flwr 1.21.0__py3-none-any.whl → 1.23.0__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- flwr/cli/app.py +17 -1
- flwr/cli/auth_plugin/__init__.py +15 -6
- flwr/cli/auth_plugin/auth_plugin.py +95 -0
- flwr/cli/auth_plugin/noop_auth_plugin.py +58 -0
- flwr/cli/auth_plugin/oidc_cli_plugin.py +16 -25
- flwr/cli/build.py +118 -47
- flwr/cli/{cli_user_auth_interceptor.py → cli_account_auth_interceptor.py} +6 -5
- flwr/cli/log.py +2 -2
- flwr/cli/login/login.py +34 -23
- flwr/cli/ls.py +13 -9
- flwr/cli/new/new.py +196 -42
- flwr/cli/new/templates/app/README.flowertune.md.tpl +1 -1
- flwr/cli/new/templates/app/code/client.baseline.py.tpl +64 -47
- flwr/cli/new/templates/app/code/client.huggingface.py.tpl +68 -30
- flwr/cli/new/templates/app/code/client.jax.py.tpl +63 -42
- flwr/cli/new/templates/app/code/client.mlx.py.tpl +80 -51
- flwr/cli/new/templates/app/code/client.numpy.py.tpl +36 -13
- flwr/cli/new/templates/app/code/client.pytorch.py.tpl +71 -46
- flwr/cli/new/templates/app/code/client.pytorch_legacy_api.py.tpl +55 -0
- flwr/cli/new/templates/app/code/client.sklearn.py.tpl +75 -30
- flwr/cli/new/templates/app/code/client.tensorflow.py.tpl +69 -44
- flwr/cli/new/templates/app/code/client.xgboost.py.tpl +110 -0
- flwr/cli/new/templates/app/code/flwr_tune/client_app.py.tpl +56 -90
- flwr/cli/new/templates/app/code/flwr_tune/models.py.tpl +1 -23
- flwr/cli/new/templates/app/code/flwr_tune/server_app.py.tpl +37 -58
- flwr/cli/new/templates/app/code/flwr_tune/strategy.py.tpl +39 -44
- flwr/cli/new/templates/app/code/model.baseline.py.tpl +0 -14
- flwr/cli/new/templates/app/code/server.baseline.py.tpl +27 -29
- flwr/cli/new/templates/app/code/server.huggingface.py.tpl +23 -19
- flwr/cli/new/templates/app/code/server.jax.py.tpl +27 -14
- flwr/cli/new/templates/app/code/server.mlx.py.tpl +29 -19
- flwr/cli/new/templates/app/code/server.numpy.py.tpl +30 -17
- flwr/cli/new/templates/app/code/server.pytorch.py.tpl +36 -26
- flwr/cli/new/templates/app/code/server.pytorch_legacy_api.py.tpl +31 -0
- flwr/cli/new/templates/app/code/server.sklearn.py.tpl +29 -21
- flwr/cli/new/templates/app/code/server.tensorflow.py.tpl +28 -19
- flwr/cli/new/templates/app/code/server.xgboost.py.tpl +56 -0
- flwr/cli/new/templates/app/code/task.huggingface.py.tpl +16 -20
- flwr/cli/new/templates/app/code/task.jax.py.tpl +1 -1
- flwr/cli/new/templates/app/code/task.numpy.py.tpl +1 -1
- flwr/cli/new/templates/app/code/task.pytorch.py.tpl +14 -27
- flwr/cli/new/templates/app/code/{task.pytorch_msg_api.py.tpl → task.pytorch_legacy_api.py.tpl} +27 -14
- flwr/cli/new/templates/app/code/task.tensorflow.py.tpl +1 -2
- flwr/cli/new/templates/app/code/task.xgboost.py.tpl +67 -0
- flwr/cli/new/templates/app/pyproject.baseline.toml.tpl +4 -4
- flwr/cli/new/templates/app/pyproject.flowertune.toml.tpl +2 -2
- flwr/cli/new/templates/app/pyproject.huggingface.toml.tpl +4 -4
- flwr/cli/new/templates/app/pyproject.jax.toml.tpl +1 -1
- flwr/cli/new/templates/app/pyproject.mlx.toml.tpl +2 -2
- flwr/cli/new/templates/app/pyproject.numpy.toml.tpl +1 -1
- flwr/cli/new/templates/app/pyproject.pytorch.toml.tpl +3 -3
- flwr/cli/new/templates/app/{pyproject.pytorch_msg_api.toml.tpl → pyproject.pytorch_legacy_api.toml.tpl} +3 -3
- flwr/cli/new/templates/app/pyproject.sklearn.toml.tpl +1 -1
- flwr/cli/new/templates/app/pyproject.tensorflow.toml.tpl +1 -1
- flwr/cli/new/templates/app/pyproject.xgboost.toml.tpl +61 -0
- flwr/cli/pull.py +100 -0
- flwr/cli/run/run.py +11 -7
- flwr/cli/stop.py +2 -2
- flwr/cli/supernode/__init__.py +25 -0
- flwr/cli/supernode/ls.py +260 -0
- flwr/cli/supernode/register.py +185 -0
- flwr/cli/supernode/unregister.py +138 -0
- flwr/cli/utils.py +109 -69
- flwr/client/__init__.py +2 -1
- flwr/client/grpc_adapter_client/connection.py +6 -8
- flwr/client/grpc_rere_client/connection.py +59 -31
- flwr/client/grpc_rere_client/grpc_adapter.py +28 -12
- flwr/client/grpc_rere_client/{client_interceptor.py → node_auth_client_interceptor.py} +3 -6
- flwr/client/mod/secure_aggregation/secaggplus_mod.py +7 -5
- flwr/client/rest_client/connection.py +82 -37
- flwr/clientapp/__init__.py +1 -2
- flwr/clientapp/mod/__init__.py +4 -1
- flwr/clientapp/mod/centraldp_mods.py +156 -40
- flwr/clientapp/mod/localdp_mod.py +169 -0
- flwr/clientapp/typing.py +22 -0
- flwr/{client/clientapp → clientapp}/utils.py +1 -1
- flwr/common/constant.py +56 -13
- flwr/common/exit/exit_code.py +24 -10
- flwr/common/inflatable_utils.py +10 -10
- flwr/common/record/array.py +3 -3
- flwr/common/record/arrayrecord.py +10 -1
- flwr/common/record/typeddict.py +12 -0
- flwr/common/secure_aggregation/crypto/symmetric_encryption.py +1 -89
- flwr/common/serde.py +4 -2
- flwr/common/typing.py +7 -6
- flwr/compat/client/app.py +1 -1
- flwr/compat/client/grpc_client/connection.py +2 -2
- flwr/proto/control_pb2.py +48 -31
- flwr/proto/control_pb2.pyi +95 -5
- flwr/proto/control_pb2_grpc.py +136 -0
- flwr/proto/control_pb2_grpc.pyi +52 -0
- flwr/proto/fab_pb2.py +11 -7
- flwr/proto/fab_pb2.pyi +21 -1
- flwr/proto/fleet_pb2.py +31 -23
- flwr/proto/fleet_pb2.pyi +63 -23
- flwr/proto/fleet_pb2_grpc.py +98 -28
- flwr/proto/fleet_pb2_grpc.pyi +45 -13
- flwr/proto/node_pb2.py +3 -1
- flwr/proto/node_pb2.pyi +48 -0
- flwr/server/app.py +152 -114
- flwr/server/superlink/fleet/grpc_adapter/grpc_adapter_servicer.py +17 -7
- flwr/server/superlink/fleet/grpc_rere/fleet_servicer.py +132 -38
- flwr/server/superlink/fleet/grpc_rere/{server_interceptor.py → node_auth_server_interceptor.py} +27 -51
- flwr/server/superlink/fleet/message_handler/message_handler.py +67 -22
- flwr/server/superlink/fleet/rest_rere/rest_api.py +52 -31
- flwr/server/superlink/fleet/vce/backend/backend.py +1 -1
- flwr/server/superlink/fleet/vce/backend/raybackend.py +1 -1
- flwr/server/superlink/fleet/vce/vce_api.py +18 -5
- flwr/server/superlink/linkstate/in_memory_linkstate.py +167 -73
- flwr/server/superlink/linkstate/linkstate.py +107 -24
- flwr/server/superlink/linkstate/linkstate_factory.py +2 -1
- flwr/server/superlink/linkstate/sqlite_linkstate.py +306 -255
- flwr/server/superlink/linkstate/utils.py +3 -54
- flwr/server/superlink/serverappio/serverappio_servicer.py +2 -2
- flwr/server/superlink/simulation/simulationio_servicer.py +1 -1
- flwr/server/utils/validator.py +2 -3
- flwr/server/workflow/secure_aggregation/secaggplus_workflow.py +4 -2
- flwr/serverapp/strategy/__init__.py +26 -0
- flwr/serverapp/strategy/bulyan.py +238 -0
- flwr/serverapp/strategy/dp_adaptive_clipping.py +335 -0
- flwr/serverapp/strategy/dp_fixed_clipping.py +71 -49
- flwr/serverapp/strategy/fedadagrad.py +0 -3
- flwr/serverapp/strategy/fedadam.py +0 -3
- flwr/serverapp/strategy/fedavg.py +89 -64
- flwr/serverapp/strategy/fedavgm.py +198 -0
- flwr/serverapp/strategy/fedmedian.py +105 -0
- flwr/serverapp/strategy/fedprox.py +174 -0
- flwr/serverapp/strategy/fedtrimmedavg.py +176 -0
- flwr/serverapp/strategy/fedxgb_bagging.py +117 -0
- flwr/serverapp/strategy/fedxgb_cyclic.py +220 -0
- flwr/serverapp/strategy/fedyogi.py +0 -3
- flwr/serverapp/strategy/krum.py +112 -0
- flwr/serverapp/strategy/multikrum.py +247 -0
- flwr/serverapp/strategy/qfedavg.py +252 -0
- flwr/serverapp/strategy/strategy_utils.py +48 -0
- flwr/simulation/app.py +1 -1
- flwr/simulation/ray_transport/ray_actor.py +1 -1
- flwr/simulation/ray_transport/ray_client_proxy.py +1 -1
- flwr/simulation/run_simulation.py +28 -32
- flwr/supercore/cli/flower_superexec.py +26 -1
- flwr/supercore/constant.py +41 -0
- flwr/supercore/object_store/in_memory_object_store.py +0 -4
- flwr/supercore/object_store/object_store_factory.py +26 -6
- flwr/supercore/object_store/sqlite_object_store.py +252 -0
- flwr/{client/clientapp → supercore/primitives}/__init__.py +1 -1
- flwr/supercore/primitives/asymmetric.py +117 -0
- flwr/supercore/primitives/asymmetric_ed25519.py +165 -0
- flwr/supercore/sqlite_mixin.py +156 -0
- flwr/supercore/superexec/plugin/exec_plugin.py +11 -1
- flwr/supercore/superexec/run_superexec.py +16 -2
- flwr/supercore/utils.py +20 -0
- flwr/superlink/artifact_provider/__init__.py +22 -0
- flwr/superlink/artifact_provider/artifact_provider.py +37 -0
- flwr/{common → superlink}/auth_plugin/__init__.py +6 -6
- flwr/superlink/auth_plugin/auth_plugin.py +91 -0
- flwr/superlink/auth_plugin/noop_auth_plugin.py +87 -0
- flwr/superlink/servicer/control/{control_user_auth_interceptor.py → control_account_auth_interceptor.py} +19 -19
- flwr/superlink/servicer/control/control_event_log_interceptor.py +1 -1
- flwr/superlink/servicer/control/control_grpc.py +16 -11
- flwr/superlink/servicer/control/control_servicer.py +207 -58
- flwr/supernode/cli/flower_supernode.py +19 -26
- flwr/supernode/runtime/run_clientapp.py +2 -2
- flwr/supernode/servicer/clientappio/clientappio_servicer.py +1 -1
- flwr/supernode/start_client_internal.py +17 -9
- {flwr-1.21.0.dist-info → flwr-1.23.0.dist-info}/METADATA +6 -16
- {flwr-1.21.0.dist-info → flwr-1.23.0.dist-info}/RECORD +170 -140
- flwr/cli/new/templates/app/code/client.pytorch_msg_api.py.tpl +0 -80
- flwr/cli/new/templates/app/code/server.pytorch_msg_api.py.tpl +0 -41
- flwr/common/auth_plugin/auth_plugin.py +0 -149
- flwr/serverapp/dp_fixed_clipping.py +0 -352
- flwr/serverapp/strategy/strategy_utils_tests.py +0 -304
- /flwr/cli/new/templates/app/code/{__init__.pytorch_msg_api.py.tpl → __init__.pytorch_legacy_api.py.tpl} +0 -0
- /flwr/{client → clientapp}/client_app.py +0 -0
- {flwr-1.21.0.dist-info → flwr-1.23.0.dist-info}/WHEEL +0 -0
- {flwr-1.21.0.dist-info → flwr-1.23.0.dist-info}/entry_points.txt +0 -0
|
@@ -0,0 +1,174 @@
|
|
|
1
|
+
# Copyright 2025 Flower Labs GmbH. All Rights Reserved.
|
|
2
|
+
#
|
|
3
|
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
4
|
+
# you may not use this file except in compliance with the License.
|
|
5
|
+
# You may obtain a copy of the License at
|
|
6
|
+
#
|
|
7
|
+
# http://www.apache.org/licenses/LICENSE-2.0
|
|
8
|
+
#
|
|
9
|
+
# Unless required by applicable law or agreed to in writing, software
|
|
10
|
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
11
|
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
12
|
+
# See the License for the specific language governing permissions and
|
|
13
|
+
# limitations under the License.
|
|
14
|
+
# ==============================================================================
|
|
15
|
+
"""Federated Optimization (FedProx) [Li et al., 2018] strategy.
|
|
16
|
+
|
|
17
|
+
Paper: arxiv.org/abs/1812.06127
|
|
18
|
+
"""
|
|
19
|
+
|
|
20
|
+
|
|
21
|
+
from collections.abc import Iterable
|
|
22
|
+
from logging import INFO, WARN
|
|
23
|
+
from typing import Callable, Optional
|
|
24
|
+
|
|
25
|
+
from flwr.common import (
|
|
26
|
+
ArrayRecord,
|
|
27
|
+
ConfigRecord,
|
|
28
|
+
Message,
|
|
29
|
+
MetricRecord,
|
|
30
|
+
RecordDict,
|
|
31
|
+
log,
|
|
32
|
+
)
|
|
33
|
+
from flwr.server import Grid
|
|
34
|
+
|
|
35
|
+
from .fedavg import FedAvg
|
|
36
|
+
|
|
37
|
+
|
|
38
|
+
class FedProx(FedAvg):
|
|
39
|
+
r"""Federated Optimization strategy.
|
|
40
|
+
|
|
41
|
+
Implementation based on https://arxiv.org/abs/1812.06127
|
|
42
|
+
|
|
43
|
+
FedProx extends FedAvg by introducing a proximal term into the client-side
|
|
44
|
+
optimization objective. The strategy itself behaves identically to FedAvg
|
|
45
|
+
on the server side, but each client **MUST** add a proximal regularization
|
|
46
|
+
term to its local loss function during training:
|
|
47
|
+
|
|
48
|
+
.. math::
|
|
49
|
+
\frac{\mu}{2} || w - w^t ||^2
|
|
50
|
+
|
|
51
|
+
Where $w^t$ denotes the global parameters and $w$ denotes the local weights
|
|
52
|
+
being optimized.
|
|
53
|
+
|
|
54
|
+
This strategy sends the proximal term inside the ``ConfigRecord`` as part of the
|
|
55
|
+
``configure_train`` method under key ``"proximal-mu"``. The client can then use this
|
|
56
|
+
value to add the proximal term to the loss function.
|
|
57
|
+
|
|
58
|
+
In PyTorch, for example, the loss would go from:
|
|
59
|
+
|
|
60
|
+
.. code:: python
|
|
61
|
+
loss = criterion(net(inputs), labels)
|
|
62
|
+
|
|
63
|
+
To:
|
|
64
|
+
|
|
65
|
+
.. code:: python
|
|
66
|
+
# Get proximal term weight from message
|
|
67
|
+
mu = msg.content["config"]["proximal-mu"]
|
|
68
|
+
|
|
69
|
+
# Compute proximal term
|
|
70
|
+
proximal_term = 0.0
|
|
71
|
+
for local_weights, global_weights in zip(net.parameters(), global_params):
|
|
72
|
+
proximal_term += (local_weights - global_weights).norm(2)
|
|
73
|
+
|
|
74
|
+
# Update loss
|
|
75
|
+
loss = criterion(net(inputs), labels) + (mu / 2) * proximal_term
|
|
76
|
+
|
|
77
|
+
With ``global_params`` being a copy of the model parameters, created **after**
|
|
78
|
+
applying the received global weights but **before** local training begins.
|
|
79
|
+
|
|
80
|
+
.. code:: python
|
|
81
|
+
global_params = copy.deepcopy(net).parameters()
|
|
82
|
+
|
|
83
|
+
Parameters
|
|
84
|
+
----------
|
|
85
|
+
fraction_train : float (default: 1.0)
|
|
86
|
+
Fraction of nodes used during training. In case `min_train_nodes`
|
|
87
|
+
is larger than `fraction_train * total_connected_nodes`, `min_train_nodes`
|
|
88
|
+
will still be sampled.
|
|
89
|
+
fraction_evaluate : float (default: 1.0)
|
|
90
|
+
Fraction of nodes used during validation. In case `min_evaluate_nodes`
|
|
91
|
+
is larger than `fraction_evaluate * total_connected_nodes`,
|
|
92
|
+
`min_evaluate_nodes` will still be sampled.
|
|
93
|
+
min_train_nodes : int (default: 2)
|
|
94
|
+
Minimum number of nodes used during training.
|
|
95
|
+
min_evaluate_nodes : int (default: 2)
|
|
96
|
+
Minimum number of nodes used during validation.
|
|
97
|
+
min_available_nodes : int (default: 2)
|
|
98
|
+
Minimum number of total nodes in the system.
|
|
99
|
+
weighted_by_key : str (default: "num-examples")
|
|
100
|
+
The key within each MetricRecord whose value is used as the weight when
|
|
101
|
+
computing weighted averages for both ArrayRecords and MetricRecords.
|
|
102
|
+
arrayrecord_key : str (default: "arrays")
|
|
103
|
+
Key used to store the ArrayRecord when constructing Messages.
|
|
104
|
+
configrecord_key : str (default: "config")
|
|
105
|
+
Key used to store the ConfigRecord when constructing Messages.
|
|
106
|
+
train_metrics_aggr_fn : Optional[callable] (default: None)
|
|
107
|
+
Function with signature (list[RecordDict], str) -> MetricRecord,
|
|
108
|
+
used to aggregate MetricRecords from training round replies.
|
|
109
|
+
If `None`, defaults to `aggregate_metricrecords`, which performs a weighted
|
|
110
|
+
average using the provided weight factor key.
|
|
111
|
+
evaluate_metrics_aggr_fn : Optional[callable] (default: None)
|
|
112
|
+
Function with signature (list[RecordDict], str) -> MetricRecord,
|
|
113
|
+
used to aggregate MetricRecords from training round replies.
|
|
114
|
+
If `None`, defaults to `aggregate_metricrecords`, which performs a weighted
|
|
115
|
+
average using the provided weight factor key.
|
|
116
|
+
proximal_mu : float (default: 0.0)
|
|
117
|
+
The weight of the proximal term used in the optimization. 0.0 makes
|
|
118
|
+
this strategy equivalent to FedAvg, and the higher the coefficient, the more
|
|
119
|
+
regularization will be used (that is, the client parameters will need to be
|
|
120
|
+
closer to the server parameters during training).
|
|
121
|
+
"""
|
|
122
|
+
|
|
123
|
+
def __init__( # pylint: disable=R0913, R0917
|
|
124
|
+
self,
|
|
125
|
+
fraction_train: float = 1.0,
|
|
126
|
+
fraction_evaluate: float = 1.0,
|
|
127
|
+
min_train_nodes: int = 2,
|
|
128
|
+
min_evaluate_nodes: int = 2,
|
|
129
|
+
min_available_nodes: int = 2,
|
|
130
|
+
weighted_by_key: str = "num-examples",
|
|
131
|
+
arrayrecord_key: str = "arrays",
|
|
132
|
+
configrecord_key: str = "config",
|
|
133
|
+
train_metrics_aggr_fn: Optional[
|
|
134
|
+
Callable[[list[RecordDict], str], MetricRecord]
|
|
135
|
+
] = None,
|
|
136
|
+
evaluate_metrics_aggr_fn: Optional[
|
|
137
|
+
Callable[[list[RecordDict], str], MetricRecord]
|
|
138
|
+
] = None,
|
|
139
|
+
proximal_mu: float = 0.0,
|
|
140
|
+
) -> None:
|
|
141
|
+
super().__init__(
|
|
142
|
+
fraction_train=fraction_train,
|
|
143
|
+
fraction_evaluate=fraction_evaluate,
|
|
144
|
+
min_train_nodes=min_train_nodes,
|
|
145
|
+
min_evaluate_nodes=min_evaluate_nodes,
|
|
146
|
+
min_available_nodes=min_available_nodes,
|
|
147
|
+
weighted_by_key=weighted_by_key,
|
|
148
|
+
arrayrecord_key=arrayrecord_key,
|
|
149
|
+
configrecord_key=configrecord_key,
|
|
150
|
+
train_metrics_aggr_fn=train_metrics_aggr_fn,
|
|
151
|
+
evaluate_metrics_aggr_fn=evaluate_metrics_aggr_fn,
|
|
152
|
+
)
|
|
153
|
+
self.proximal_mu = proximal_mu
|
|
154
|
+
|
|
155
|
+
if self.proximal_mu == 0.0:
|
|
156
|
+
log(
|
|
157
|
+
WARN,
|
|
158
|
+
"FedProx initialized with `proximal_mu=0.0`. "
|
|
159
|
+
"This makes the strategy equivalent to FedAvg.",
|
|
160
|
+
)
|
|
161
|
+
|
|
162
|
+
def summary(self) -> None:
|
|
163
|
+
"""Log summary configuration of the strategy."""
|
|
164
|
+
log(INFO, "\t├──> FedProx settings:")
|
|
165
|
+
log(INFO, "\t│\t└── Proximal mu: %s", self.proximal_mu)
|
|
166
|
+
super().summary()
|
|
167
|
+
|
|
168
|
+
def configure_train(
|
|
169
|
+
self, server_round: int, arrays: ArrayRecord, config: ConfigRecord, grid: Grid
|
|
170
|
+
) -> Iterable[Message]:
|
|
171
|
+
"""Configure the next round of federated training."""
|
|
172
|
+
# Inject proximal term weight into config
|
|
173
|
+
config["proximal-mu"] = self.proximal_mu
|
|
174
|
+
return super().configure_train(server_round, arrays, config, grid)
|
|
@@ -0,0 +1,176 @@
|
|
|
1
|
+
# Copyright 2025 Flower Labs GmbH. All Rights Reserved.
|
|
2
|
+
#
|
|
3
|
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
4
|
+
# you may not use this file except in compliance with the License.
|
|
5
|
+
# You may obtain a copy of the License at
|
|
6
|
+
#
|
|
7
|
+
# http://www.apache.org/licenses/LICENSE-2.0
|
|
8
|
+
#
|
|
9
|
+
# Unless required by applicable law or agreed to in writing, software
|
|
10
|
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
11
|
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
12
|
+
# See the License for the specific language governing permissions and
|
|
13
|
+
# limitations under the License.
|
|
14
|
+
# ==============================================================================
|
|
15
|
+
"""Federated Averaging with Trimmed Mean [Dong Yin, et al., 2021].
|
|
16
|
+
|
|
17
|
+
Paper: arxiv.org/abs/1803.01498
|
|
18
|
+
"""
|
|
19
|
+
|
|
20
|
+
|
|
21
|
+
from collections.abc import Iterable
|
|
22
|
+
from logging import INFO
|
|
23
|
+
from typing import Callable, Optional, cast
|
|
24
|
+
|
|
25
|
+
import numpy as np
|
|
26
|
+
|
|
27
|
+
from flwr.common import Array, ArrayRecord, Message, MetricRecord, NDArray, RecordDict
|
|
28
|
+
from flwr.common.logger import log
|
|
29
|
+
|
|
30
|
+
from ..exception import AggregationError
|
|
31
|
+
from .fedavg import FedAvg
|
|
32
|
+
|
|
33
|
+
|
|
34
|
+
class FedTrimmedAvg(FedAvg):
|
|
35
|
+
"""Federated Averaging with Trimmed Mean [Dong Yin, et al., 2021].
|
|
36
|
+
|
|
37
|
+
Implemented based on: https://arxiv.org/abs/1803.01498
|
|
38
|
+
|
|
39
|
+
Parameters
|
|
40
|
+
----------
|
|
41
|
+
fraction_train : float (default: 1.0)
|
|
42
|
+
Fraction of nodes used during training. In case `min_train_nodes`
|
|
43
|
+
is larger than `fraction_train * total_connected_nodes`, `min_train_nodes`
|
|
44
|
+
will still be sampled.
|
|
45
|
+
fraction_evaluate : float (default: 1.0)
|
|
46
|
+
Fraction of nodes used during validation. In case `min_evaluate_nodes`
|
|
47
|
+
is larger than `fraction_evaluate * total_connected_nodes`,
|
|
48
|
+
`min_evaluate_nodes` will still be sampled.
|
|
49
|
+
min_train_nodes : int (default: 2)
|
|
50
|
+
Minimum number of nodes used during training.
|
|
51
|
+
min_evaluate_nodes : int (default: 2)
|
|
52
|
+
Minimum number of nodes used during validation.
|
|
53
|
+
min_available_nodes : int (default: 2)
|
|
54
|
+
Minimum number of total nodes in the system.
|
|
55
|
+
weighted_by_key : str (default: "num-examples")
|
|
56
|
+
The key within each MetricRecord whose value is used as the weight when
|
|
57
|
+
computing weighted averages for both ArrayRecords and MetricRecords.
|
|
58
|
+
arrayrecord_key : str (default: "arrays")
|
|
59
|
+
Key used to store the ArrayRecord when constructing Messages.
|
|
60
|
+
configrecord_key : str (default: "config")
|
|
61
|
+
Key used to store the ConfigRecord when constructing Messages.
|
|
62
|
+
train_metrics_aggr_fn : Optional[callable] (default: None)
|
|
63
|
+
Function with signature (list[RecordDict], str) -> MetricRecord,
|
|
64
|
+
used to aggregate MetricRecords from training round replies.
|
|
65
|
+
If `None`, defaults to `aggregate_metricrecords`, which performs a weighted
|
|
66
|
+
average using the provided weight factor key.
|
|
67
|
+
evaluate_metrics_aggr_fn : Optional[callable] (default: None)
|
|
68
|
+
Function with signature (list[RecordDict], str) -> MetricRecord,
|
|
69
|
+
used to aggregate MetricRecords from training round replies.
|
|
70
|
+
If `None`, defaults to `aggregate_metricrecords`, which performs a weighted
|
|
71
|
+
average using the provided weight factor key.
|
|
72
|
+
beta : float (default: 0.2)
|
|
73
|
+
Fraction to cut off of both tails of the distribution.
|
|
74
|
+
"""
|
|
75
|
+
|
|
76
|
+
def __init__( # pylint: disable=R0913, R0917
|
|
77
|
+
self,
|
|
78
|
+
fraction_train: float = 1.0,
|
|
79
|
+
fraction_evaluate: float = 1.0,
|
|
80
|
+
min_train_nodes: int = 2,
|
|
81
|
+
min_evaluate_nodes: int = 2,
|
|
82
|
+
min_available_nodes: int = 2,
|
|
83
|
+
weighted_by_key: str = "num-examples",
|
|
84
|
+
arrayrecord_key: str = "arrays",
|
|
85
|
+
configrecord_key: str = "config",
|
|
86
|
+
train_metrics_aggr_fn: Optional[
|
|
87
|
+
Callable[[list[RecordDict], str], MetricRecord]
|
|
88
|
+
] = None,
|
|
89
|
+
evaluate_metrics_aggr_fn: Optional[
|
|
90
|
+
Callable[[list[RecordDict], str], MetricRecord]
|
|
91
|
+
] = None,
|
|
92
|
+
beta: float = 0.2,
|
|
93
|
+
) -> None:
|
|
94
|
+
super().__init__(
|
|
95
|
+
fraction_train=fraction_train,
|
|
96
|
+
fraction_evaluate=fraction_evaluate,
|
|
97
|
+
min_train_nodes=min_train_nodes,
|
|
98
|
+
min_evaluate_nodes=min_evaluate_nodes,
|
|
99
|
+
min_available_nodes=min_available_nodes,
|
|
100
|
+
weighted_by_key=weighted_by_key,
|
|
101
|
+
arrayrecord_key=arrayrecord_key,
|
|
102
|
+
configrecord_key=configrecord_key,
|
|
103
|
+
train_metrics_aggr_fn=train_metrics_aggr_fn,
|
|
104
|
+
evaluate_metrics_aggr_fn=evaluate_metrics_aggr_fn,
|
|
105
|
+
)
|
|
106
|
+
self.beta = beta
|
|
107
|
+
|
|
108
|
+
def summary(self) -> None:
|
|
109
|
+
"""Log summary configuration of the strategy."""
|
|
110
|
+
log(INFO, "\t├──> FedTrimmedAvg settings:")
|
|
111
|
+
log(INFO, "\t│\t└── beta: %s", self.beta)
|
|
112
|
+
super().summary()
|
|
113
|
+
|
|
114
|
+
def aggregate_train(
|
|
115
|
+
self,
|
|
116
|
+
server_round: int,
|
|
117
|
+
replies: Iterable[Message],
|
|
118
|
+
) -> tuple[Optional[ArrayRecord], Optional[MetricRecord]]:
|
|
119
|
+
"""Aggregate ArrayRecords and MetricRecords in the received Messages."""
|
|
120
|
+
# Call FedAvg aggregate_train to perform validation and aggregation
|
|
121
|
+
valid_replies, _ = self._check_and_log_replies(replies, is_train=True)
|
|
122
|
+
|
|
123
|
+
if not valid_replies:
|
|
124
|
+
return None, None
|
|
125
|
+
|
|
126
|
+
# Aggregate ArrayRecords using trimmed mean
|
|
127
|
+
# Get the key for the only ArrayRecord from the first Message
|
|
128
|
+
record_key = list(valid_replies[0].content.array_records.keys())[0]
|
|
129
|
+
# Preserve keys for arrays in ArrayRecord
|
|
130
|
+
array_keys = list(valid_replies[0].content[record_key].keys())
|
|
131
|
+
|
|
132
|
+
# Compute trimmed mean for each layer and construct ArrayRecord
|
|
133
|
+
arrays = ArrayRecord()
|
|
134
|
+
for array_key in array_keys:
|
|
135
|
+
# Get the corresponding layer from each client
|
|
136
|
+
layers = [
|
|
137
|
+
cast(ArrayRecord, msg.content[record_key]).pop(array_key).numpy()
|
|
138
|
+
for msg in valid_replies
|
|
139
|
+
]
|
|
140
|
+
# Compute trimmed mean and save as Array in ArrayRecord
|
|
141
|
+
try:
|
|
142
|
+
arrays[array_key] = Array(trim_mean(np.stack(layers), self.beta))
|
|
143
|
+
except ValueError as e:
|
|
144
|
+
raise AggregationError(
|
|
145
|
+
f"Trimmed mean could not be computed. "
|
|
146
|
+
f"Likely cause: beta={self.beta} is too large."
|
|
147
|
+
) from e
|
|
148
|
+
|
|
149
|
+
# Aggregate MetricRecords
|
|
150
|
+
metrics = self.train_metrics_aggr_fn(
|
|
151
|
+
[msg.content for msg in valid_replies],
|
|
152
|
+
self.weighted_by_key,
|
|
153
|
+
)
|
|
154
|
+
return arrays, metrics
|
|
155
|
+
|
|
156
|
+
|
|
157
|
+
def trim_mean(array: NDArray, cut_fraction: float) -> NDArray:
|
|
158
|
+
"""Compute trimmed mean along axis=0.
|
|
159
|
+
|
|
160
|
+
It is based on the scipy implementation:
|
|
161
|
+
|
|
162
|
+
https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.trim_mean.html
|
|
163
|
+
"""
|
|
164
|
+
axis = 0
|
|
165
|
+
nobs = array.shape[0]
|
|
166
|
+
lowercut = int(cut_fraction * nobs)
|
|
167
|
+
uppercut = nobs - lowercut
|
|
168
|
+
if lowercut > uppercut:
|
|
169
|
+
raise ValueError("Fraction too big.")
|
|
170
|
+
|
|
171
|
+
atmp = np.partition(array, (lowercut, uppercut - 1), axis)
|
|
172
|
+
|
|
173
|
+
slice_list = [slice(None)] * atmp.ndim
|
|
174
|
+
slice_list[axis] = slice(lowercut, uppercut)
|
|
175
|
+
result: NDArray = np.mean(atmp[tuple(slice_list)], axis=axis)
|
|
176
|
+
return result
|
|
@@ -0,0 +1,117 @@
|
|
|
1
|
+
# Copyright 2025 Flower Labs GmbH. All Rights Reserved.
|
|
2
|
+
#
|
|
3
|
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
4
|
+
# you may not use this file except in compliance with the License.
|
|
5
|
+
# You may obtain a copy of the License at
|
|
6
|
+
#
|
|
7
|
+
# http://www.apache.org/licenses/LICENSE-2.0
|
|
8
|
+
#
|
|
9
|
+
# Unless required by applicable law or agreed to in writing, software
|
|
10
|
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
11
|
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
12
|
+
# See the License for the specific language governing permissions and
|
|
13
|
+
# limitations under the License.
|
|
14
|
+
# ==============================================================================
|
|
15
|
+
"""Flower message-based FedXgbBagging strategy."""
|
|
16
|
+
from collections.abc import Iterable
|
|
17
|
+
from typing import Optional, cast
|
|
18
|
+
|
|
19
|
+
import numpy as np
|
|
20
|
+
|
|
21
|
+
from flwr.common import ArrayRecord, ConfigRecord, Message, MetricRecord
|
|
22
|
+
from flwr.server import Grid
|
|
23
|
+
|
|
24
|
+
from ..exception import InconsistentMessageReplies
|
|
25
|
+
from .fedavg import FedAvg
|
|
26
|
+
from .strategy_utils import aggregate_bagging
|
|
27
|
+
|
|
28
|
+
|
|
29
|
+
# pylint: disable=line-too-long
|
|
30
|
+
class FedXgbBagging(FedAvg):
|
|
31
|
+
"""Configurable FedXgbBagging strategy implementation.
|
|
32
|
+
|
|
33
|
+
Parameters
|
|
34
|
+
----------
|
|
35
|
+
fraction_train : float (default: 1.0)
|
|
36
|
+
Fraction of nodes used during training. In case `min_train_nodes`
|
|
37
|
+
is larger than `fraction_train * total_connected_nodes`, `min_train_nodes`
|
|
38
|
+
will still be sampled.
|
|
39
|
+
fraction_evaluate : float (default: 1.0)
|
|
40
|
+
Fraction of nodes used during validation. In case `min_evaluate_nodes`
|
|
41
|
+
is larger than `fraction_evaluate * total_connected_nodes`,
|
|
42
|
+
`min_evaluate_nodes` will still be sampled.
|
|
43
|
+
min_train_nodes : int (default: 2)
|
|
44
|
+
Minimum number of nodes used during training.
|
|
45
|
+
min_evaluate_nodes : int (default: 2)
|
|
46
|
+
Minimum number of nodes used during validation.
|
|
47
|
+
min_available_nodes : int (default: 2)
|
|
48
|
+
Minimum number of total nodes in the system.
|
|
49
|
+
weighted_by_key : str (default: "num-examples")
|
|
50
|
+
The key within each MetricRecord whose value is used as the weight when
|
|
51
|
+
computing weighted averages for MetricRecords.
|
|
52
|
+
arrayrecord_key : str (default: "arrays")
|
|
53
|
+
Key used to store the ArrayRecord when constructing Messages.
|
|
54
|
+
configrecord_key : str (default: "config")
|
|
55
|
+
Key used to store the ConfigRecord when constructing Messages.
|
|
56
|
+
train_metrics_aggr_fn : Optional[callable] (default: None)
|
|
57
|
+
Function with signature (list[RecordDict], str) -> MetricRecord,
|
|
58
|
+
used to aggregate MetricRecords from training round replies.
|
|
59
|
+
If `None`, defaults to `aggregate_metricrecords`, which performs a weighted
|
|
60
|
+
average using the provided weight factor key.
|
|
61
|
+
evaluate_metrics_aggr_fn : Optional[callable] (default: None)
|
|
62
|
+
Function with signature (list[RecordDict], str) -> MetricRecord,
|
|
63
|
+
used to aggregate MetricRecords from training round replies.
|
|
64
|
+
If `None`, defaults to `aggregate_metricrecords`, which performs a weighted
|
|
65
|
+
average using the provided weight factor key.
|
|
66
|
+
"""
|
|
67
|
+
|
|
68
|
+
current_bst: Optional[bytes] = None
|
|
69
|
+
|
|
70
|
+
def _ensure_single_array(self, arrays: ArrayRecord) -> None:
|
|
71
|
+
"""Check that ensures there's only one Array in the ArrayRecord."""
|
|
72
|
+
n = len(arrays)
|
|
73
|
+
if n != 1:
|
|
74
|
+
raise InconsistentMessageReplies(
|
|
75
|
+
reason="Expected exactly one Array in ArrayRecord. "
|
|
76
|
+
"Skipping aggregation."
|
|
77
|
+
)
|
|
78
|
+
|
|
79
|
+
def configure_train(
|
|
80
|
+
self, server_round: int, arrays: ArrayRecord, config: ConfigRecord, grid: Grid
|
|
81
|
+
) -> Iterable[Message]:
|
|
82
|
+
"""Configure the next round of federated training."""
|
|
83
|
+
self._ensure_single_array(arrays)
|
|
84
|
+
# Keep track of array record being communicated
|
|
85
|
+
self.current_bst = arrays["0"].numpy().tobytes()
|
|
86
|
+
return super().configure_train(server_round, arrays, config, grid)
|
|
87
|
+
|
|
88
|
+
def aggregate_train(
|
|
89
|
+
self,
|
|
90
|
+
server_round: int,
|
|
91
|
+
replies: Iterable[Message],
|
|
92
|
+
) -> tuple[Optional[ArrayRecord], Optional[MetricRecord]]:
|
|
93
|
+
"""Aggregate ArrayRecords and MetricRecords in the received Messages."""
|
|
94
|
+
valid_replies, _ = self._check_and_log_replies(replies, is_train=True)
|
|
95
|
+
|
|
96
|
+
arrays, metrics = None, None
|
|
97
|
+
if valid_replies:
|
|
98
|
+
reply_contents = [msg.content for msg in valid_replies]
|
|
99
|
+
array_record_key = next(iter(reply_contents[0].array_records.keys()))
|
|
100
|
+
|
|
101
|
+
# Aggregate ArrayRecords
|
|
102
|
+
for content in reply_contents:
|
|
103
|
+
self._ensure_single_array(cast(ArrayRecord, content[array_record_key]))
|
|
104
|
+
bst = content[array_record_key]["0"].numpy().tobytes() # type: ignore[union-attr]
|
|
105
|
+
|
|
106
|
+
if self.current_bst is not None:
|
|
107
|
+
self.current_bst = aggregate_bagging(self.current_bst, bst)
|
|
108
|
+
|
|
109
|
+
if self.current_bst is not None:
|
|
110
|
+
arrays = ArrayRecord([np.frombuffer(self.current_bst, dtype=np.uint8)])
|
|
111
|
+
|
|
112
|
+
# Aggregate MetricRecords
|
|
113
|
+
metrics = self.train_metrics_aggr_fn(
|
|
114
|
+
reply_contents,
|
|
115
|
+
self.weighted_by_key,
|
|
116
|
+
)
|
|
117
|
+
return arrays, metrics
|
|
@@ -0,0 +1,220 @@
|
|
|
1
|
+
# Copyright 2025 Flower Labs GmbH. All Rights Reserved.
|
|
2
|
+
#
|
|
3
|
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
4
|
+
# you may not use this file except in compliance with the License.
|
|
5
|
+
# You may obtain a copy of the License at
|
|
6
|
+
#
|
|
7
|
+
# http://www.apache.org/licenses/LICENSE-2.0
|
|
8
|
+
#
|
|
9
|
+
# Unless required by applicable law or agreed to in writing, software
|
|
10
|
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
11
|
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
12
|
+
# See the License for the specific language governing permissions and
|
|
13
|
+
# limitations under the License.
|
|
14
|
+
# ==============================================================================
|
|
15
|
+
"""Flower message-based FedXgbCyclic strategy."""
|
|
16
|
+
|
|
17
|
+
|
|
18
|
+
from collections.abc import Iterable
|
|
19
|
+
from logging import INFO
|
|
20
|
+
from typing import Callable, Optional, cast
|
|
21
|
+
|
|
22
|
+
from flwr.common import (
|
|
23
|
+
ArrayRecord,
|
|
24
|
+
ConfigRecord,
|
|
25
|
+
Message,
|
|
26
|
+
MessageType,
|
|
27
|
+
MetricRecord,
|
|
28
|
+
RecordDict,
|
|
29
|
+
log,
|
|
30
|
+
)
|
|
31
|
+
from flwr.server import Grid
|
|
32
|
+
|
|
33
|
+
from .fedavg import FedAvg
|
|
34
|
+
from .strategy_utils import sample_nodes
|
|
35
|
+
|
|
36
|
+
|
|
37
|
+
# pylint: disable=line-too-long
|
|
38
|
+
class FedXgbCyclic(FedAvg):
|
|
39
|
+
"""Configurable FedXgbCyclic strategy implementation.
|
|
40
|
+
|
|
41
|
+
Parameters
|
|
42
|
+
----------
|
|
43
|
+
fraction_train : float (default: 1.0)
|
|
44
|
+
Fraction of nodes used during training. In case `min_train_nodes`
|
|
45
|
+
is larger than `fraction_train * total_connected_nodes`, `min_train_nodes`
|
|
46
|
+
will still be sampled.
|
|
47
|
+
fraction_evaluate : float (default: 1.0)
|
|
48
|
+
Fraction of nodes used during validation. In case `min_evaluate_nodes`
|
|
49
|
+
is larger than `fraction_evaluate * total_connected_nodes`,
|
|
50
|
+
`min_evaluate_nodes` will still be sampled.
|
|
51
|
+
min_available_nodes : int (default: 2)
|
|
52
|
+
Minimum number of total nodes in the system.
|
|
53
|
+
weighted_by_key : str (default: "num-examples")
|
|
54
|
+
The key within each MetricRecord whose value is used as the weight when
|
|
55
|
+
computing weighted averages for MetricRecords.
|
|
56
|
+
arrayrecord_key : str (default: "arrays")
|
|
57
|
+
Key used to store the ArrayRecord when constructing Messages.
|
|
58
|
+
configrecord_key : str (default: "config")
|
|
59
|
+
Key used to store the ConfigRecord when constructing Messages.
|
|
60
|
+
train_metrics_aggr_fn : Optional[callable] (default: None)
|
|
61
|
+
Function with signature (list[RecordDict], str) -> MetricRecord,
|
|
62
|
+
used to aggregate MetricRecords from training round replies.
|
|
63
|
+
If `None`, defaults to `aggregate_metricrecords`, which performs a weighted
|
|
64
|
+
average using the provided weight factor key.
|
|
65
|
+
evaluate_metrics_aggr_fn : Optional[callable] (default: None)
|
|
66
|
+
Function with signature (list[RecordDict], str) -> MetricRecord,
|
|
67
|
+
used to aggregate MetricRecords from training round replies.
|
|
68
|
+
If `None`, defaults to `aggregate_metricrecords`, which performs a weighted
|
|
69
|
+
average using the provided weight factor key.
|
|
70
|
+
"""
|
|
71
|
+
|
|
72
|
+
# pylint: disable=too-many-arguments,too-many-positional-arguments
|
|
73
|
+
def __init__(
|
|
74
|
+
self,
|
|
75
|
+
fraction_train: float = 1.0,
|
|
76
|
+
fraction_evaluate: float = 1.0,
|
|
77
|
+
min_available_nodes: int = 2,
|
|
78
|
+
weighted_by_key: str = "num-examples",
|
|
79
|
+
arrayrecord_key: str = "arrays",
|
|
80
|
+
configrecord_key: str = "config",
|
|
81
|
+
train_metrics_aggr_fn: Optional[
|
|
82
|
+
Callable[[list[RecordDict], str], MetricRecord]
|
|
83
|
+
] = None,
|
|
84
|
+
evaluate_metrics_aggr_fn: Optional[
|
|
85
|
+
Callable[[list[RecordDict], str], MetricRecord]
|
|
86
|
+
] = None,
|
|
87
|
+
) -> None:
|
|
88
|
+
super().__init__(
|
|
89
|
+
fraction_train=fraction_train,
|
|
90
|
+
fraction_evaluate=fraction_evaluate,
|
|
91
|
+
min_train_nodes=2,
|
|
92
|
+
min_evaluate_nodes=2,
|
|
93
|
+
min_available_nodes=min_available_nodes,
|
|
94
|
+
weighted_by_key=weighted_by_key,
|
|
95
|
+
arrayrecord_key=arrayrecord_key,
|
|
96
|
+
configrecord_key=configrecord_key,
|
|
97
|
+
train_metrics_aggr_fn=train_metrics_aggr_fn,
|
|
98
|
+
evaluate_metrics_aggr_fn=evaluate_metrics_aggr_fn,
|
|
99
|
+
)
|
|
100
|
+
|
|
101
|
+
self.registered_nodes: dict[int, int] = {}
|
|
102
|
+
|
|
103
|
+
if fraction_train not in (0.0, 1.0):
|
|
104
|
+
raise ValueError(
|
|
105
|
+
"fraction_train can only be set to 1.0 or 0.0 for FedXgbCyclic."
|
|
106
|
+
)
|
|
107
|
+
if fraction_evaluate not in (0.0, 1.0):
|
|
108
|
+
raise ValueError(
|
|
109
|
+
"fraction_evaluate can only be set to 1.0 or 0.0 for FedXgbCyclic."
|
|
110
|
+
)
|
|
111
|
+
|
|
112
|
+
def _reorder_nodes(self, node_ids: list[int]) -> list[int]:
|
|
113
|
+
"""Re-order node ids based on registered nodes.
|
|
114
|
+
|
|
115
|
+
Each node ID is assigned a persistent index in `self.registered_nodes`
|
|
116
|
+
the first time it appears. The input list is then reordered according
|
|
117
|
+
to these stored indices, and the result is compacted into ascending
|
|
118
|
+
order (1..N) for the current call.
|
|
119
|
+
"""
|
|
120
|
+
# Assign new indices to unknown nodes
|
|
121
|
+
next_index = max(self.registered_nodes.values(), default=0) + 1
|
|
122
|
+
for nid in node_ids:
|
|
123
|
+
if nid not in self.registered_nodes:
|
|
124
|
+
self.registered_nodes[nid] = next_index
|
|
125
|
+
next_index += 1
|
|
126
|
+
|
|
127
|
+
# Sort node_ids by their stored indices
|
|
128
|
+
sorted_by_index = sorted(node_ids, key=lambda x: self.registered_nodes[x])
|
|
129
|
+
|
|
130
|
+
# Compact re-map of indices just for this output list
|
|
131
|
+
unique_indices = sorted(self.registered_nodes[nid] for nid in sorted_by_index)
|
|
132
|
+
remap = {old: new for new, old in enumerate(unique_indices, start=1)}
|
|
133
|
+
|
|
134
|
+
# Build the result list ordered by compact indices
|
|
135
|
+
result_list = [
|
|
136
|
+
nid
|
|
137
|
+
for _, nid in sorted(
|
|
138
|
+
(remap[self.registered_nodes[nid]], nid) for nid in sorted_by_index
|
|
139
|
+
)
|
|
140
|
+
]
|
|
141
|
+
return result_list
|
|
142
|
+
|
|
143
|
+
def _make_sampling(
|
|
144
|
+
self, grid: Grid, server_round: int, configure_type: str
|
|
145
|
+
) -> list[int]:
|
|
146
|
+
"""Sample nodes using the Grid."""
|
|
147
|
+
# Sample nodes
|
|
148
|
+
num_nodes = int(len(list(grid.get_node_ids())) * self.fraction_train)
|
|
149
|
+
sample_size = max(num_nodes, self.min_train_nodes)
|
|
150
|
+
node_ids, _ = sample_nodes(grid, self.min_available_nodes, sample_size)
|
|
151
|
+
|
|
152
|
+
# Re-order node_ids
|
|
153
|
+
node_ids = self._reorder_nodes(node_ids)
|
|
154
|
+
|
|
155
|
+
# Sample the clients sequentially given server_round
|
|
156
|
+
sampled_idx = (server_round - 1) % len(node_ids)
|
|
157
|
+
sampled_node_id = [node_ids[sampled_idx]]
|
|
158
|
+
|
|
159
|
+
log(
|
|
160
|
+
INFO,
|
|
161
|
+
f"{configure_type}: Sampled %s nodes (out of %s)",
|
|
162
|
+
len(sampled_node_id),
|
|
163
|
+
len(node_ids),
|
|
164
|
+
)
|
|
165
|
+
return sampled_node_id
|
|
166
|
+
|
|
167
|
+
def configure_train(
|
|
168
|
+
self, server_round: int, arrays: ArrayRecord, config: ConfigRecord, grid: Grid
|
|
169
|
+
) -> Iterable[Message]:
|
|
170
|
+
"""Configure the next round of federated training."""
|
|
171
|
+
# Sample one node
|
|
172
|
+
sampled_node_id = self._make_sampling(grid, server_round, "configure_train")
|
|
173
|
+
|
|
174
|
+
# Always inject current server round
|
|
175
|
+
config["server-round"] = server_round
|
|
176
|
+
|
|
177
|
+
# Construct messages
|
|
178
|
+
record = RecordDict(
|
|
179
|
+
{self.arrayrecord_key: arrays, self.configrecord_key: config}
|
|
180
|
+
)
|
|
181
|
+
return self._construct_messages(record, sampled_node_id, MessageType.TRAIN)
|
|
182
|
+
|
|
183
|
+
def aggregate_train(
|
|
184
|
+
self,
|
|
185
|
+
server_round: int,
|
|
186
|
+
replies: Iterable[Message],
|
|
187
|
+
) -> tuple[Optional[ArrayRecord], Optional[MetricRecord]]:
|
|
188
|
+
"""Aggregate ArrayRecords and MetricRecords in the received Messages."""
|
|
189
|
+
valid_replies, _ = self._check_and_log_replies(replies, is_train=True)
|
|
190
|
+
|
|
191
|
+
arrays, metrics = None, None
|
|
192
|
+
if valid_replies:
|
|
193
|
+
reply_contents = [msg.content for msg in valid_replies]
|
|
194
|
+
array_record_key = next(iter(reply_contents[0].array_records.keys()))
|
|
195
|
+
|
|
196
|
+
# Fetch the client model from current round as global model
|
|
197
|
+
arrays = cast(ArrayRecord, reply_contents[0][array_record_key])
|
|
198
|
+
|
|
199
|
+
# Aggregate MetricRecords
|
|
200
|
+
metrics = self.train_metrics_aggr_fn(
|
|
201
|
+
reply_contents,
|
|
202
|
+
self.weighted_by_key,
|
|
203
|
+
)
|
|
204
|
+
return arrays, metrics
|
|
205
|
+
|
|
206
|
+
def configure_evaluate(
|
|
207
|
+
self, server_round: int, arrays: ArrayRecord, config: ConfigRecord, grid: Grid
|
|
208
|
+
) -> Iterable[Message]:
|
|
209
|
+
"""Configure the next round of federated evaluation."""
|
|
210
|
+
# Sample one node
|
|
211
|
+
sampled_node_id = self._make_sampling(grid, server_round, "configure_evaluate")
|
|
212
|
+
|
|
213
|
+
# Always inject current server round
|
|
214
|
+
config["server-round"] = server_round
|
|
215
|
+
|
|
216
|
+
# Construct messages
|
|
217
|
+
record = RecordDict(
|
|
218
|
+
{self.arrayrecord_key: arrays, self.configrecord_key: config}
|
|
219
|
+
)
|
|
220
|
+
return self._construct_messages(record, sampled_node_id, MessageType.EVALUATE)
|