flwr-nightly 1.22.0.dev20250918__py3-none-any.whl → 1.22.0.dev20250919__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- flwr/clientapp/mod/__init__.py +2 -1
- flwr/clientapp/mod/centraldp_mods.py +155 -39
- flwr/clientapp/typing.py +22 -0
- flwr/common/constant.py +1 -0
- flwr/common/record/typeddict.py +12 -0
- flwr/serverapp/strategy/__init__.py +10 -0
- flwr/serverapp/strategy/dp_adaptive_clipping.py +335 -0
- flwr/serverapp/strategy/dp_fixed_clipping.py +71 -49
- flwr/serverapp/strategy/fedadagrad.py +0 -3
- flwr/serverapp/strategy/fedadam.py +0 -3
- flwr/serverapp/strategy/fedavgm.py +3 -3
- flwr/serverapp/strategy/fedprox.py +1 -1
- flwr/serverapp/strategy/fedtrimmedavg.py +1 -1
- flwr/serverapp/strategy/fedyogi.py +0 -3
- flwr/serverapp/strategy/krum.py +230 -0
- flwr/serverapp/strategy/qfedavg.py +252 -0
- {flwr_nightly-1.22.0.dev20250918.dist-info → flwr_nightly-1.22.0.dev20250919.dist-info}/METADATA +1 -1
- {flwr_nightly-1.22.0.dev20250918.dist-info → flwr_nightly-1.22.0.dev20250919.dist-info}/RECORD +20 -17
- flwr/serverapp/dp_fixed_clipping.py +0 -352
- {flwr_nightly-1.22.0.dev20250918.dist-info → flwr_nightly-1.22.0.dev20250919.dist-info}/WHEEL +0 -0
- {flwr_nightly-1.22.0.dev20250918.dist-info → flwr_nightly-1.22.0.dev20250919.dist-info}/entry_points.txt +0 -0
@@ -84,53 +84,6 @@ class DifferentialPrivacyFixedClippingBase(Strategy, ABC):
|
|
84
84
|
self.clipping_norm = clipping_norm
|
85
85
|
self.num_sampled_clients = num_sampled_clients
|
86
86
|
|
87
|
-
def _validate_replies(self, replies: Iterable[Message]) -> bool:
|
88
|
-
"""Validate replies and log errors/warnings.
|
89
|
-
|
90
|
-
Returns
|
91
|
-
-------
|
92
|
-
bool
|
93
|
-
True if replies are valid for aggregation, False otherwise.
|
94
|
-
"""
|
95
|
-
num_errors = 0
|
96
|
-
num_replies_with_content = 0
|
97
|
-
for msg in replies:
|
98
|
-
if msg.has_error():
|
99
|
-
log(
|
100
|
-
INFO,
|
101
|
-
"Received error in reply from node %d: %s",
|
102
|
-
msg.metadata.src_node_id,
|
103
|
-
msg.error,
|
104
|
-
)
|
105
|
-
num_errors += 1
|
106
|
-
else:
|
107
|
-
num_replies_with_content += 1
|
108
|
-
|
109
|
-
# Errors are not allowed
|
110
|
-
if num_errors:
|
111
|
-
log(
|
112
|
-
INFO,
|
113
|
-
"aggregate_train: Some clients reported errors. Skipping aggregation.",
|
114
|
-
)
|
115
|
-
return False
|
116
|
-
|
117
|
-
log(
|
118
|
-
INFO,
|
119
|
-
"aggregate_train: Received %s results and %s failures",
|
120
|
-
num_replies_with_content,
|
121
|
-
num_errors,
|
122
|
-
)
|
123
|
-
|
124
|
-
if num_replies_with_content != self.num_sampled_clients:
|
125
|
-
log(
|
126
|
-
WARNING,
|
127
|
-
CLIENTS_DISCREPANCY_WARNING,
|
128
|
-
num_replies_with_content,
|
129
|
-
self.num_sampled_clients,
|
130
|
-
)
|
131
|
-
|
132
|
-
return True
|
133
|
-
|
134
87
|
def _add_noise_to_aggregated_arrays(
|
135
88
|
self, aggregated_arrays: ArrayRecord
|
136
89
|
) -> ArrayRecord:
|
@@ -228,6 +181,13 @@ class DifferentialPrivacyServerSideFixedClipping(DifferentialPrivacyFixedClippin
|
|
228
181
|
"""Compute a string representation of the strategy."""
|
229
182
|
return "Differential Privacy Strategy Wrapper (Server-Side Fixed Clipping)"
|
230
183
|
|
184
|
+
def summary(self) -> None:
|
185
|
+
"""Log summary configuration of the strategy."""
|
186
|
+
log(INFO, "\t├──> DP settings:")
|
187
|
+
log(INFO, "\t│\t├── Noise multiplier: %s", self.noise_multiplier)
|
188
|
+
log(INFO, "\t│\t└── Clipping norm: %s", self.clipping_norm)
|
189
|
+
super().summary()
|
190
|
+
|
231
191
|
def configure_train(
|
232
192
|
self, server_round: int, arrays: ArrayRecord, config: ConfigRecord, grid: Grid
|
233
193
|
) -> Iterable[Message]:
|
@@ -241,7 +201,7 @@ class DifferentialPrivacyServerSideFixedClipping(DifferentialPrivacyFixedClippin
|
|
241
201
|
replies: Iterable[Message],
|
242
202
|
) -> tuple[Optional[ArrayRecord], Optional[MetricRecord]]:
|
243
203
|
"""Aggregate ArrayRecords and MetricRecords in the received Messages."""
|
244
|
-
if not self.
|
204
|
+
if not validate_replies(replies, self.num_sampled_clients):
|
245
205
|
return None, None
|
246
206
|
|
247
207
|
# Clip arrays in replies
|
@@ -322,6 +282,13 @@ class DifferentialPrivacyClientSideFixedClipping(DifferentialPrivacyFixedClippin
|
|
322
282
|
"""Compute a string representation of the strategy."""
|
323
283
|
return "Differential Privacy Strategy Wrapper (Client-Side Fixed Clipping)"
|
324
284
|
|
285
|
+
def summary(self) -> None:
|
286
|
+
"""Log summary configuration of the strategy."""
|
287
|
+
log(INFO, "\t├──> DP settings:")
|
288
|
+
log(INFO, "\t│\t├── Noise multiplier: %s", self.noise_multiplier)
|
289
|
+
log(INFO, "\t│\t└── Clipping norm: %s", self.clipping_norm)
|
290
|
+
super().summary()
|
291
|
+
|
325
292
|
def configure_train(
|
326
293
|
self, server_round: int, arrays: ArrayRecord, config: ConfigRecord, grid: Grid
|
327
294
|
) -> Iterable[Message]:
|
@@ -337,7 +304,7 @@ class DifferentialPrivacyClientSideFixedClipping(DifferentialPrivacyFixedClippin
|
|
337
304
|
replies: Iterable[Message],
|
338
305
|
) -> tuple[Optional[ArrayRecord], Optional[MetricRecord]]:
|
339
306
|
"""Aggregate ArrayRecords and MetricRecords in the received Messages."""
|
340
|
-
if not self.
|
307
|
+
if not validate_replies(replies, self.num_sampled_clients):
|
341
308
|
return None, None
|
342
309
|
|
343
310
|
# Aggregate
|
@@ -350,3 +317,58 @@ class DifferentialPrivacyClientSideFixedClipping(DifferentialPrivacyFixedClippin
|
|
350
317
|
aggregated_arrays = self._add_noise_to_aggregated_arrays(aggregated_arrays)
|
351
318
|
|
352
319
|
return aggregated_arrays, aggregated_metrics
|
320
|
+
|
321
|
+
|
322
|
+
def validate_replies(replies: Iterable[Message], num_sampled_clients: int) -> bool:
|
323
|
+
"""Validate replies and log errors/warnings.
|
324
|
+
|
325
|
+
Arguments
|
326
|
+
----------
|
327
|
+
replies : Iterable[Message]
|
328
|
+
The replies to validate.
|
329
|
+
num_sampled_clients : int
|
330
|
+
The expected number of sampled clients.
|
331
|
+
|
332
|
+
Returns
|
333
|
+
-------
|
334
|
+
bool
|
335
|
+
True if replies are valid for aggregation, False otherwise.
|
336
|
+
"""
|
337
|
+
num_errors = 0
|
338
|
+
num_replies_with_content = 0
|
339
|
+
for msg in replies:
|
340
|
+
if msg.has_error():
|
341
|
+
log(
|
342
|
+
INFO,
|
343
|
+
"Received error in reply from node %d: %s",
|
344
|
+
msg.metadata.src_node_id,
|
345
|
+
msg.error,
|
346
|
+
)
|
347
|
+
num_errors += 1
|
348
|
+
else:
|
349
|
+
num_replies_with_content += 1
|
350
|
+
|
351
|
+
# Errors are not allowed
|
352
|
+
if num_errors:
|
353
|
+
log(
|
354
|
+
INFO,
|
355
|
+
"aggregate_train: Some clients reported errors. Skipping aggregation.",
|
356
|
+
)
|
357
|
+
return False
|
358
|
+
|
359
|
+
log(
|
360
|
+
INFO,
|
361
|
+
"aggregate_train: Received %s results and %s failures",
|
362
|
+
num_replies_with_content,
|
363
|
+
num_errors,
|
364
|
+
)
|
365
|
+
|
366
|
+
if num_replies_with_content != num_sampled_clients:
|
367
|
+
log(
|
368
|
+
WARNING,
|
369
|
+
CLIENTS_DISCREPANCY_WARNING,
|
370
|
+
num_replies_with_content,
|
371
|
+
num_sampled_clients,
|
372
|
+
)
|
373
|
+
|
374
|
+
return True
|
@@ -153,9 +153,6 @@ class FedAdagrad(FedOpt):
|
|
153
153
|
for k, x in self.current_arrays.items()
|
154
154
|
}
|
155
155
|
|
156
|
-
# Update current arrays
|
157
|
-
self.current_arrays = new_arrays
|
158
|
-
|
159
156
|
return (
|
160
157
|
ArrayRecord(OrderedDict({k: Array(v) for k, v in new_arrays.items()})),
|
161
158
|
aggregated_metrics,
|
@@ -172,9 +172,6 @@ class FedAdam(FedOpt):
|
|
172
172
|
for k, x in self.current_arrays.items()
|
173
173
|
}
|
174
174
|
|
175
|
-
# Update current arrays
|
176
|
-
self.current_arrays = new_arrays
|
177
|
-
|
178
175
|
return (
|
179
176
|
ArrayRecord(OrderedDict({k: Array(v) for k, v in new_arrays.items()})),
|
180
177
|
aggregated_metrics,
|
@@ -126,9 +126,9 @@ class FedAvgM(FedAvg):
|
|
126
126
|
"""Log summary configuration of the strategy."""
|
127
127
|
opt_status = "ON" if self.server_opt else "OFF"
|
128
128
|
log(INFO, "\t├──> FedAvgM settings:")
|
129
|
-
log(INFO, "\t
|
130
|
-
log(INFO, "\t
|
131
|
-
log(INFO, "\t
|
129
|
+
log(INFO, "\t│\t├── Server optimization: %s", opt_status)
|
130
|
+
log(INFO, "\t│\t├── Server learning rate: %s", self.server_learning_rate)
|
131
|
+
log(INFO, "\t│\t└── Server Momentum: %s", self.server_momentum)
|
132
132
|
super().summary()
|
133
133
|
|
134
134
|
def configure_train(
|
@@ -162,7 +162,7 @@ class FedProx(FedAvg):
|
|
162
162
|
def summary(self) -> None:
|
163
163
|
"""Log summary configuration of the strategy."""
|
164
164
|
log(INFO, "\t├──> FedProx settings:")
|
165
|
-
log(INFO, "\t
|
165
|
+
log(INFO, "\t│\t└── Proximal mu: %s", self.proximal_mu)
|
166
166
|
super().summary()
|
167
167
|
|
168
168
|
def configure_train(
|
@@ -108,7 +108,7 @@ class FedTrimmedAvg(FedAvg):
|
|
108
108
|
def summary(self) -> None:
|
109
109
|
"""Log summary configuration of the strategy."""
|
110
110
|
log(INFO, "\t├──> FedTrimmedAvg settings:")
|
111
|
-
log(INFO, "\t
|
111
|
+
log(INFO, "\t│\t└── beta: %s", self.beta)
|
112
112
|
super().summary()
|
113
113
|
|
114
114
|
def aggregate_train(
|
@@ -164,9 +164,6 @@ class FedYogi(FedOpt):
|
|
164
164
|
for k, x in self.current_arrays.items()
|
165
165
|
}
|
166
166
|
|
167
|
-
# Update current arrays
|
168
|
-
self.current_arrays = new_arrays
|
169
|
-
|
170
167
|
return (
|
171
168
|
ArrayRecord(OrderedDict({k: Array(v) for k, v in new_arrays.items()})),
|
172
169
|
aggregated_metrics,
|
@@ -0,0 +1,230 @@
|
|
1
|
+
# Copyright 2025 Flower Labs GmbH. All Rights Reserved.
|
2
|
+
#
|
3
|
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4
|
+
# you may not use this file except in compliance with the License.
|
5
|
+
# You may obtain a copy of the License at
|
6
|
+
#
|
7
|
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8
|
+
#
|
9
|
+
# Unless required by applicable law or agreed to in writing, software
|
10
|
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11
|
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12
|
+
# See the License for the specific language governing permissions and
|
13
|
+
# limitations under the License.
|
14
|
+
# ==============================================================================
|
15
|
+
"""Machine Learning with Adversaries: Byzantine Tolerant Gradient Descent.
|
16
|
+
|
17
|
+
[Blanchard et al., 2017].
|
18
|
+
|
19
|
+
Paper: proceedings.neurips.cc/paper/2017/file/f4b9ec30ad9f68f89b29639786cb62ef-Paper.pdf
|
20
|
+
"""
|
21
|
+
|
22
|
+
|
23
|
+
from collections.abc import Iterable
|
24
|
+
from logging import INFO
|
25
|
+
from typing import Callable, Optional
|
26
|
+
|
27
|
+
import numpy as np
|
28
|
+
|
29
|
+
from flwr.common import ArrayRecord, Message, MetricRecord, NDArray, RecordDict, log
|
30
|
+
|
31
|
+
from .fedavg import FedAvg
|
32
|
+
from .strategy_utils import aggregate_arrayrecords
|
33
|
+
|
34
|
+
|
35
|
+
# pylint: disable=too-many-instance-attributes
|
36
|
+
class Krum(FedAvg):
|
37
|
+
"""Krum [Blanchard et al., 2017] strategy.
|
38
|
+
|
39
|
+
Implementation based on https://arxiv.org/abs/1703.02757
|
40
|
+
|
41
|
+
Parameters
|
42
|
+
----------
|
43
|
+
fraction_train : float (default: 1.0)
|
44
|
+
Fraction of nodes used during training. In case `min_train_nodes`
|
45
|
+
is larger than `fraction_train * total_connected_nodes`, `min_train_nodes`
|
46
|
+
will still be sampled.
|
47
|
+
fraction_evaluate : float (default: 1.0)
|
48
|
+
Fraction of nodes used during validation. In case `min_evaluate_nodes`
|
49
|
+
is larger than `fraction_evaluate * total_connected_nodes`,
|
50
|
+
`min_evaluate_nodes` will still be sampled.
|
51
|
+
min_train_nodes : int (default: 2)
|
52
|
+
Minimum number of nodes used during training.
|
53
|
+
min_evaluate_nodes : int (default: 2)
|
54
|
+
Minimum number of nodes used during validation.
|
55
|
+
min_available_nodes : int (default: 2)
|
56
|
+
Minimum number of total nodes in the system.
|
57
|
+
num_malicious_nodes : int (default: 0)
|
58
|
+
Number of malicious nodes in the system. Defaults to 0.
|
59
|
+
num_nodes_to_keep : int (default: 0)
|
60
|
+
Number of nodes to keep before averaging (MultiKrum). Defaults to 0, in
|
61
|
+
that case classical Krum is applied.
|
62
|
+
weighted_by_key : str (default: "num-examples")
|
63
|
+
The key within each MetricRecord whose value is used as the weight when
|
64
|
+
computing weighted averages for both ArrayRecords and MetricRecords.
|
65
|
+
arrayrecord_key : str (default: "arrays")
|
66
|
+
Key used to store the ArrayRecord when constructing Messages.
|
67
|
+
configrecord_key : str (default: "config")
|
68
|
+
Key used to store the ConfigRecord when constructing Messages.
|
69
|
+
train_metrics_aggr_fn : Optional[callable] (default: None)
|
70
|
+
Function with signature (list[RecordDict], str) -> MetricRecord,
|
71
|
+
used to aggregate MetricRecords from training round replies.
|
72
|
+
If `None`, defaults to `aggregate_metricrecords`, which performs a weighted
|
73
|
+
average using the provided weight factor key.
|
74
|
+
evaluate_metrics_aggr_fn : Optional[callable] (default: None)
|
75
|
+
Function with signature (list[RecordDict], str) -> MetricRecord,
|
76
|
+
used to aggregate MetricRecords from training round replies.
|
77
|
+
If `None`, defaults to `aggregate_metricrecords`, which performs a weighted
|
78
|
+
average using the provided weight factor key.
|
79
|
+
"""
|
80
|
+
|
81
|
+
# pylint: disable=too-many-arguments,too-many-positional-arguments
|
82
|
+
def __init__(
|
83
|
+
self,
|
84
|
+
fraction_train: float = 1.0,
|
85
|
+
fraction_evaluate: float = 1.0,
|
86
|
+
min_train_nodes: int = 2,
|
87
|
+
min_evaluate_nodes: int = 2,
|
88
|
+
min_available_nodes: int = 2,
|
89
|
+
num_malicious_nodes: int = 0,
|
90
|
+
num_nodes_to_keep: int = 0,
|
91
|
+
weighted_by_key: str = "num-examples",
|
92
|
+
arrayrecord_key: str = "arrays",
|
93
|
+
configrecord_key: str = "config",
|
94
|
+
train_metrics_aggr_fn: Optional[
|
95
|
+
Callable[[list[RecordDict], str], MetricRecord]
|
96
|
+
] = None,
|
97
|
+
evaluate_metrics_aggr_fn: Optional[
|
98
|
+
Callable[[list[RecordDict], str], MetricRecord]
|
99
|
+
] = None,
|
100
|
+
) -> None:
|
101
|
+
super().__init__(
|
102
|
+
fraction_train=fraction_train,
|
103
|
+
fraction_evaluate=fraction_evaluate,
|
104
|
+
min_train_nodes=min_train_nodes,
|
105
|
+
min_evaluate_nodes=min_evaluate_nodes,
|
106
|
+
min_available_nodes=min_available_nodes,
|
107
|
+
weighted_by_key=weighted_by_key,
|
108
|
+
arrayrecord_key=arrayrecord_key,
|
109
|
+
configrecord_key=configrecord_key,
|
110
|
+
train_metrics_aggr_fn=train_metrics_aggr_fn,
|
111
|
+
evaluate_metrics_aggr_fn=evaluate_metrics_aggr_fn,
|
112
|
+
)
|
113
|
+
self.num_malicious_nodes = num_malicious_nodes
|
114
|
+
self.num_nodes_to_keep = num_nodes_to_keep
|
115
|
+
|
116
|
+
def summary(self) -> None:
|
117
|
+
"""Log summary configuration of the strategy."""
|
118
|
+
log(INFO, "\t├──> Krum settings:")
|
119
|
+
log(INFO, "\t│\t├── Number of malicious nodes: %d", self.num_malicious_nodes)
|
120
|
+
log(INFO, "\t│\t└── Number of nodes to keep: %d", self.num_nodes_to_keep)
|
121
|
+
super().summary()
|
122
|
+
|
123
|
+
def _compute_distances(self, records: list[ArrayRecord]) -> NDArray:
|
124
|
+
"""Compute distances between ArrayRecords.
|
125
|
+
|
126
|
+
Parameters
|
127
|
+
----------
|
128
|
+
records : list[ArrayRecord]
|
129
|
+
A list of ArrayRecords (arrays received in replies)
|
130
|
+
|
131
|
+
Returns
|
132
|
+
-------
|
133
|
+
NDArray
|
134
|
+
A 2D array representing the distance matrix of squared distances
|
135
|
+
between input ArrayRecords
|
136
|
+
"""
|
137
|
+
flat_w = np.array(
|
138
|
+
[
|
139
|
+
np.concatenate(rec.to_numpy_ndarrays(), axis=None).ravel()
|
140
|
+
for rec in records
|
141
|
+
]
|
142
|
+
)
|
143
|
+
distance_matrix = np.zeros((len(records), len(records)))
|
144
|
+
for i, flat_w_i in enumerate(flat_w):
|
145
|
+
for j, flat_w_j in enumerate(flat_w):
|
146
|
+
delta = flat_w_i - flat_w_j
|
147
|
+
norm = np.linalg.norm(delta)
|
148
|
+
distance_matrix[i, j] = norm**2
|
149
|
+
return distance_matrix
|
150
|
+
|
151
|
+
def _krum(self, replies: list[RecordDict]) -> list[RecordDict]:
|
152
|
+
"""Select the set of RecordDicts to aggregate using the Krum or MultiKrum
|
153
|
+
algorithm.
|
154
|
+
|
155
|
+
For each node, computes the sum of squared distances to its n-f-2 closest
|
156
|
+
parameter vectors, where n is the number of nodes and f is the number of
|
157
|
+
malicious nodes. The node(s) with the lowest score(s) are selected for
|
158
|
+
aggregation.
|
159
|
+
|
160
|
+
Parameters
|
161
|
+
----------
|
162
|
+
replies : list[RecordDict]
|
163
|
+
List of RecordDicts, each containing an ArrayRecord representing model
|
164
|
+
parameters from a client.
|
165
|
+
|
166
|
+
Returns
|
167
|
+
-------
|
168
|
+
list[RecordDict]
|
169
|
+
List of RecordDicts selected for aggregation. If `num_nodes_to_keep` > 0,
|
170
|
+
returns the top `num_nodes_to_keep` RecordDicts (MultiKrum); otherwise,
|
171
|
+
returns the single RecordDict with the lowest score (Krum).
|
172
|
+
"""
|
173
|
+
# Construct list of ArrayRecord objects from replies
|
174
|
+
# Recall aggregate_train first ensures replies only contain one ArrayRecord
|
175
|
+
array_records = [list(reply.array_records.values())[0] for reply in replies]
|
176
|
+
distance_matrix = self._compute_distances(array_records)
|
177
|
+
|
178
|
+
# For each node, take the n-f-2 closest parameters vectors
|
179
|
+
num_closest = max(1, len(array_records) - self.num_malicious_nodes - 2)
|
180
|
+
closest_indices = []
|
181
|
+
for distance in distance_matrix:
|
182
|
+
closest_indices.append(
|
183
|
+
np.argsort(distance)[1 : num_closest + 1].tolist() # noqa: E203
|
184
|
+
)
|
185
|
+
|
186
|
+
# Compute the score for each node, that is the sum of the distances
|
187
|
+
# of the n-f-2 closest parameters vectors
|
188
|
+
scores = [
|
189
|
+
np.sum(distance_matrix[i, closest_indices[i]])
|
190
|
+
for i in range(len(distance_matrix))
|
191
|
+
]
|
192
|
+
|
193
|
+
# Return RecordDicts that should be aggregated
|
194
|
+
if self.num_nodes_to_keep > 0:
|
195
|
+
# Choose to_keep nodes and return their average (MultiKrum)
|
196
|
+
best_indices = np.argsort(scores)[::-1][
|
197
|
+
len(scores) - self.num_nodes_to_keep :
|
198
|
+
] # noqa: E203
|
199
|
+
return [replies[i] for i in best_indices]
|
200
|
+
|
201
|
+
# Return the RecordDict with the ArrayRecord that minimize the score (Krum)
|
202
|
+
return [replies[np.argmin(scores)]]
|
203
|
+
|
204
|
+
def aggregate_train(
|
205
|
+
self,
|
206
|
+
server_round: int,
|
207
|
+
replies: Iterable[Message],
|
208
|
+
) -> tuple[Optional[ArrayRecord], Optional[MetricRecord]]:
|
209
|
+
"""Aggregate ArrayRecords and MetricRecords in the received Messages."""
|
210
|
+
valid_replies, _ = self._check_and_log_replies(replies, is_train=True)
|
211
|
+
|
212
|
+
arrays, metrics = None, None
|
213
|
+
if valid_replies:
|
214
|
+
reply_contents = [msg.content for msg in valid_replies]
|
215
|
+
|
216
|
+
# Krum
|
217
|
+
replies_to_aggregate = self._krum(reply_contents)
|
218
|
+
|
219
|
+
# Aggregate ArrayRecords
|
220
|
+
arrays = aggregate_arrayrecords(
|
221
|
+
replies_to_aggregate,
|
222
|
+
self.weighted_by_key,
|
223
|
+
)
|
224
|
+
|
225
|
+
# Aggregate MetricRecords
|
226
|
+
metrics = self.train_metrics_aggr_fn(
|
227
|
+
replies_to_aggregate,
|
228
|
+
self.weighted_by_key,
|
229
|
+
)
|
230
|
+
return arrays, metrics
|