flwr-nightly 1.22.0.dev20250918__py3-none-any.whl → 1.22.0.dev20250920__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
@@ -0,0 +1,252 @@
1
+ # Copyright 2025 Flower Labs GmbH. All Rights Reserved.
2
+ #
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License at
6
+ #
7
+ # http://www.apache.org/licenses/LICENSE-2.0
8
+ #
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License.
14
+ # ==============================================================================
15
+ """Fair Resource Allocation in Federated Learning [Li et al., 2020] strategy.
16
+
17
+ Paper: openreview.net/pdf?id=ByexElSYDr
18
+ """
19
+
20
+
21
+ from collections import OrderedDict
22
+ from collections.abc import Iterable
23
+ from logging import INFO
24
+ from typing import Callable, Optional
25
+
26
+ import numpy as np
27
+
28
+ from flwr.common import (
29
+ Array,
30
+ ArrayRecord,
31
+ ConfigRecord,
32
+ Message,
33
+ MetricRecord,
34
+ NDArray,
35
+ RecordDict,
36
+ )
37
+ from flwr.common.logger import log
38
+ from flwr.server import Grid
39
+
40
+ from ..exception import AggregationError
41
+ from .fedavg import FedAvg
42
+
43
+
44
+ class QFedAvg(FedAvg):
45
+ """Q-FedAvg strategy.
46
+
47
+ Implementation based on openreview.net/pdf?id=ByexElSYDr
48
+
49
+ Parameters
50
+ ----------
51
+ client_learning_rate : float
52
+ Local learning rate used by clients during training. This value is used by
53
+ the strategy to approximate the base Lipschitz constant L, via
54
+ L = 1 / client_learning_rate.
55
+ q : float (default: 0.1)
56
+ The parameter q that controls the degree of fairness of the algorithm. Please
57
+ tune this parameter based on your use case.
58
+ When set to 0, q-FedAvg is equivalent to FedAvg.
59
+ train_loss_key : str (default: "train_loss")
60
+ The key within the MetricRecord whose value is used as the training loss when
61
+ aggregating ArrayRecords following q-FedAvg.
62
+ fraction_train : float (default: 1.0)
63
+ Fraction of nodes used during training. In case `min_train_nodes`
64
+ is larger than `fraction_train * total_connected_nodes`, `min_train_nodes`
65
+ will still be sampled.
66
+ fraction_evaluate : float (default: 1.0)
67
+ Fraction of nodes used during validation. In case `min_evaluate_nodes`
68
+ is larger than `fraction_evaluate * total_connected_nodes`,
69
+ `min_evaluate_nodes` will still be sampled.
70
+ min_train_nodes : int (default: 2)
71
+ Minimum number of nodes used during training.
72
+ min_evaluate_nodes : int (default: 2)
73
+ Minimum number of nodes used during validation.
74
+ min_available_nodes : int (default: 2)
75
+ Minimum number of total nodes in the system.
76
+ weighted_by_key : str (default: "num-examples")
77
+ The key within each MetricRecord whose value is used as the weight when
78
+ computing weighted averages for MetricRecords.
79
+ arrayrecord_key : str (default: "arrays")
80
+ Key used to store the ArrayRecord when constructing Messages.
81
+ configrecord_key : str (default: "config")
82
+ Key used to store the ConfigRecord when constructing Messages.
83
+ train_metrics_aggr_fn : Optional[callable] (default: None)
84
+ Function with signature (list[RecordDict], str) -> MetricRecord,
85
+ used to aggregate MetricRecords from training round replies.
86
+ If `None`, defaults to `aggregate_metricrecords`, which performs a weighted
87
+ average using the provided weight factor key.
88
+ evaluate_metrics_aggr_fn : Optional[callable] (default: None)
89
+ Function with signature (list[RecordDict], str) -> MetricRecord,
90
+ used to aggregate MetricRecords from training round replies.
91
+ If `None`, defaults to `aggregate_metricrecords`, which performs a weighted
92
+ average using the provided weight factor key.
93
+ """
94
+
95
+ def __init__( # pylint: disable=R0913, R0917
96
+ self,
97
+ client_learning_rate: float,
98
+ q: float = 0.1,
99
+ train_loss_key: str = "train_loss",
100
+ fraction_train: float = 1.0,
101
+ fraction_evaluate: float = 1.0,
102
+ min_train_nodes: int = 2,
103
+ min_evaluate_nodes: int = 2,
104
+ min_available_nodes: int = 2,
105
+ weighted_by_key: str = "num-examples",
106
+ arrayrecord_key: str = "arrays",
107
+ configrecord_key: str = "config",
108
+ train_metrics_aggr_fn: Optional[
109
+ Callable[[list[RecordDict], str], MetricRecord]
110
+ ] = None,
111
+ evaluate_metrics_aggr_fn: Optional[
112
+ Callable[[list[RecordDict], str], MetricRecord]
113
+ ] = None,
114
+ ) -> None:
115
+ super().__init__(
116
+ fraction_train=fraction_train,
117
+ fraction_evaluate=fraction_evaluate,
118
+ min_train_nodes=min_train_nodes,
119
+ min_evaluate_nodes=min_evaluate_nodes,
120
+ min_available_nodes=min_available_nodes,
121
+ weighted_by_key=weighted_by_key,
122
+ arrayrecord_key=arrayrecord_key,
123
+ configrecord_key=configrecord_key,
124
+ train_metrics_aggr_fn=train_metrics_aggr_fn,
125
+ evaluate_metrics_aggr_fn=evaluate_metrics_aggr_fn,
126
+ )
127
+ self.q = q
128
+ self.client_learning_rate = client_learning_rate
129
+ self.train_loss_key = train_loss_key
130
+ self.current_arrays: Optional[ArrayRecord] = None
131
+
132
+ def summary(self) -> None:
133
+ """Log summary configuration of the strategy."""
134
+ log(INFO, "\t├──> q-FedAvg settings:")
135
+ log(INFO, "\t│\t├── client_learning_rate: %s", self.client_learning_rate)
136
+ log(INFO, "\t│\t├── q: %s", self.q)
137
+ log(INFO, "\t│\t└── train_loss_key: '%s'", self.train_loss_key)
138
+ super().summary()
139
+
140
+ def configure_train(
141
+ self, server_round: int, arrays: ArrayRecord, config: ConfigRecord, grid: Grid
142
+ ) -> Iterable[Message]:
143
+ """Configure the next round of federated training."""
144
+ self.current_arrays = arrays.copy()
145
+ return super().configure_train(server_round, arrays, config, grid)
146
+
147
+ def aggregate_train( # pylint: disable=too-many-locals
148
+ self,
149
+ server_round: int,
150
+ replies: Iterable[Message],
151
+ ) -> tuple[Optional[ArrayRecord], Optional[MetricRecord]]:
152
+ """Aggregate ArrayRecords and MetricRecords in the received Messages."""
153
+ # Call FedAvg aggregate_train to perform validation and aggregation
154
+ valid_replies, _ = self._check_and_log_replies(replies, is_train=True)
155
+
156
+ if not valid_replies:
157
+ return None, None
158
+
159
+ # Compute estimate of Lipschitz constant L
160
+ L = 1.0 / self.client_learning_rate # pylint: disable=C0103
161
+
162
+ # q-FedAvg aggregation
163
+ if self.current_arrays is None:
164
+ raise AggregationError(
165
+ "Current global model weights are not available. Make sure to call"
166
+ "`configure_train` before calling `aggregate_train`."
167
+ )
168
+ array_keys = list(self.current_arrays.keys()) # Preserve keys
169
+ global_weights = self.current_arrays.to_numpy_ndarrays(keep_input=False)
170
+ sum_delta = None
171
+ sum_h = 0.0
172
+
173
+ for msg in valid_replies:
174
+ # Extract local weights and training loss from Message
175
+ local_weights = get_local_weights(msg)
176
+ loss = get_train_loss(msg, self.train_loss_key)
177
+
178
+ # Compute delta and h
179
+ delta, h = compute_delta_and_h(
180
+ global_weights, local_weights, self.q, L, loss
181
+ )
182
+
183
+ # Compute sum of deltas and sum of h
184
+ if sum_delta is None:
185
+ sum_delta = delta
186
+ else:
187
+ sum_delta = [sd + d for sd, d in zip(sum_delta, delta)]
188
+ sum_h += h
189
+
190
+ # Compute new global weights and convert to Array type
191
+ # `np.asarray` can convert numpy scalars to 0-dim arrays
192
+ assert sum_delta is not None # Make mypy happy
193
+ array_list = [
194
+ Array(np.asarray(gw - (d / sum_h)))
195
+ for gw, d in zip(global_weights, sum_delta)
196
+ ]
197
+
198
+ # Aggregate MetricRecords
199
+ metrics = self.train_metrics_aggr_fn(
200
+ [msg.content for msg in valid_replies],
201
+ self.weighted_by_key,
202
+ )
203
+ return ArrayRecord(OrderedDict(zip(array_keys, array_list))), metrics
204
+
205
+
206
+ def get_train_loss(msg: Message, loss_key: str) -> float:
207
+ """Extract training loss from a Message."""
208
+ metrics = list(msg.content.metric_records.values())[0]
209
+ if (loss := metrics.get(loss_key)) is None or not isinstance(loss, (int, float)):
210
+ raise AggregationError(
211
+ "Missing or invalid training loss. "
212
+ f"The strategy expected a float value for the key '{loss_key}' "
213
+ "as the training loss in each MetricRecord from the clients. "
214
+ f"Ensure that '{loss_key}' is present and maps to a valid float."
215
+ )
216
+ return float(loss)
217
+
218
+
219
+ def get_local_weights(msg: Message) -> list[NDArray]:
220
+ """Extract local weights from a Message."""
221
+ arrays = list(msg.content.array_records.values())[0]
222
+ return arrays.to_numpy_ndarrays(keep_input=False)
223
+
224
+
225
+ def l2_norm(ndarrays: list[NDArray]) -> float:
226
+ """Compute the squared L2 norm of a list of numpy.ndarray."""
227
+ return float(sum(np.sum(np.square(g)) for g in ndarrays))
228
+
229
+
230
+ def compute_delta_and_h(
231
+ global_weights: list[NDArray],
232
+ local_weights: list[NDArray],
233
+ q: float,
234
+ L: float, # Lipschitz constant # pylint: disable=C0103
235
+ loss: float,
236
+ ) -> tuple[list[NDArray], float]:
237
+ """Compute delta and h used in q-FedAvg aggregation."""
238
+ # Compute gradient_k = L * (w - w_k)
239
+ for gw, lw in zip(global_weights, local_weights):
240
+ np.subtract(gw, lw, out=lw)
241
+ lw *= L
242
+ grad = local_weights # After in-place operations, local_weights is now grad
243
+ # Compute ||w_k - w||^2
244
+ norm = l2_norm(grad)
245
+ # Compute delta_k = loss_k^q * gradient_k
246
+ loss_pow_q: float = np.float_power(loss + 1e-10, q)
247
+ for g in grad:
248
+ g *= loss_pow_q
249
+ delta = grad # After in-place multiplication, grad is now delta
250
+ # Compute h_k
251
+ h = q * np.float_power(loss + 1e-10, q - 1) * norm + L * loss_pow_q
252
+ return delta, h
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.3
2
2
  Name: flwr-nightly
3
- Version: 1.22.0.dev20250918
3
+ Version: 1.22.0.dev20250920
4
4
  Summary: Flower: A Friendly Federated AI Framework
5
5
  License: Apache-2.0
6
6
  Keywords: Artificial Intelligence,Federated AI,Federated Analytics,Federated Evaluation,Federated Learning,Flower,Machine Learning
@@ -113,15 +113,16 @@ flwr/client/rest_client/connection.py,sha256=fyiS1aXTv71jWczx7mSco94LYJTBXgTF-p2
113
113
  flwr/client/run_info_store.py,sha256=MaJ3UQ-07hWtK67wnWu0zR29jrk0fsfgJX506dvEOfE,4042
114
114
  flwr/client/typing.py,sha256=Jw3rawDzI_-ZDcRmEQcs5gZModY7oeQlEeltYsdOhlU,1048
115
115
  flwr/clientapp/__init__.py,sha256=uoTjvIynfGvMhsmc7iYK-5qJ0AdKKjCbx7WTKc0KeSk,828
116
- flwr/clientapp/mod/__init__.py,sha256=o8bbHMYb_aiPbGp6guRA-I_gCJaJQ6mCqSRZdfBYYrs,920
117
- flwr/clientapp/mod/centraldp_mods.py,sha256=M8vvdrjfLVsFLMd9JXqD_-P08q9jsNOgu_4AAs-X9Zk,4626
116
+ flwr/clientapp/mod/__init__.py,sha256=LZveV-U2YZVEH4FyAZMXMT-aD1Hc0I5miIkDr7p6uQQ,970
117
+ flwr/clientapp/mod/centraldp_mods.py,sha256=a-F-ELs3lt_wtmLl8900ExJiIY792cPCrmwmJKRrerI,8950
118
+ flwr/clientapp/typing.py,sha256=x1GvXWy112RqZh27liJqz-yZ7SSCOwiOSmAQsUxk9MY,853
118
119
  flwr/common/__init__.py,sha256=5GCLVk399Az_rTJHNticRlL0Sl_oPw_j5_LuFKfX7-M,4171
119
120
  flwr/common/address.py,sha256=9JucdTwlc-jpeJkRKeUboZoacUtErwSVtnDR9kAtLqE,4119
120
121
  flwr/common/args.py,sha256=Nq2u4yePbkSY0CWFamn0hZY6Rms8G1xYDeDGIcLIITE,5849
121
122
  flwr/common/auth_plugin/__init__.py,sha256=DktrRcGZrRarLf7Jb_UlHtOyLp9_-kEplyq6PS5-vOA,988
122
123
  flwr/common/auth_plugin/auth_plugin.py,sha256=mM7SuphO4OsVAVJR1GErYVgYT83ZjxDzS_gha12bT9E,4855
123
124
  flwr/common/config.py,sha256=glcZDjco-amw1YfQcYTFJ4S1pt9APoexT-mf1QscuHs,13960
124
- flwr/common/constant.py,sha256=zopMTlEgz8TxMSh59ueef6VutHSdfb3XRStl1W5yBZ4,9013
125
+ flwr/common/constant.py,sha256=y3yKgr1UxAWveUkw29z8KM2hKsZJqhHUqPPhKQeef80,9045
125
126
  flwr/common/context.py,sha256=Be8obQR_OvEDy1OmshuUKxGRQ7Qx89mf5F4xlhkR10s,2407
126
127
  flwr/common/date.py,sha256=1ZT2cRSpC2DJqprOVTLXYCR_O2_OZR0zXO_brJ3LqWc,1554
127
128
  flwr/common/differential_privacy.py,sha256=FdlpdpPl_H_2HJa8CQM1iCUGBBQ5Dc8CzxmHERM-EoE,6148
@@ -152,7 +153,7 @@ flwr/common/record/configrecord.py,sha256=G7U0q39kB0Kyi0zMxFmPxcVemL9NgwVS1qjvI4
152
153
  flwr/common/record/conversion_utils.py,sha256=wbNCzy7oAqaA3-arhls_EqRZYXRC4YrWIoE-Gy82fJ0,1191
153
154
  flwr/common/record/metricrecord.py,sha256=KOyJjJbvFV6IwBPbgm92FZ_0_hXpMHuwfCi1rh5Zddk,8954
154
155
  flwr/common/record/recorddict.py,sha256=p7hBimFpKM1XKUe6OAkR_7pYGzGL_EwUJUvJ8odZEcY,14986
155
- flwr/common/record/typeddict.py,sha256=dDKgUThs2BscYUNcgP82KP8-qfAYXYftDrf2LszAC_o,3599
156
+ flwr/common/record/typeddict.py,sha256=NkHvzTEiicrLstryvTb-2O-sMvtsLgsOjAbostSf1z0,4102
156
157
  flwr/common/recorddict_compat.py,sha256=D5SqXWkqBddn5b6K_5UoH7aZ11UaN3lDTlzvHx3-rqk,14119
157
158
  flwr/common/retry_invoker.py,sha256=uQeDcgoTgmFwhJ0mkDE2eNz2acF9eShaqMOO5boGrPQ,15285
158
159
  flwr/common/secure_aggregation/__init__.py,sha256=MgW6uHGhyFLBAYQqa1Vzs5n2Gc0d4yEw1_NmerFir70,731
@@ -335,21 +336,23 @@ flwr/server/workflow/secure_aggregation/__init__.py,sha256=vGkycLb65CxdaMkKsANxQ
335
336
  flwr/server/workflow/secure_aggregation/secagg_workflow.py,sha256=b_pKk7gmbahwyj0ftOOLXvu-AMtRHEc82N9PJTEO8dc,5839
336
337
  flwr/server/workflow/secure_aggregation/secaggplus_workflow.py,sha256=DkayCsnlAya6Y2PZsueLgoUCMRtV-GbnW08RfWx_SXM,29460
337
338
  flwr/serverapp/__init__.py,sha256=ZujKNXULwhWYQhFnxOOT5Wi9MRq2JCWFhAAj7ouiQ78,884
338
- flwr/serverapp/dp_fixed_clipping.py,sha256=wbP4W7CaUHXdll8ZSVUnTBSEWrnWM00CGk63rOR-Q2s,12133
339
339
  flwr/serverapp/exception.py,sha256=5cuH-2AafvihzosWDdDjuMmHdDqZ1XxHvCqZXNBVklw,1334
340
- flwr/serverapp/strategy/__init__.py,sha256=mt2l31EAQ9oSvBcQhk4Jj4SvTePmWzBHQxZqL1v0uhE,1552
341
- flwr/serverapp/strategy/dp_fixed_clipping.py,sha256=wbP4W7CaUHXdll8ZSVUnTBSEWrnWM00CGk63rOR-Q2s,12133
342
- flwr/serverapp/strategy/fedadagrad.py,sha256=fD65P6OEERa_pxq847e1UZpA083AcWR44XavYB0naGM,6343
343
- flwr/serverapp/strategy/fedadam.py,sha256=s3xPIqhopy6yPTeFxevSPnc7a6BcKnKsvo2AaO6Z_xs,7138
340
+ flwr/serverapp/strategy/__init__.py,sha256=QQFa0uMXWrSCTVbd7Ixk_48U6o3K-g4nLYYJUhEVbfo,1877
341
+ flwr/serverapp/strategy/dp_adaptive_clipping.py,sha256=mssiVGMgfJw8DeP6_pBSZUKWmaXvYeG-B-p7RSt2tAU,13600
342
+ flwr/serverapp/strategy/dp_fixed_clipping.py,sha256=C_faT0ggzeUB2bGv_r1Vss-fv7-UhDrpmfiHATESI0w,12832
343
+ flwr/serverapp/strategy/fedadagrad.py,sha256=faFsuKZziPTCLeNrJOyKbPTNo-1xrIZOz7SWT5rdjJs,6269
344
+ flwr/serverapp/strategy/fedadam.py,sha256=NsY_V6TGFAfCeA9vmqaLpvB_T5siJEtKozKGdxJssAI,7064
344
345
  flwr/serverapp/strategy/fedavg.py,sha256=Bq_nlmngzJbjqX1fF1mevXGVN6-pwglHv-6yNrs6lkA,12035
345
- flwr/serverapp/strategy/fedavgm.py,sha256=VlByltWzUYCoiVIWPFRqsqLKNWjlOlO2INK8SUxEjzk,8327
346
+ flwr/serverapp/strategy/fedavgm.py,sha256=FtFmBGLzuUQ_7JWk85Xh19d8sP0YDwqczGTliGzZyGs,8333
346
347
  flwr/serverapp/strategy/fedmedian.py,sha256=b31Dk0LQBbQxi_f-jeSbWHI7iOBugcuBSN2Az-_a75E,2596
347
348
  flwr/serverapp/strategy/fedopt.py,sha256=kqT0uV2IUE93O72XEVa1JJo61dcwbZEoT9KmYTjR2tE,8477
348
- flwr/serverapp/strategy/fedprox.py,sha256=XkkLTk3XpXAj0QoAzHqAvcAlPjrNlX11ISAu5u2x6X8,7026
349
- flwr/serverapp/strategy/fedtrimmedavg.py,sha256=4-QxgAQGo_7vB_L7qDYy28d95OBt9MeDa92yaTRMHqk,7166
349
+ flwr/serverapp/strategy/fedprox.py,sha256=J1KrcE5DFko6i4608iICv1G0t9MPXspjibPd-SF_HT8,7028
350
+ flwr/serverapp/strategy/fedtrimmedavg.py,sha256=58xDPc_YO41QM8jXn0gZ79PFzO8zo3Mh3UlkF0UBbIA,7168
350
351
  flwr/serverapp/strategy/fedxgb_bagging.py,sha256=ktDjzov4y0BRecioq788umCEtcuwElou9olBizQKOnM,3282
351
352
  flwr/serverapp/strategy/fedxgb_cyclic.py,sha256=8H8WoLdG4Fy1_dtLLE4AYiidC-Cvaw2GxySfzAb7Xj0,8774
352
- flwr/serverapp/strategy/fedyogi.py,sha256=1Ripr4Hi2cdeTOLiFOXtMKvOxR3BsUQwc7bbTrXN4LM,6653
353
+ flwr/serverapp/strategy/fedyogi.py,sha256=Y9RFBQaNch3fPgGXF7OfnTH6eOpavZxpMWxWVIC9_SY,6579
354
+ flwr/serverapp/strategy/krum.py,sha256=iUM7MFCKQcSqUO3Eu4JKWnMc8NV0WMQW9dZXm4onQ-s,9490
355
+ flwr/serverapp/strategy/qfedavg.py,sha256=EM1tO_ovkybOBeW-h1PYX0lszCUAVHT6hUpwXykAEps,10204
353
356
  flwr/serverapp/strategy/result.py,sha256=E0Hl2VLnZAgQJjE2GDoKsK7JX-kPPU2KXc47Axt6hGw,4295
354
357
  flwr/serverapp/strategy/strategy.py,sha256=8uJGGm1ROLZERQ_dkRS7Z_rs-yK6XCE0UxXtIdFiEWk,10789
355
358
  flwr/serverapp/strategy/strategy_utils.py,sha256=hiwS7k-Hx6_c4NZXoKpHucS5CBKb7f8GppXRBSMt3Us,10851
@@ -416,7 +419,7 @@ flwr/supernode/servicer/__init__.py,sha256=lucTzre5WPK7G1YLCfaqg3rbFWdNSb7ZTt-ca
416
419
  flwr/supernode/servicer/clientappio/__init__.py,sha256=7Oy62Y_oijqF7Dxi6tpcUQyOpLc_QpIRZ83NvwmB0Yg,813
417
420
  flwr/supernode/servicer/clientappio/clientappio_servicer.py,sha256=nIHRu38EWK-rpNOkcgBRAAKwYQQWFeCwu0lkO7OPZGQ,10239
418
421
  flwr/supernode/start_client_internal.py,sha256=Y9S1-QlO2WP6eo4JvWzIpfaCoh2aoE7bjEYyxNNnlyg,20777
419
- flwr_nightly-1.22.0.dev20250918.dist-info/METADATA,sha256=XdvpDYzZ_dWvMX49Pwi2gOUo0qLtrt466UABjDeyavg,14559
420
- flwr_nightly-1.22.0.dev20250918.dist-info/WHEEL,sha256=b4K_helf-jlQoXBBETfwnf4B04YC67LOev0jo4fX5m8,88
421
- flwr_nightly-1.22.0.dev20250918.dist-info/entry_points.txt,sha256=hxHD2ixb_vJFDOlZV-zB4Ao32_BQlL34ftsDh1GXv14,420
422
- flwr_nightly-1.22.0.dev20250918.dist-info/RECORD,,
422
+ flwr_nightly-1.22.0.dev20250920.dist-info/METADATA,sha256=1kQFa9Wi_NFSH_EYcu0Hhnro63w1nWH21M4G1BA3Bu0,14559
423
+ flwr_nightly-1.22.0.dev20250920.dist-info/WHEEL,sha256=b4K_helf-jlQoXBBETfwnf4B04YC67LOev0jo4fX5m8,88
424
+ flwr_nightly-1.22.0.dev20250920.dist-info/entry_points.txt,sha256=hxHD2ixb_vJFDOlZV-zB4Ao32_BQlL34ftsDh1GXv14,420
425
+ flwr_nightly-1.22.0.dev20250920.dist-info/RECORD,,
@@ -1,352 +0,0 @@
1
- # Copyright 2025 Flower Labs GmbH. All Rights Reserved.
2
- #
3
- # Licensed under the Apache License, Version 2.0 (the "License");
4
- # you may not use this file except in compliance with the License.
5
- # You may obtain a copy of the License at
6
- #
7
- # http://www.apache.org/licenses/LICENSE-2.0
8
- #
9
- # Unless required by applicable law or agreed to in writing, software
10
- # distributed under the License is distributed on an "AS IS" BASIS,
11
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
- # See the License for the specific language governing permissions and
13
- # limitations under the License.
14
- # ==============================================================================
15
- """Message-based Central differential privacy with fixed clipping.
16
-
17
- Papers: https://arxiv.org/abs/1712.07557, https://arxiv.org/abs/1710.06963
18
- """
19
-
20
- from abc import ABC
21
- from collections import OrderedDict
22
- from collections.abc import Iterable
23
- from logging import INFO, WARNING
24
- from typing import Optional
25
-
26
- from flwr.common import Array, ArrayRecord, ConfigRecord, Message, MetricRecord, log
27
- from flwr.common.differential_privacy import (
28
- add_gaussian_noise_inplace,
29
- compute_clip_model_update,
30
- compute_stdv,
31
- )
32
- from flwr.common.differential_privacy_constants import (
33
- CLIENTS_DISCREPANCY_WARNING,
34
- KEY_CLIPPING_NORM,
35
- )
36
- from flwr.server import Grid
37
-
38
- from .strategy import Strategy
39
-
40
-
41
- class DifferentialPrivacyFixedClippingBase(Strategy, ABC):
42
- """Base class for DP strategies with fixed clipping.
43
-
44
- This class contains common functionality shared between server-side and
45
- client-side fixed clipping implementations.
46
-
47
- Parameters
48
- ----------
49
- strategy : Strategy
50
- The strategy to which DP functionalities will be added by this wrapper.
51
- noise_multiplier : float
52
- The noise multiplier for the Gaussian mechanism for model updates.
53
- A value of 1.0 or higher is recommended for strong privacy.
54
- clipping_norm : float
55
- The value of the clipping norm.
56
- num_sampled_clients : int
57
- The number of clients that are sampled on each round.
58
- """
59
-
60
- # pylint: disable=too-many-arguments,too-many-instance-attributes
61
- def __init__(
62
- self,
63
- strategy: Strategy,
64
- noise_multiplier: float,
65
- clipping_norm: float,
66
- num_sampled_clients: int,
67
- ) -> None:
68
- super().__init__()
69
-
70
- self.strategy = strategy
71
-
72
- if noise_multiplier < 0:
73
- raise ValueError("The noise multiplier should be a non-negative value.")
74
-
75
- if clipping_norm <= 0:
76
- raise ValueError("The clipping norm should be a positive value.")
77
-
78
- if num_sampled_clients <= 0:
79
- raise ValueError(
80
- "The number of sampled clients should be a positive value."
81
- )
82
-
83
- self.noise_multiplier = noise_multiplier
84
- self.clipping_norm = clipping_norm
85
- self.num_sampled_clients = num_sampled_clients
86
-
87
- def _validate_replies(self, replies: Iterable[Message]) -> bool:
88
- """Validate replies and log errors/warnings.
89
-
90
- Returns
91
- -------
92
- bool
93
- True if replies are valid for aggregation, False otherwise.
94
- """
95
- num_errors = 0
96
- num_replies_with_content = 0
97
- for msg in replies:
98
- if msg.has_error():
99
- log(
100
- INFO,
101
- "Received error in reply from node %d: %s",
102
- msg.metadata.src_node_id,
103
- msg.error,
104
- )
105
- num_errors += 1
106
- else:
107
- num_replies_with_content += 1
108
-
109
- # Errors are not allowed
110
- if num_errors:
111
- log(
112
- INFO,
113
- "aggregate_train: Some clients reported errors. Skipping aggregation.",
114
- )
115
- return False
116
-
117
- log(
118
- INFO,
119
- "aggregate_train: Received %s results and %s failures",
120
- num_replies_with_content,
121
- num_errors,
122
- )
123
-
124
- if num_replies_with_content != self.num_sampled_clients:
125
- log(
126
- WARNING,
127
- CLIENTS_DISCREPANCY_WARNING,
128
- num_replies_with_content,
129
- self.num_sampled_clients,
130
- )
131
-
132
- return True
133
-
134
- def _add_noise_to_aggregated_arrays(
135
- self, aggregated_arrays: ArrayRecord
136
- ) -> ArrayRecord:
137
- """Add Gaussian noise to aggregated arrays.
138
-
139
- Parameters
140
- ----------
141
- aggregated_arrays : ArrayRecord
142
- The aggregated arrays to add noise to.
143
-
144
- Returns
145
- -------
146
- ArrayRecord
147
- The aggregated arrays with noise added.
148
- """
149
- aggregated_ndarrays = aggregated_arrays.to_numpy_ndarrays()
150
- stdv = compute_stdv(
151
- self.noise_multiplier, self.clipping_norm, self.num_sampled_clients
152
- )
153
- add_gaussian_noise_inplace(aggregated_ndarrays, stdv)
154
-
155
- log(
156
- INFO,
157
- "aggregate_fit: central DP noise with %.4f stdev added",
158
- stdv,
159
- )
160
-
161
- return ArrayRecord(
162
- OrderedDict(
163
- {
164
- k: Array(v)
165
- for k, v in zip(aggregated_arrays.keys(), aggregated_ndarrays)
166
- }
167
- )
168
- )
169
-
170
- def configure_evaluate(
171
- self, server_round: int, arrays: ArrayRecord, config: ConfigRecord, grid: Grid
172
- ) -> Iterable[Message]:
173
- """Configure the next round of federated evaluation."""
174
- return self.strategy.configure_evaluate(server_round, arrays, config, grid)
175
-
176
- def aggregate_evaluate(
177
- self,
178
- server_round: int,
179
- replies: Iterable[Message],
180
- ) -> Optional[MetricRecord]:
181
- """Aggregate MetricRecords in the received Messages."""
182
- return self.strategy.aggregate_evaluate(server_round, replies)
183
-
184
- def summary(self) -> None:
185
- """Log summary configuration of the strategy."""
186
- self.strategy.summary()
187
-
188
-
189
- class DifferentialPrivacyServerSideFixedClipping(DifferentialPrivacyFixedClippingBase):
190
- """Strategy wrapper for central DP with server-side fixed clipping.
191
-
192
- Parameters
193
- ----------
194
- strategy : Strategy
195
- The strategy to which DP functionalities will be added by this wrapper.
196
- noise_multiplier : float
197
- The noise multiplier for the Gaussian mechanism for model updates.
198
- A value of 1.0 or higher is recommended for strong privacy.
199
- clipping_norm : float
200
- The value of the clipping norm.
201
- num_sampled_clients : int
202
- The number of clients that are sampled on each round.
203
-
204
- Examples
205
- --------
206
- Create a strategy::
207
-
208
- strategy = fl.serverapp.FedAvg( ... )
209
-
210
- Wrap the strategy with the `DifferentialPrivacyServerSideFixedClipping` wrapper::
211
-
212
- dp_strategy = DifferentialPrivacyServerSideFixedClipping(
213
- strategy, cfg.noise_multiplier, cfg.clipping_norm, cfg.num_sampled_clients
214
- )
215
- """
216
-
217
- def __init__(
218
- self,
219
- strategy: Strategy,
220
- noise_multiplier: float,
221
- clipping_norm: float,
222
- num_sampled_clients: int,
223
- ) -> None:
224
- super().__init__(strategy, noise_multiplier, clipping_norm, num_sampled_clients)
225
- self.current_arrays: ArrayRecord = ArrayRecord()
226
-
227
- def __repr__(self) -> str:
228
- """Compute a string representation of the strategy."""
229
- return "Differential Privacy Strategy Wrapper (Server-Side Fixed Clipping)"
230
-
231
- def configure_train(
232
- self, server_round: int, arrays: ArrayRecord, config: ConfigRecord, grid: Grid
233
- ) -> Iterable[Message]:
234
- """Configure the next round of training."""
235
- self.current_arrays = arrays
236
- return self.strategy.configure_train(server_round, arrays, config, grid)
237
-
238
- def aggregate_train(
239
- self,
240
- server_round: int,
241
- replies: Iterable[Message],
242
- ) -> tuple[Optional[ArrayRecord], Optional[MetricRecord]]:
243
- """Aggregate ArrayRecords and MetricRecords in the received Messages."""
244
- if not self._validate_replies(replies):
245
- return None, None
246
-
247
- # Clip arrays in replies
248
- current_ndarrays = self.current_arrays.to_numpy_ndarrays()
249
- for reply in replies:
250
- for arr_name, record in reply.content.array_records.items():
251
- # Clip
252
- reply_ndarrays = record.to_numpy_ndarrays()
253
- compute_clip_model_update(
254
- param1=reply_ndarrays,
255
- param2=current_ndarrays,
256
- clipping_norm=self.clipping_norm,
257
- )
258
- # Replace content while preserving keys
259
- reply.content[arr_name] = ArrayRecord(
260
- OrderedDict(
261
- {k: Array(v) for k, v in zip(record.keys(), reply_ndarrays)}
262
- )
263
- )
264
- log(
265
- INFO,
266
- "aggregate_fit: parameters are clipped by value: %.4f.",
267
- self.clipping_norm,
268
- )
269
-
270
- # Pass the new parameters for aggregation
271
- aggregated_arrays, aggregated_metrics = self.strategy.aggregate_train(
272
- server_round, replies
273
- )
274
-
275
- # Add Gaussian noise to the aggregated arrays
276
- if aggregated_arrays:
277
- aggregated_arrays = self._add_noise_to_aggregated_arrays(aggregated_arrays)
278
-
279
- return aggregated_arrays, aggregated_metrics
280
-
281
-
282
- class DifferentialPrivacyClientSideFixedClipping(DifferentialPrivacyFixedClippingBase):
283
- """Strategy wrapper for central DP with client-side fixed clipping.
284
-
285
- Use `fixedclipping_mod` modifier at the client side.
286
-
287
- In comparison to `DifferentialPrivacyServerSideFixedClipping`,
288
- which performs clipping on the server-side,
289
- `DifferentialPrivacyClientSideFixedClipping` expects clipping to happen
290
- on the client-side, usually by using the built-in `fixedclipping_mod`.
291
-
292
- Parameters
293
- ----------
294
- strategy : Strategy
295
- The strategy to which DP functionalities will be added by this wrapper.
296
- noise_multiplier : float
297
- The noise multiplier for the Gaussian mechanism for model updates.
298
- A value of 1.0 or higher is recommended for strong privacy.
299
- clipping_norm : float
300
- The value of the clipping norm.
301
- num_sampled_clients : int
302
- The number of clients that are sampled on each round.
303
-
304
- Examples
305
- --------
306
- Create a strategy::
307
-
308
- strategy = fl.serverapp.FedAvg(...)
309
-
310
- Wrap the strategy with the `DifferentialPrivacyClientSideFixedClipping` wrapper::
311
-
312
- dp_strategy = DifferentialPrivacyClientSideFixedClipping(
313
- strategy, cfg.noise_multiplier, cfg.clipping_norm, cfg.num_sampled_clients
314
- )
315
-
316
- On the client, add the `fixedclipping_mod` to the client-side mods::
317
-
318
- app = fl.client.ClientApp(mods=[fixedclipping_mod])
319
- """
320
-
321
- def __repr__(self) -> str:
322
- """Compute a string representation of the strategy."""
323
- return "Differential Privacy Strategy Wrapper (Client-Side Fixed Clipping)"
324
-
325
- def configure_train(
326
- self, server_round: int, arrays: ArrayRecord, config: ConfigRecord, grid: Grid
327
- ) -> Iterable[Message]:
328
- """Configure the next round of training."""
329
- # Inject clipping norm in config
330
- config[KEY_CLIPPING_NORM] = self.clipping_norm
331
- # Call parent method
332
- return self.strategy.configure_train(server_round, arrays, config, grid)
333
-
334
- def aggregate_train(
335
- self,
336
- server_round: int,
337
- replies: Iterable[Message],
338
- ) -> tuple[Optional[ArrayRecord], Optional[MetricRecord]]:
339
- """Aggregate ArrayRecords and MetricRecords in the received Messages."""
340
- if not self._validate_replies(replies):
341
- return None, None
342
-
343
- # Aggregate
344
- aggregated_arrays, aggregated_metrics = self.strategy.aggregate_train(
345
- server_round, replies
346
- )
347
-
348
- # Add Gaussian noise to the aggregated arrays
349
- if aggregated_arrays:
350
- aggregated_arrays = self._add_noise_to_aggregated_arrays(aggregated_arrays)
351
-
352
- return aggregated_arrays, aggregated_metrics