep = np.intersect1d(neigh_sorted, in_ids, assume_unique=False)
|
|
240
|
+
neigh = keep
|
|
241
|
+
|
|
242
|
+
# Fallback: if radius query returns nothing in subset mode, at least try the 4 children
|
|
243
|
+
if neigh.size == 0:
|
|
244
|
+
children = (4 * int(p_out) + np.arange(4, dtype=np.int64))
|
|
245
|
+
if subset_cols:
|
|
246
|
+
pos = self._positions_in_sorted(in_ids, children)
|
|
247
|
+
ok = pos >= 0
|
|
248
|
+
if np.any(ok):
|
|
249
|
+
neigh = children[ok]
|
|
250
|
+
else:
|
|
251
|
+
# nothing to connect -> row stays zero
|
|
252
|
+
continue
|
|
253
|
+
else:
|
|
254
|
+
neigh = children
|
|
255
|
+
|
|
256
|
+
theta, phi = hp.pix2ang(nside_in, neigh, nest=True)
|
|
257
|
+
vec = hp.ang2vec(theta, phi)
|
|
258
|
+
|
|
259
|
+
# angular distance via dot product
|
|
260
|
+
dots = np.clip(np.dot(vec, vec0), -1.0, 1.0)
|
|
261
|
+
ang = np.arccos(dots)
|
|
262
|
+
w = np.exp(- 2*(ang / sigma_rad) ** 2)
|
|
263
|
+
|
|
264
|
+
w = self._normalize_weights(w)
|
|
265
|
+
|
|
266
|
+
if subset_cols:
|
|
267
|
+
pos = self._positions_in_sorted(in_ids, neigh)
|
|
268
|
+
# all should be present due to filtering, but guard anyway
|
|
269
|
+
ok = pos >= 0
|
|
270
|
+
neigh_pos = pos[ok]
|
|
271
|
+
w = w[ok]
|
|
272
|
+
if neigh_pos.size == 0:
|
|
273
|
+
continue
|
|
274
|
+
for c, v in zip(neigh_pos.tolist(), w.tolist()):
|
|
275
|
+
rows.append(r)
|
|
276
|
+
cols.append(int(c))
|
|
277
|
+
vals.append(float(v))
|
|
278
|
+
else:
|
|
279
|
+
for c, v in zip(neigh.tolist(), w.tolist()):
|
|
280
|
+
rows.append(r)
|
|
281
|
+
cols.append(int(c))
|
|
282
|
+
vals.append(float(v))
|
|
283
|
+
|
|
284
|
+
if len(rows) == 0:
|
|
285
|
+
# build an all-zero sparse tensor
|
|
286
|
+
indices = torch.zeros((2, 0), dtype=torch.long, device=self.device)
|
|
287
|
+
vals_t = torch.zeros((0,), dtype=self.dtype, device=self.device)
|
|
288
|
+
return torch.sparse_coo_tensor(
|
|
289
|
+
indices, vals_t, size=(self.K_out, self.K_in), device=self.device, dtype=self.dtype
|
|
290
|
+
).coalesce()
|
|
291
|
+
|
|
292
|
+
rows_t = torch.tensor(rows, dtype=torch.long, device=self.device)
|
|
293
|
+
cols_t = torch.tensor(cols, dtype=torch.long, device=self.device)
|
|
294
|
+
vals_t = torch.tensor(vals, dtype=self.dtype, device=self.device)
|
|
295
|
+
|
|
296
|
+
indices = torch.stack([rows_t, cols_t], dim=0)
|
|
297
|
+
M = torch.sparse_coo_tensor(
|
|
298
|
+
indices,
|
|
299
|
+
vals_t,
|
|
300
|
+
size=(self.K_out, self.K_in),
|
|
301
|
+
device=self.device,
|
|
302
|
+
dtype=self.dtype,
|
|
303
|
+
).coalesce()
|
|
304
|
+
return M
|
|
305
|
+
|
|
306
|
+
# ---------------- forward ----------------
|
|
307
|
+
def forward(self, x: torch.Tensor):
|
|
308
|
+
"""
|
|
309
|
+
Parameters
|
|
310
|
+
----------
|
|
311
|
+
x : torch.Tensor
|
|
312
|
+
If has_in_subset:
|
|
313
|
+
- [B,C,K_in] (compact, aligned with in_cell_ids) OR [B,C,N_in] (full sphere)
|
|
314
|
+
Else:
|
|
315
|
+
- [B,C,N_in] (full sphere)
|
|
316
|
+
|
|
317
|
+
Returns
|
|
318
|
+
-------
|
|
319
|
+
y : torch.Tensor
|
|
320
|
+
[B,C,K_out]
|
|
321
|
+
cell_ids_out : torch.Tensor
|
|
322
|
+
[K_out] coarse pixel ids (nside_out), aligned with y last dimension.
|
|
323
|
+
"""
|
|
324
|
+
if x.dim() != 3:
|
|
325
|
+
raise ValueError("x must be [B, C, N]")
|
|
326
|
+
|
|
327
|
+
B, C, N = x.shape
|
|
328
|
+
if self.has_in_subset:
|
|
329
|
+
if N not in (self.K_in, self.N_in):
|
|
330
|
+
raise ValueError(
|
|
331
|
+
f"x last dim must be K_in={self.K_in} (compact) or N_in={self.N_in} (full), got {N}"
|
|
332
|
+
)
|
|
333
|
+
else:
|
|
334
|
+
if N != self.N_in:
|
|
335
|
+
raise ValueError(f"x last dim must be N_in={self.N_in}, got {N}")
|
|
336
|
+
|
|
337
|
+
if self.mode == "smooth":
|
|
338
|
+
|
|
339
|
+
# If x is full-sphere but M is subset-based, gather compact inputs
|
|
340
|
+
if self.has_in_subset and N == self.N_in:
|
|
341
|
+
x_use = x.index_select(dim=2, index=self.in_cell_ids_t.to(x.device))
|
|
342
|
+
else:
|
|
343
|
+
x_use = x
|
|
344
|
+
|
|
345
|
+
# sparse mm expects 2D: (K_out, K_in) @ (K_in, B*C)
|
|
346
|
+
x2 = x_use.reshape(B * C, -1).transpose(0, 1).contiguous()
|
|
347
|
+
y2 = torch.sparse.mm(self.M, x2)
|
|
348
|
+
y = y2.transpose(0, 1).reshape(B, C, self.K_out).contiguous()
|
|
349
|
+
return y, self.cell_ids_out_t.to(x.device)
|
|
350
|
+
|
|
351
|
+
# maxpool
|
|
352
|
+
if self.has_in_subset and N == self.N_in:
|
|
353
|
+
x_use = x.index_select(dim=2, index=self.in_cell_ids_t.to(x.device))
|
|
354
|
+
else:
|
|
355
|
+
x_use = x
|
|
356
|
+
|
|
357
|
+
if self.has_in_subset:
|
|
358
|
+
# children_compact: [K_out, 4] indices in 0..K_in-1 or -1
|
|
359
|
+
ch = self.children_compact.to(x.device) # [K_out,4]
|
|
360
|
+
# gather with masking
|
|
361
|
+
# We build y by iterating 4 children with max
|
|
362
|
+
y = None
|
|
363
|
+
for j in range(4):
|
|
364
|
+
idx = ch[:, j] # [K_out]
|
|
365
|
+
mask = idx >= 0
|
|
366
|
+
# start with very negative so missing children don't win
|
|
367
|
+
tmp = torch.full((B, C, self.K_out), -torch.inf, device=x.device, dtype=x.dtype)
|
|
368
|
+
if mask.any():
|
|
369
|
+
tmp[:, :, mask] = x_use.index_select(dim=2, index=idx[mask]).reshape(B, C, -1)
|
|
370
|
+
y = tmp if y is None else torch.maximum(y, tmp)
|
|
371
|
+
# If a parent had no valid children at all, it is -inf -> set to 0
|
|
372
|
+
y = torch.where(torch.isfinite(y), y, torch.zeros_like(y))
|
|
373
|
+
return y, self.cell_ids_out_t.to(x.device)
|
|
374
|
+
|
|
375
|
+
else:
|
|
376
|
+
ch = self.children_full.to(x.device) # [K_out,4] full indices
|
|
377
|
+
# gather children and max
|
|
378
|
+
xch = x_use.index_select(dim=2, index=ch.reshape(-1)).reshape(B, C, self.K_out, 4)
|
|
379
|
+
y = xch.max(dim=3).values
|
|
380
|
+
return y, self.cell_ids_out_t.to(x.device)
|
foscat/SphereUpGeo.py
ADDED
|
@@ -0,0 +1,175 @@
|
|
|
1
|
+
import torch
|
|
2
|
+
import torch.nn as nn
|
|
3
|
+
import numpy as np
|
|
4
|
+
|
|
5
|
+
from foscat.SphereDownGeo import SphereDownGeo
|
|
6
|
+
|
|
7
|
+
|
|
8
|
+
class SphereUpGeo(nn.Module):
|
|
9
|
+
"""Geometric HEALPix upsampling operator using the transpose of SphereDownGeo.
|
|
10
|
+
|
|
11
|
+
`cell_ids_out` (coarse pixels at nside_out, NESTED) is mandatory.
|
|
12
|
+
Forward expects x of shape [B, C, K_out] aligned with that order.
|
|
13
|
+
Output is a full fine-grid map [B, C, N_in] at nside_in = 2*nside_out.
|
|
14
|
+
|
|
15
|
+
Normalization (diagonal corrections):
|
|
16
|
+
- up_norm='adjoint': x_up = M^T x
|
|
17
|
+
- up_norm='col_l1': x_up = (M^T x) / col_sum, col_sum[i] = sum_k M[k,i]
|
|
18
|
+
- up_norm='diag_l2': x_up = (M^T x) / col_l2, col_l2[i] = sum_k M[k,i]^2
|
|
19
|
+
"""
|
|
20
|
+
|
|
21
|
+
def __init__(
|
|
22
|
+
self,
|
|
23
|
+
nside_out: int,
|
|
24
|
+
cell_ids_out,
|
|
25
|
+
radius_deg: float | None = None,
|
|
26
|
+
sigma_deg: float | None = None,
|
|
27
|
+
weight_norm: str = "l1",
|
|
28
|
+
up_norm: str = "col_l1",
|
|
29
|
+
eps: float = 1e-12,
|
|
30
|
+
device=None,
|
|
31
|
+
dtype=torch.float32,
|
|
32
|
+
):
|
|
33
|
+
super().__init__()
|
|
34
|
+
|
|
35
|
+
if cell_ids_out is None:
|
|
36
|
+
raise ValueError("cell_ids_out is mandatory (1D list/np/tensor of coarse HEALPix ids at nside_out).")
|
|
37
|
+
|
|
38
|
+
if device is None:
|
|
39
|
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
|
40
|
+
self.device = device
|
|
41
|
+
self.dtype = dtype
|
|
42
|
+
|
|
43
|
+
self.nside_out = int(nside_out)
|
|
44
|
+
assert (self.nside_out & (self.nside_out - 1)) == 0, "nside_out must be a power of 2."
|
|
45
|
+
self.nside_in = self.nside_out * 2
|
|
46
|
+
|
|
47
|
+
self.N_out = 12 * self.nside_out * self.nside_out
|
|
48
|
+
self.N_in = 12 * self.nside_in * self.nside_in
|
|
49
|
+
|
|
50
|
+
up_norm = str(up_norm).lower().strip()
|
|
51
|
+
if up_norm not in ("adjoint", "col_l1", "diag_l2"):
|
|
52
|
+
raise ValueError("up_norm must be 'adjoint', 'col_l1', or 'diag_l2'.")
|
|
53
|
+
self.up_norm = up_norm
|
|
54
|
+
self.eps = float(eps)
|
|
55
|
+
|
|
56
|
+
# Coarse ids in user-provided order (must be unique for alignment)
|
|
57
|
+
if isinstance(cell_ids_out, torch.Tensor):
|
|
58
|
+
cell_ids_out_np = cell_ids_out.detach().cpu().numpy().astype(np.int64)
|
|
59
|
+
else:
|
|
60
|
+
cell_ids_out_np = np.asarray(cell_ids_out, dtype=np.int64)
|
|
61
|
+
|
|
62
|
+
if cell_ids_out_np.ndim != 1:
|
|
63
|
+
raise ValueError("cell_ids_out must be 1D")
|
|
64
|
+
if cell_ids_out_np.size == 0:
|
|
65
|
+
raise ValueError("cell_ids_out must be non-empty")
|
|
66
|
+
if cell_ids_out_np.min() < 0 or cell_ids_out_np.max() >= self.N_out:
|
|
67
|
+
raise ValueError("cell_ids_out contains out-of-bounds ids for this nside_out")
|
|
68
|
+
if np.unique(cell_ids_out_np).size != cell_ids_out_np.size:
|
|
69
|
+
raise ValueError("cell_ids_out must not contain duplicates (order matters for alignment).")
|
|
70
|
+
|
|
71
|
+
self.cell_ids_out_np = cell_ids_out_np
|
|
72
|
+
self.K_out = int(cell_ids_out_np.size)
|
|
73
|
+
self.register_buffer("cell_ids_out_t", torch.as_tensor(cell_ids_out_np, dtype=torch.long, device=self.device))
|
|
74
|
+
|
|
75
|
+
# Build the FULL down operator at fine resolution (nside_in -> nside_out)
|
|
76
|
+
tmp_down = SphereDownGeo(
|
|
77
|
+
nside_in=self.nside_in,
|
|
78
|
+
mode="smooth",
|
|
79
|
+
radius_deg=radius_deg,
|
|
80
|
+
sigma_deg=sigma_deg,
|
|
81
|
+
weight_norm=weight_norm,
|
|
82
|
+
device=self.device,
|
|
83
|
+
dtype=self.dtype,
|
|
84
|
+
use_csr=False,
|
|
85
|
+
)
|
|
86
|
+
|
|
87
|
+
M_down_full = torch.sparse_coo_tensor(
|
|
88
|
+
tmp_down.M.indices(),
|
|
89
|
+
tmp_down.M.values(),
|
|
90
|
+
size=(tmp_down.N_out, tmp_down.N_in),
|
|
91
|
+
device=self.device,
|
|
92
|
+
dtype=self.dtype,
|
|
93
|
+
).coalesce()
|
|
94
|
+
|
|
95
|
+
# Extract ONLY the requested coarse rows, in the provided order.
|
|
96
|
+
# We do this on CPU with numpy for simplicity and speed at init.
|
|
97
|
+
idx = M_down_full.indices().cpu().numpy()
|
|
98
|
+
vals = M_down_full.values().cpu().numpy()
|
|
99
|
+
rows = idx[0]
|
|
100
|
+
cols = idx[1]
|
|
101
|
+
|
|
102
|
+
# Map original row id -> new row position [0..K_out-1]
|
|
103
|
+
row_map = {int(r): i for i, r in enumerate(cell_ids_out_np.tolist())}
|
|
104
|
+
mask = np.fromiter((r in row_map for r in rows), dtype=bool, count=rows.size)
|
|
105
|
+
|
|
106
|
+
rows_sel = rows[mask]
|
|
107
|
+
cols_sel = cols[mask]
|
|
108
|
+
vals_sel = vals[mask]
|
|
109
|
+
|
|
110
|
+
new_rows = np.fromiter((row_map[int(r)] for r in rows_sel), dtype=np.int64, count=rows_sel.size)
|
|
111
|
+
|
|
112
|
+
M_down_sub = torch.sparse_coo_tensor(
|
|
113
|
+
torch.as_tensor(np.stack([new_rows, cols_sel], axis=0), dtype=torch.long),
|
|
114
|
+
torch.as_tensor(vals_sel, dtype=self.dtype),
|
|
115
|
+
size=(self.K_out, self.N_in),
|
|
116
|
+
device=self.device,
|
|
117
|
+
dtype=self.dtype,
|
|
118
|
+
).coalesce()
|
|
119
|
+
|
|
120
|
+
# Store M^T (sparse) so forward is just sparse.mm
|
|
121
|
+
M_up = self._transpose_sparse(M_down_sub) # [N_in, K_out]
|
|
122
|
+
self.register_buffer("M_indices", M_up.indices())
|
|
123
|
+
self.register_buffer("M_values", M_up.values())
|
|
124
|
+
self.M_size = M_up.size()
|
|
125
|
+
|
|
126
|
+
# Diagonal normalizers (length N_in), based on the selected coarse rows only
|
|
127
|
+
idx_sub = M_down_sub.indices()
|
|
128
|
+
vals_sub = M_down_sub.values()
|
|
129
|
+
fine_cols = idx_sub[1]
|
|
130
|
+
|
|
131
|
+
col_sum = torch.zeros(self.N_in, device=self.device, dtype=self.dtype)
|
|
132
|
+
col_l2 = torch.zeros(self.N_in, device=self.device, dtype=self.dtype)
|
|
133
|
+
col_sum.scatter_add_(0, fine_cols, vals_sub)
|
|
134
|
+
col_l2.scatter_add_(0, fine_cols, vals_sub * vals_sub)
|
|
135
|
+
|
|
136
|
+
self.register_buffer("col_sum", col_sum)
|
|
137
|
+
self.register_buffer("col_l2", col_l2)
|
|
138
|
+
|
|
139
|
+
# Fine ids (full sphere)
|
|
140
|
+
self.register_buffer("cell_ids_in_t", torch.arange(self.N_in, dtype=torch.long, device=self.device))
|
|
141
|
+
|
|
142
|
+
self.M_T = torch.sparse_coo_tensor(
|
|
143
|
+
self.M_indices.to(device=self.device),
|
|
144
|
+
self.M_values.to(device=self.device, dtype=self.dtype),
|
|
145
|
+
size=self.M_size,
|
|
146
|
+
device=self.device,
|
|
147
|
+
dtype=self.dtype,
|
|
148
|
+
).coalesce().to_sparse_csr().to(self.device)
|
|
149
|
+
|
|
150
|
+
@staticmethod
|
|
151
|
+
def _transpose_sparse(M: torch.Tensor) -> torch.Tensor:
|
|
152
|
+
M = M.coalesce()
|
|
153
|
+
idx = M.indices()
|
|
154
|
+
vals = M.values()
|
|
155
|
+
R, C = M.size()
|
|
156
|
+
idx_T = torch.stack([idx[1], idx[0]], dim=0)
|
|
157
|
+
return torch.sparse_coo_tensor(idx_T, vals, size=(C, R), device=M.device, dtype=M.dtype).coalesce()
|
|
158
|
+
|
|
159
|
+
def forward(self, x: torch.Tensor):
|
|
160
|
+
"""x: [B, C, K_out] -> x_up: [B, C, N_in]."""
|
|
161
|
+
B, C, K_out = x.shape
|
|
162
|
+
assert K_out == self.K_out, f"Expected K_out={self.K_out}, got {K_out}"
|
|
163
|
+
|
|
164
|
+
x_bc = x.reshape(B * C, K_out)
|
|
165
|
+
x_up_bc_T = torch.sparse.mm(self.M_T, x_bc.T) # [N_in, B*C]
|
|
166
|
+
x_up = x_up_bc_T.T.reshape(B, C, self.N_in) # [B, C, N_in]
|
|
167
|
+
|
|
168
|
+
if self.up_norm == "col_l1":
|
|
169
|
+
denom = self.col_sum.to(device=x.device, dtype=x.dtype).clamp_min(self.eps)
|
|
170
|
+
x_up = x_up / denom.view(1, 1, -1)
|
|
171
|
+
elif self.up_norm == "diag_l2":
|
|
172
|
+
denom = self.col_l2.to(device=x.device, dtype=x.dtype).clamp_min(self.eps)
|
|
173
|
+
x_up = x_up / denom.view(1, 1, -1)
|
|
174
|
+
|
|
175
|
+
return x_up, self.cell_ids_in_t.to(device=x.device)
|