flwr 1.24.0__py3-none-any.whl → 1.25.0__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- flwr/cli/app_cmd/review.py +13 -3
- flwr/cli/federation/show.py +4 -3
- flwr/cli/ls.py +44 -3
- flwr/cli/new/new.py +106 -297
- flwr/cli/run/run.py +12 -17
- flwr/cli/run_utils.py +23 -5
- flwr/cli/stop.py +1 -1
- flwr/cli/supernode/ls.py +10 -5
- flwr/cli/utils.py +0 -137
- flwr/client/grpc_adapter_client/connection.py +2 -2
- flwr/client/grpc_rere_client/connection.py +6 -3
- flwr/client/rest_client/connection.py +6 -4
- flwr/common/serde.py +6 -0
- flwr/common/typing.py +6 -0
- flwr/proto/fleet_pb2.py +10 -10
- flwr/proto/fleet_pb2.pyi +5 -1
- flwr/proto/run_pb2.py +24 -24
- flwr/proto/run_pb2.pyi +10 -1
- flwr/server/app.py +1 -0
- flwr/server/superlink/fleet/message_handler/message_handler.py +41 -2
- flwr/server/superlink/linkstate/in_memory_linkstate.py +34 -0
- flwr/server/superlink/linkstate/linkstate.py +32 -0
- flwr/server/superlink/linkstate/sqlite_linkstate.py +60 -3
- flwr/supercore/constant.py +3 -0
- flwr/supercore/utils.py +190 -0
- flwr/superlink/servicer/control/control_grpc.py +2 -0
- flwr/superlink/servicer/control/control_servicer.py +88 -5
- flwr/supernode/nodestate/in_memory_nodestate.py +62 -1
- flwr/supernode/nodestate/nodestate.py +45 -0
- flwr/supernode/servicer/clientappio/clientappio_servicer.py +7 -1
- flwr/supernode/start_client_internal.py +7 -4
- {flwr-1.24.0.dist-info → flwr-1.25.0.dist-info}/METADATA +2 -4
- {flwr-1.24.0.dist-info → flwr-1.25.0.dist-info}/RECORD +35 -96
- flwr/cli/new/templates/__init__.py +0 -15
- flwr/cli/new/templates/app/.gitignore.tpl +0 -163
- flwr/cli/new/templates/app/LICENSE.tpl +0 -202
- flwr/cli/new/templates/app/README.baseline.md.tpl +0 -127
- flwr/cli/new/templates/app/README.flowertune.md.tpl +0 -68
- flwr/cli/new/templates/app/README.md.tpl +0 -37
- flwr/cli/new/templates/app/__init__.py +0 -15
- flwr/cli/new/templates/app/code/__init__.baseline.py.tpl +0 -1
- flwr/cli/new/templates/app/code/__init__.py +0 -15
- flwr/cli/new/templates/app/code/__init__.py.tpl +0 -1
- flwr/cli/new/templates/app/code/__init__.pytorch_legacy_api.py.tpl +0 -1
- flwr/cli/new/templates/app/code/client.baseline.py.tpl +0 -75
- flwr/cli/new/templates/app/code/client.huggingface.py.tpl +0 -93
- flwr/cli/new/templates/app/code/client.jax.py.tpl +0 -71
- flwr/cli/new/templates/app/code/client.mlx.py.tpl +0 -102
- flwr/cli/new/templates/app/code/client.numpy.py.tpl +0 -46
- flwr/cli/new/templates/app/code/client.pytorch.py.tpl +0 -80
- flwr/cli/new/templates/app/code/client.pytorch_legacy_api.py.tpl +0 -55
- flwr/cli/new/templates/app/code/client.sklearn.py.tpl +0 -108
- flwr/cli/new/templates/app/code/client.tensorflow.py.tpl +0 -82
- flwr/cli/new/templates/app/code/client.xgboost.py.tpl +0 -110
- flwr/cli/new/templates/app/code/dataset.baseline.py.tpl +0 -36
- flwr/cli/new/templates/app/code/flwr_tune/__init__.py +0 -15
- flwr/cli/new/templates/app/code/flwr_tune/client_app.py.tpl +0 -92
- flwr/cli/new/templates/app/code/flwr_tune/dataset.py.tpl +0 -87
- flwr/cli/new/templates/app/code/flwr_tune/models.py.tpl +0 -56
- flwr/cli/new/templates/app/code/flwr_tune/server_app.py.tpl +0 -73
- flwr/cli/new/templates/app/code/flwr_tune/strategy.py.tpl +0 -78
- flwr/cli/new/templates/app/code/model.baseline.py.tpl +0 -66
- flwr/cli/new/templates/app/code/server.baseline.py.tpl +0 -43
- flwr/cli/new/templates/app/code/server.huggingface.py.tpl +0 -42
- flwr/cli/new/templates/app/code/server.jax.py.tpl +0 -39
- flwr/cli/new/templates/app/code/server.mlx.py.tpl +0 -41
- flwr/cli/new/templates/app/code/server.numpy.py.tpl +0 -38
- flwr/cli/new/templates/app/code/server.pytorch.py.tpl +0 -41
- flwr/cli/new/templates/app/code/server.pytorch_legacy_api.py.tpl +0 -31
- flwr/cli/new/templates/app/code/server.sklearn.py.tpl +0 -44
- flwr/cli/new/templates/app/code/server.tensorflow.py.tpl +0 -38
- flwr/cli/new/templates/app/code/server.xgboost.py.tpl +0 -56
- flwr/cli/new/templates/app/code/strategy.baseline.py.tpl +0 -1
- flwr/cli/new/templates/app/code/task.huggingface.py.tpl +0 -98
- flwr/cli/new/templates/app/code/task.jax.py.tpl +0 -57
- flwr/cli/new/templates/app/code/task.mlx.py.tpl +0 -102
- flwr/cli/new/templates/app/code/task.numpy.py.tpl +0 -7
- flwr/cli/new/templates/app/code/task.pytorch.py.tpl +0 -99
- flwr/cli/new/templates/app/code/task.pytorch_legacy_api.py.tpl +0 -111
- flwr/cli/new/templates/app/code/task.sklearn.py.tpl +0 -67
- flwr/cli/new/templates/app/code/task.tensorflow.py.tpl +0 -52
- flwr/cli/new/templates/app/code/task.xgboost.py.tpl +0 -67
- flwr/cli/new/templates/app/code/utils.baseline.py.tpl +0 -1
- flwr/cli/new/templates/app/pyproject.baseline.toml.tpl +0 -146
- flwr/cli/new/templates/app/pyproject.flowertune.toml.tpl +0 -80
- flwr/cli/new/templates/app/pyproject.huggingface.toml.tpl +0 -65
- flwr/cli/new/templates/app/pyproject.jax.toml.tpl +0 -52
- flwr/cli/new/templates/app/pyproject.mlx.toml.tpl +0 -56
- flwr/cli/new/templates/app/pyproject.numpy.toml.tpl +0 -49
- flwr/cli/new/templates/app/pyproject.pytorch.toml.tpl +0 -53
- flwr/cli/new/templates/app/pyproject.pytorch_legacy_api.toml.tpl +0 -53
- flwr/cli/new/templates/app/pyproject.sklearn.toml.tpl +0 -52
- flwr/cli/new/templates/app/pyproject.tensorflow.toml.tpl +0 -53
- flwr/cli/new/templates/app/pyproject.xgboost.toml.tpl +0 -61
- {flwr-1.24.0.dist-info → flwr-1.25.0.dist-info}/WHEEL +0 -0
- {flwr-1.24.0.dist-info → flwr-1.25.0.dist-info}/entry_points.txt +0 -0
|
@@ -1,75 +0,0 @@
|
|
|
1
|
-
"""$project_name: A Flower Baseline."""
|
|
2
|
-
|
|
3
|
-
import torch
|
|
4
|
-
from flwr.app import ArrayRecord, Context, Message, MetricRecord, RecordDict
|
|
5
|
-
from flwr.clientapp import ClientApp
|
|
6
|
-
|
|
7
|
-
from $import_name.dataset import load_data
|
|
8
|
-
from $import_name.model import Net
|
|
9
|
-
from $import_name.model import test as test_fn
|
|
10
|
-
from $import_name.model import train as train_fn
|
|
11
|
-
|
|
12
|
-
# Flower ClientApp
|
|
13
|
-
app = ClientApp()
|
|
14
|
-
|
|
15
|
-
|
|
16
|
-
@app.train()
|
|
17
|
-
def train(msg: Message, context: Context):
|
|
18
|
-
"""Train the model on local data."""
|
|
19
|
-
|
|
20
|
-
# Load the model and initialize it with the received weights
|
|
21
|
-
model = Net()
|
|
22
|
-
model.load_state_dict(msg.content["arrays"].to_torch_state_dict())
|
|
23
|
-
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
|
|
24
|
-
|
|
25
|
-
# Load the data
|
|
26
|
-
partition_id = int(context.node_config["partition-id"])
|
|
27
|
-
num_partitions = int(context.node_config["num-partitions"])
|
|
28
|
-
trainloader, _ = load_data(partition_id, num_partitions)
|
|
29
|
-
local_epochs = context.run_config["local-epochs"]
|
|
30
|
-
|
|
31
|
-
# Call the training function
|
|
32
|
-
train_loss = train_fn(
|
|
33
|
-
model,
|
|
34
|
-
trainloader,
|
|
35
|
-
local_epochs,
|
|
36
|
-
device,
|
|
37
|
-
)
|
|
38
|
-
|
|
39
|
-
# Construct and return reply Message
|
|
40
|
-
model_record = ArrayRecord(model.state_dict())
|
|
41
|
-
metrics = {
|
|
42
|
-
"train_loss": train_loss,
|
|
43
|
-
"num-examples": len(trainloader.dataset),
|
|
44
|
-
}
|
|
45
|
-
metric_record = MetricRecord(metrics)
|
|
46
|
-
content = RecordDict({"arrays": model_record, "metrics": metric_record})
|
|
47
|
-
return Message(content=content, reply_to=msg)
|
|
48
|
-
|
|
49
|
-
|
|
50
|
-
@app.evaluate()
|
|
51
|
-
def evaluate(msg: Message, context: Context):
|
|
52
|
-
"""Evaluate the model on local data."""
|
|
53
|
-
|
|
54
|
-
# Load the model and initialize it with the received weights
|
|
55
|
-
model = Net()
|
|
56
|
-
model.load_state_dict(msg.content["arrays"].to_torch_state_dict())
|
|
57
|
-
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
|
|
58
|
-
|
|
59
|
-
# Load the data
|
|
60
|
-
partition_id = int(context.node_config["partition-id"])
|
|
61
|
-
num_partitions = int(context.node_config["num-partitions"])
|
|
62
|
-
_, valloader = load_data(partition_id, num_partitions)
|
|
63
|
-
|
|
64
|
-
# Call the evaluation function
|
|
65
|
-
eval_loss, eval_acc = test_fn(model, valloader, device)
|
|
66
|
-
|
|
67
|
-
# Construct and return reply Message
|
|
68
|
-
metrics = {
|
|
69
|
-
"eval_loss": eval_loss,
|
|
70
|
-
"eval_acc": eval_acc,
|
|
71
|
-
"num-examples": len(valloader.dataset),
|
|
72
|
-
}
|
|
73
|
-
metric_record = MetricRecord(metrics)
|
|
74
|
-
content = RecordDict({"metrics": metric_record})
|
|
75
|
-
return Message(content=content, reply_to=msg)
|
|
@@ -1,93 +0,0 @@
|
|
|
1
|
-
"""$project_name: A Flower / $framework_str app."""
|
|
2
|
-
|
|
3
|
-
import torch
|
|
4
|
-
from flwr.app import ArrayRecord, Context, Message, MetricRecord, RecordDict
|
|
5
|
-
from flwr.clientapp import ClientApp
|
|
6
|
-
from transformers import AutoModelForSequenceClassification
|
|
7
|
-
|
|
8
|
-
from $import_name.task import load_data
|
|
9
|
-
from $import_name.task import test as test_fn
|
|
10
|
-
from $import_name.task import train as train_fn
|
|
11
|
-
|
|
12
|
-
# Flower ClientApp
|
|
13
|
-
app = ClientApp()
|
|
14
|
-
|
|
15
|
-
|
|
16
|
-
@app.train()
|
|
17
|
-
def train(msg: Message, context: Context):
|
|
18
|
-
"""Train the model on local data."""
|
|
19
|
-
|
|
20
|
-
# Get this client's dataset partition
|
|
21
|
-
partition_id = context.node_config["partition-id"]
|
|
22
|
-
num_partitions = context.node_config["num-partitions"]
|
|
23
|
-
model_name = context.run_config["model-name"]
|
|
24
|
-
trainloader, _ = load_data(partition_id, num_partitions, model_name)
|
|
25
|
-
|
|
26
|
-
# Load model
|
|
27
|
-
num_labels = context.run_config["num-labels"]
|
|
28
|
-
net = AutoModelForSequenceClassification.from_pretrained(
|
|
29
|
-
model_name, num_labels=num_labels
|
|
30
|
-
)
|
|
31
|
-
|
|
32
|
-
# Initialize it with the received weights
|
|
33
|
-
net.load_state_dict(msg.content["arrays"].to_torch_state_dict())
|
|
34
|
-
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
|
|
35
|
-
net.to(device)
|
|
36
|
-
|
|
37
|
-
# Train the model on local data
|
|
38
|
-
train_loss = train_fn(
|
|
39
|
-
net,
|
|
40
|
-
trainloader,
|
|
41
|
-
context.run_config["local-steps"],
|
|
42
|
-
device,
|
|
43
|
-
)
|
|
44
|
-
|
|
45
|
-
# Construct and return reply Message
|
|
46
|
-
model_record = ArrayRecord(net.state_dict())
|
|
47
|
-
metrics = {
|
|
48
|
-
"train_loss": train_loss,
|
|
49
|
-
"num-examples": len(trainloader.dataset),
|
|
50
|
-
}
|
|
51
|
-
metric_record = MetricRecord(metrics)
|
|
52
|
-
content = RecordDict({"arrays": model_record, "metrics": metric_record})
|
|
53
|
-
return Message(content=content, reply_to=msg)
|
|
54
|
-
|
|
55
|
-
|
|
56
|
-
@app.evaluate()
|
|
57
|
-
def evaluate(msg: Message, context: Context):
|
|
58
|
-
"""Evaluate the model on local data."""
|
|
59
|
-
|
|
60
|
-
# Get this client's dataset partition
|
|
61
|
-
partition_id = context.node_config["partition-id"]
|
|
62
|
-
num_partitions = context.node_config["num-partitions"]
|
|
63
|
-
model_name = context.run_config["model-name"]
|
|
64
|
-
_, valloader = load_data(partition_id, num_partitions, model_name)
|
|
65
|
-
|
|
66
|
-
# Load model
|
|
67
|
-
num_labels = context.run_config["num-labels"]
|
|
68
|
-
net = AutoModelForSequenceClassification.from_pretrained(
|
|
69
|
-
model_name, num_labels=num_labels
|
|
70
|
-
)
|
|
71
|
-
|
|
72
|
-
# Initialize it with the received weights
|
|
73
|
-
net.load_state_dict(msg.content["arrays"].to_torch_state_dict())
|
|
74
|
-
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
|
|
75
|
-
net.to(device)
|
|
76
|
-
|
|
77
|
-
# Evaluate the model on local data
|
|
78
|
-
val_loss, val_accuracy = test_fn(
|
|
79
|
-
net,
|
|
80
|
-
valloader,
|
|
81
|
-
device,
|
|
82
|
-
)
|
|
83
|
-
|
|
84
|
-
# Construct and return reply Message
|
|
85
|
-
model_record = ArrayRecord(net.state_dict())
|
|
86
|
-
metrics = {
|
|
87
|
-
"val_loss": val_loss,
|
|
88
|
-
"val_accuracy": val_accuracy,
|
|
89
|
-
"num-examples": len(valloader.dataset),
|
|
90
|
-
}
|
|
91
|
-
metric_record = MetricRecord(metrics)
|
|
92
|
-
content = RecordDict({"arrays": model_record, "metrics": metric_record})
|
|
93
|
-
return Message(content=content, reply_to=msg)
|
|
@@ -1,71 +0,0 @@
|
|
|
1
|
-
"""$project_name: A Flower / $framework_str app."""
|
|
2
|
-
|
|
3
|
-
import jax
|
|
4
|
-
from flwr.app import ArrayRecord, Context, Message, MetricRecord, RecordDict
|
|
5
|
-
from flwr.clientapp import ClientApp
|
|
6
|
-
|
|
7
|
-
from $import_name.task import evaluation as evaluation_fn
|
|
8
|
-
from $import_name.task import get_params, load_data, load_model, loss_fn, set_params
|
|
9
|
-
from $import_name.task import train as train_fn
|
|
10
|
-
|
|
11
|
-
# Flower ClientApp
|
|
12
|
-
app = ClientApp()
|
|
13
|
-
|
|
14
|
-
|
|
15
|
-
@app.train()
|
|
16
|
-
def train(msg: Message, context: Context):
|
|
17
|
-
"""Train the model on local data."""
|
|
18
|
-
|
|
19
|
-
# Read from config
|
|
20
|
-
input_dim = context.run_config["input-dim"]
|
|
21
|
-
|
|
22
|
-
# Load data and model
|
|
23
|
-
train_x, train_y, _, _ = load_data()
|
|
24
|
-
model = load_model((input_dim,))
|
|
25
|
-
grad_fn = jax.grad(loss_fn)
|
|
26
|
-
|
|
27
|
-
# Set model parameters
|
|
28
|
-
ndarrays = msg.content["arrays"].to_numpy_ndarrays()
|
|
29
|
-
set_params(model, ndarrays)
|
|
30
|
-
|
|
31
|
-
# Train the model on local data
|
|
32
|
-
model, loss, num_examples = train_fn(model, grad_fn, train_x, train_y)
|
|
33
|
-
|
|
34
|
-
# Construct and return reply Message
|
|
35
|
-
model_record = ArrayRecord(get_params(model))
|
|
36
|
-
metrics = {
|
|
37
|
-
"train_loss": float(loss),
|
|
38
|
-
"num-examples": num_examples,
|
|
39
|
-
}
|
|
40
|
-
metric_record = MetricRecord(metrics)
|
|
41
|
-
content = RecordDict({"arrays": model_record, "metrics": metric_record})
|
|
42
|
-
return Message(content=content, reply_to=msg)
|
|
43
|
-
|
|
44
|
-
|
|
45
|
-
@app.evaluate()
|
|
46
|
-
def evaluate(msg: Message, context: Context):
|
|
47
|
-
"""Evaluate the model on local data."""
|
|
48
|
-
|
|
49
|
-
# Read from config
|
|
50
|
-
input_dim = context.run_config["input-dim"]
|
|
51
|
-
|
|
52
|
-
# Load data and model
|
|
53
|
-
_, _, test_x, test_y = load_data()
|
|
54
|
-
model = load_model((input_dim,))
|
|
55
|
-
grad_fn = jax.grad(loss_fn)
|
|
56
|
-
|
|
57
|
-
# Set model parameters
|
|
58
|
-
ndarrays = msg.content["arrays"].to_numpy_ndarrays()
|
|
59
|
-
set_params(model, ndarrays)
|
|
60
|
-
|
|
61
|
-
# Evaluate the model on local data
|
|
62
|
-
loss, num_examples = evaluation_fn(model, grad_fn, test_x, test_y)
|
|
63
|
-
|
|
64
|
-
# Construct and return reply Message
|
|
65
|
-
metrics = {
|
|
66
|
-
"test_loss": float(loss),
|
|
67
|
-
"num-examples": num_examples,
|
|
68
|
-
}
|
|
69
|
-
metric_record = MetricRecord(metrics)
|
|
70
|
-
content = RecordDict({"metrics": metric_record})
|
|
71
|
-
return Message(content=content, reply_to=msg)
|
|
@@ -1,102 +0,0 @@
|
|
|
1
|
-
"""$project_name: A Flower / $framework_str app."""
|
|
2
|
-
|
|
3
|
-
import mlx.core as mx
|
|
4
|
-
import mlx.nn as nn
|
|
5
|
-
import mlx.optimizers as optim
|
|
6
|
-
from flwr.app import ArrayRecord, Context, Message, MetricRecord, RecordDict
|
|
7
|
-
from flwr.clientapp import ClientApp
|
|
8
|
-
|
|
9
|
-
from $import_name.task import (
|
|
10
|
-
MLP,
|
|
11
|
-
batch_iterate,
|
|
12
|
-
eval_fn,
|
|
13
|
-
get_params,
|
|
14
|
-
load_data,
|
|
15
|
-
loss_fn,
|
|
16
|
-
set_params,
|
|
17
|
-
)
|
|
18
|
-
|
|
19
|
-
# Flower ClientApp
|
|
20
|
-
app = ClientApp()
|
|
21
|
-
|
|
22
|
-
|
|
23
|
-
@app.train()
|
|
24
|
-
def train(msg: Message, context: Context):
|
|
25
|
-
"""Train the model on local data."""
|
|
26
|
-
|
|
27
|
-
# Read config
|
|
28
|
-
num_layers = context.run_config["num-layers"]
|
|
29
|
-
input_dim = context.run_config["input-dim"]
|
|
30
|
-
hidden_dim = context.run_config["hidden-dim"]
|
|
31
|
-
batch_size = context.run_config["batch-size"]
|
|
32
|
-
learning_rate = context.run_config["lr"]
|
|
33
|
-
num_epochs = context.run_config["local-epochs"]
|
|
34
|
-
|
|
35
|
-
# Instantiate model and apply global parameters
|
|
36
|
-
model = MLP(num_layers, input_dim, hidden_dim, output_dim=10)
|
|
37
|
-
ndarrays = msg.content["arrays"].to_numpy_ndarrays()
|
|
38
|
-
set_params(model, ndarrays)
|
|
39
|
-
|
|
40
|
-
# Define optimizer and loss function
|
|
41
|
-
optimizer = optim.SGD(learning_rate=learning_rate)
|
|
42
|
-
loss_and_grad_fn = nn.value_and_grad(model, loss_fn)
|
|
43
|
-
|
|
44
|
-
# Load data
|
|
45
|
-
partition_id = context.node_config["partition-id"]
|
|
46
|
-
num_partitions = context.node_config["num-partitions"]
|
|
47
|
-
train_images, train_labels, _, _ = load_data(partition_id, num_partitions)
|
|
48
|
-
|
|
49
|
-
# Train the model on local data
|
|
50
|
-
for _ in range(num_epochs):
|
|
51
|
-
for X, y in batch_iterate(batch_size, train_images, train_labels):
|
|
52
|
-
_, grads = loss_and_grad_fn(model, X, y)
|
|
53
|
-
optimizer.update(model, grads)
|
|
54
|
-
mx.eval(model.parameters(), optimizer.state)
|
|
55
|
-
|
|
56
|
-
# Compute train accuracy and loss
|
|
57
|
-
accuracy = eval_fn(model, train_images, train_labels)
|
|
58
|
-
loss = loss_fn(model, train_images, train_labels)
|
|
59
|
-
# Construct and return reply Message
|
|
60
|
-
model_record = ArrayRecord(get_params(model))
|
|
61
|
-
metrics = {
|
|
62
|
-
"num-examples": len(train_images),
|
|
63
|
-
"accuracy": float(accuracy.item()),
|
|
64
|
-
"loss": float(loss.item()),
|
|
65
|
-
}
|
|
66
|
-
metric_record = MetricRecord(metrics)
|
|
67
|
-
content = RecordDict({"arrays": model_record, "metrics": metric_record})
|
|
68
|
-
return Message(content=content, reply_to=msg)
|
|
69
|
-
|
|
70
|
-
|
|
71
|
-
@app.evaluate()
|
|
72
|
-
def evaluate(msg: Message, context: Context):
|
|
73
|
-
"""Evaluate the model on local data."""
|
|
74
|
-
|
|
75
|
-
# Read config
|
|
76
|
-
num_layers = context.run_config["num-layers"]
|
|
77
|
-
input_dim = context.run_config["input-dim"]
|
|
78
|
-
hidden_dim = context.run_config["hidden-dim"]
|
|
79
|
-
|
|
80
|
-
# Instantiate model and apply global parameters
|
|
81
|
-
model = MLP(num_layers, input_dim, hidden_dim, output_dim=10)
|
|
82
|
-
ndarrays = msg.content["arrays"].to_numpy_ndarrays()
|
|
83
|
-
set_params(model, ndarrays)
|
|
84
|
-
|
|
85
|
-
# Load data
|
|
86
|
-
partition_id = context.node_config["partition-id"]
|
|
87
|
-
num_partitions = context.node_config["num-partitions"]
|
|
88
|
-
_, _, test_images, test_labels = load_data(partition_id, num_partitions)
|
|
89
|
-
|
|
90
|
-
# Evaluate the model on local data
|
|
91
|
-
accuracy = eval_fn(model, test_images, test_labels)
|
|
92
|
-
loss = loss_fn(model, test_images, test_labels)
|
|
93
|
-
|
|
94
|
-
# Construct and return reply Message
|
|
95
|
-
metrics = {
|
|
96
|
-
"num-examples": len(test_images),
|
|
97
|
-
"accuracy": float(accuracy.item()),
|
|
98
|
-
"loss": float(loss.item()),
|
|
99
|
-
}
|
|
100
|
-
metric_record = MetricRecord(metrics)
|
|
101
|
-
content = RecordDict({"metrics": metric_record})
|
|
102
|
-
return Message(content=content, reply_to=msg)
|
|
@@ -1,46 +0,0 @@
|
|
|
1
|
-
"""$project_name: A Flower / $framework_str app."""
|
|
2
|
-
|
|
3
|
-
import numpy as np
|
|
4
|
-
from flwr.app import ArrayRecord, Context, Message, MetricRecord, RecordDict
|
|
5
|
-
from flwr.clientapp import ClientApp
|
|
6
|
-
|
|
7
|
-
# Flower ClientApp
|
|
8
|
-
app = ClientApp()
|
|
9
|
-
|
|
10
|
-
|
|
11
|
-
@app.train()
|
|
12
|
-
def train(msg: Message, context: Context):
|
|
13
|
-
"""Train the model on local data."""
|
|
14
|
-
|
|
15
|
-
# The model is the global arrays
|
|
16
|
-
ndarrays = msg.content["arrays"].to_numpy_ndarrays()
|
|
17
|
-
|
|
18
|
-
# Simulate local training (here we just add random noise to model parameters)
|
|
19
|
-
model = [m + np.random.rand(*m.shape) for m in ndarrays]
|
|
20
|
-
|
|
21
|
-
# Construct and return reply Message
|
|
22
|
-
model_record = ArrayRecord(model)
|
|
23
|
-
metrics = {
|
|
24
|
-
"random_metric": np.random.rand(),
|
|
25
|
-
"num-examples": 1,
|
|
26
|
-
}
|
|
27
|
-
metric_record = MetricRecord(metrics)
|
|
28
|
-
content = RecordDict({"arrays": model_record, "metrics": metric_record})
|
|
29
|
-
return Message(content=content, reply_to=msg)
|
|
30
|
-
|
|
31
|
-
|
|
32
|
-
@app.evaluate()
|
|
33
|
-
def evaluate(msg: Message, context: Context):
|
|
34
|
-
"""Evaluate the model on local data."""
|
|
35
|
-
|
|
36
|
-
# The model is the global arrays
|
|
37
|
-
ndarrays = msg.content["arrays"].to_numpy_ndarrays()
|
|
38
|
-
|
|
39
|
-
# Return reply Message
|
|
40
|
-
metrics = {
|
|
41
|
-
"random_metric": np.random.rand(3).tolist(),
|
|
42
|
-
"num-examples": 1,
|
|
43
|
-
}
|
|
44
|
-
metric_record = MetricRecord(metrics)
|
|
45
|
-
content = RecordDict({"metrics": metric_record})
|
|
46
|
-
return Message(content=content, reply_to=msg)
|
|
@@ -1,80 +0,0 @@
|
|
|
1
|
-
"""$project_name: A Flower / $framework_str app."""
|
|
2
|
-
|
|
3
|
-
import torch
|
|
4
|
-
from flwr.app import ArrayRecord, Context, Message, MetricRecord, RecordDict
|
|
5
|
-
from flwr.clientapp import ClientApp
|
|
6
|
-
|
|
7
|
-
from $import_name.task import Net, load_data
|
|
8
|
-
from $import_name.task import test as test_fn
|
|
9
|
-
from $import_name.task import train as train_fn
|
|
10
|
-
|
|
11
|
-
# Flower ClientApp
|
|
12
|
-
app = ClientApp()
|
|
13
|
-
|
|
14
|
-
|
|
15
|
-
@app.train()
|
|
16
|
-
def train(msg: Message, context: Context):
|
|
17
|
-
"""Train the model on local data."""
|
|
18
|
-
|
|
19
|
-
# Load the model and initialize it with the received weights
|
|
20
|
-
model = Net()
|
|
21
|
-
model.load_state_dict(msg.content["arrays"].to_torch_state_dict())
|
|
22
|
-
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
|
|
23
|
-
model.to(device)
|
|
24
|
-
|
|
25
|
-
# Load the data
|
|
26
|
-
partition_id = context.node_config["partition-id"]
|
|
27
|
-
num_partitions = context.node_config["num-partitions"]
|
|
28
|
-
trainloader, _ = load_data(partition_id, num_partitions)
|
|
29
|
-
|
|
30
|
-
# Call the training function
|
|
31
|
-
train_loss = train_fn(
|
|
32
|
-
model,
|
|
33
|
-
trainloader,
|
|
34
|
-
context.run_config["local-epochs"],
|
|
35
|
-
msg.content["config"]["lr"],
|
|
36
|
-
device,
|
|
37
|
-
)
|
|
38
|
-
|
|
39
|
-
# Construct and return reply Message
|
|
40
|
-
model_record = ArrayRecord(model.state_dict())
|
|
41
|
-
metrics = {
|
|
42
|
-
"train_loss": train_loss,
|
|
43
|
-
"num-examples": len(trainloader.dataset),
|
|
44
|
-
}
|
|
45
|
-
metric_record = MetricRecord(metrics)
|
|
46
|
-
content = RecordDict({"arrays": model_record, "metrics": metric_record})
|
|
47
|
-
return Message(content=content, reply_to=msg)
|
|
48
|
-
|
|
49
|
-
|
|
50
|
-
@app.evaluate()
|
|
51
|
-
def evaluate(msg: Message, context: Context):
|
|
52
|
-
"""Evaluate the model on local data."""
|
|
53
|
-
|
|
54
|
-
# Load the model and initialize it with the received weights
|
|
55
|
-
model = Net()
|
|
56
|
-
model.load_state_dict(msg.content["arrays"].to_torch_state_dict())
|
|
57
|
-
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
|
|
58
|
-
model.to(device)
|
|
59
|
-
|
|
60
|
-
# Load the data
|
|
61
|
-
partition_id = context.node_config["partition-id"]
|
|
62
|
-
num_partitions = context.node_config["num-partitions"]
|
|
63
|
-
_, valloader = load_data(partition_id, num_partitions)
|
|
64
|
-
|
|
65
|
-
# Call the evaluation function
|
|
66
|
-
eval_loss, eval_acc = test_fn(
|
|
67
|
-
model,
|
|
68
|
-
valloader,
|
|
69
|
-
device,
|
|
70
|
-
)
|
|
71
|
-
|
|
72
|
-
# Construct and return reply Message
|
|
73
|
-
metrics = {
|
|
74
|
-
"eval_loss": eval_loss,
|
|
75
|
-
"eval_acc": eval_acc,
|
|
76
|
-
"num-examples": len(valloader.dataset),
|
|
77
|
-
}
|
|
78
|
-
metric_record = MetricRecord(metrics)
|
|
79
|
-
content = RecordDict({"metrics": metric_record})
|
|
80
|
-
return Message(content=content, reply_to=msg)
|
|
@@ -1,55 +0,0 @@
|
|
|
1
|
-
"""$project_name: A Flower / $framework_str app."""
|
|
2
|
-
|
|
3
|
-
import torch
|
|
4
|
-
|
|
5
|
-
from flwr.client import ClientApp, NumPyClient
|
|
6
|
-
from flwr.common import Context
|
|
7
|
-
from $import_name.task import Net, get_weights, load_data, set_weights, test, train
|
|
8
|
-
|
|
9
|
-
|
|
10
|
-
# Define Flower Client and client_fn
|
|
11
|
-
class FlowerClient(NumPyClient):
|
|
12
|
-
def __init__(self, net, trainloader, valloader, local_epochs):
|
|
13
|
-
self.net = net
|
|
14
|
-
self.trainloader = trainloader
|
|
15
|
-
self.valloader = valloader
|
|
16
|
-
self.local_epochs = local_epochs
|
|
17
|
-
self.device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
|
|
18
|
-
self.net.to(self.device)
|
|
19
|
-
|
|
20
|
-
def fit(self, parameters, config):
|
|
21
|
-
set_weights(self.net, parameters)
|
|
22
|
-
train_loss = train(
|
|
23
|
-
self.net,
|
|
24
|
-
self.trainloader,
|
|
25
|
-
self.local_epochs,
|
|
26
|
-
self.device,
|
|
27
|
-
)
|
|
28
|
-
return (
|
|
29
|
-
get_weights(self.net),
|
|
30
|
-
len(self.trainloader.dataset),
|
|
31
|
-
{"train_loss": train_loss},
|
|
32
|
-
)
|
|
33
|
-
|
|
34
|
-
def evaluate(self, parameters, config):
|
|
35
|
-
set_weights(self.net, parameters)
|
|
36
|
-
loss, accuracy = test(self.net, self.valloader, self.device)
|
|
37
|
-
return loss, len(self.valloader.dataset), {"accuracy": accuracy}
|
|
38
|
-
|
|
39
|
-
|
|
40
|
-
def client_fn(context: Context):
|
|
41
|
-
# Load model and data
|
|
42
|
-
net = Net()
|
|
43
|
-
partition_id = context.node_config["partition-id"]
|
|
44
|
-
num_partitions = context.node_config["num-partitions"]
|
|
45
|
-
trainloader, valloader = load_data(partition_id, num_partitions)
|
|
46
|
-
local_epochs = context.run_config["local-epochs"]
|
|
47
|
-
|
|
48
|
-
# Return Client instance
|
|
49
|
-
return FlowerClient(net, trainloader, valloader, local_epochs).to_client()
|
|
50
|
-
|
|
51
|
-
|
|
52
|
-
# Flower ClientApp
|
|
53
|
-
app = ClientApp(
|
|
54
|
-
client_fn,
|
|
55
|
-
)
|
|
@@ -1,108 +0,0 @@
|
|
|
1
|
-
"""$project_name: A Flower / $framework_str app."""
|
|
2
|
-
|
|
3
|
-
import warnings
|
|
4
|
-
|
|
5
|
-
from flwr.app import ArrayRecord, Context, Message, MetricRecord, RecordDict
|
|
6
|
-
from flwr.clientapp import ClientApp
|
|
7
|
-
from sklearn.metrics import (
|
|
8
|
-
accuracy_score,
|
|
9
|
-
f1_score,
|
|
10
|
-
log_loss,
|
|
11
|
-
precision_score,
|
|
12
|
-
recall_score,
|
|
13
|
-
)
|
|
14
|
-
|
|
15
|
-
from $import_name.task import (
|
|
16
|
-
get_model,
|
|
17
|
-
get_model_params,
|
|
18
|
-
load_data,
|
|
19
|
-
set_initial_params,
|
|
20
|
-
set_model_params,
|
|
21
|
-
)
|
|
22
|
-
|
|
23
|
-
# Flower ClientApp
|
|
24
|
-
app = ClientApp()
|
|
25
|
-
|
|
26
|
-
|
|
27
|
-
@app.train()
|
|
28
|
-
def train(msg: Message, context: Context):
|
|
29
|
-
"""Train the model on local data."""
|
|
30
|
-
|
|
31
|
-
# Create LogisticRegression Model
|
|
32
|
-
penalty = context.run_config["penalty"]
|
|
33
|
-
local_epochs = context.run_config["local-epochs"]
|
|
34
|
-
model = get_model(penalty, local_epochs)
|
|
35
|
-
# Setting initial parameters, akin to model.compile for keras models
|
|
36
|
-
set_initial_params(model)
|
|
37
|
-
|
|
38
|
-
# Apply received pararameters
|
|
39
|
-
ndarrays = msg.content["arrays"].to_numpy_ndarrays()
|
|
40
|
-
set_model_params(model, ndarrays)
|
|
41
|
-
|
|
42
|
-
# Load the data
|
|
43
|
-
partition_id = context.node_config["partition-id"]
|
|
44
|
-
num_partitions = context.node_config["num-partitions"]
|
|
45
|
-
X_train, _, y_train, _ = load_data(partition_id, num_partitions)
|
|
46
|
-
|
|
47
|
-
# Ignore convergence failure due to low local epochs
|
|
48
|
-
with warnings.catch_warnings():
|
|
49
|
-
warnings.simplefilter("ignore")
|
|
50
|
-
# Train the model on local data
|
|
51
|
-
model.fit(X_train, y_train)
|
|
52
|
-
|
|
53
|
-
# Let's compute train loss
|
|
54
|
-
y_train_pred_proba = model.predict_proba(X_train)
|
|
55
|
-
train_logloss = log_loss(y_train, y_train_pred_proba)
|
|
56
|
-
|
|
57
|
-
# Construct and return reply Message
|
|
58
|
-
ndarrays = get_model_params(model)
|
|
59
|
-
model_record = ArrayRecord(ndarrays)
|
|
60
|
-
metrics = {"num-examples": len(X_train), "train_logloss": train_logloss}
|
|
61
|
-
metric_record = MetricRecord(metrics)
|
|
62
|
-
content = RecordDict({"arrays": model_record, "metrics": metric_record})
|
|
63
|
-
return Message(content=content, reply_to=msg)
|
|
64
|
-
|
|
65
|
-
|
|
66
|
-
@app.evaluate()
|
|
67
|
-
def evaluate(msg: Message, context: Context):
|
|
68
|
-
"""Evaluate the model on test data."""
|
|
69
|
-
|
|
70
|
-
# Create LogisticRegression Model
|
|
71
|
-
penalty = context.run_config["penalty"]
|
|
72
|
-
local_epochs = context.run_config["local-epochs"]
|
|
73
|
-
model = get_model(penalty, local_epochs)
|
|
74
|
-
|
|
75
|
-
# Setting initial parameters, akin to model.compile for keras models
|
|
76
|
-
set_initial_params(model)
|
|
77
|
-
|
|
78
|
-
# Apply received pararameters
|
|
79
|
-
ndarrays = msg.content["arrays"].to_numpy_ndarrays()
|
|
80
|
-
set_model_params(model, ndarrays)
|
|
81
|
-
|
|
82
|
-
# Load the data
|
|
83
|
-
partition_id = context.node_config["partition-id"]
|
|
84
|
-
num_partitions = context.node_config["num-partitions"]
|
|
85
|
-
_, X_test, _, y_test = load_data(partition_id, num_partitions)
|
|
86
|
-
|
|
87
|
-
# Evaluate the model on local data
|
|
88
|
-
y_train_pred = model.predict(X_test)
|
|
89
|
-
y_train_pred_proba = model.predict_proba(X_test)
|
|
90
|
-
|
|
91
|
-
accuracy = accuracy_score(y_test, y_train_pred)
|
|
92
|
-
loss = log_loss(y_test, y_train_pred_proba)
|
|
93
|
-
precision = precision_score(y_test, y_train_pred, average="macro", zero_division=0)
|
|
94
|
-
recall = recall_score(y_test, y_train_pred, average="macro", zero_division=0)
|
|
95
|
-
f1 = f1_score(y_test, y_train_pred, average="macro", zero_division=0)
|
|
96
|
-
|
|
97
|
-
# Construct and return reply Message
|
|
98
|
-
metrics = {
|
|
99
|
-
"num-examples": len(X_test),
|
|
100
|
-
"test_logloss": loss,
|
|
101
|
-
"accuracy": accuracy,
|
|
102
|
-
"precision": precision,
|
|
103
|
-
"recall": recall,
|
|
104
|
-
"f1": f1,
|
|
105
|
-
}
|
|
106
|
-
metric_record = MetricRecord(metrics)
|
|
107
|
-
content = RecordDict({"metrics": metric_record})
|
|
108
|
-
return Message(content=content, reply_to=msg)
|