flwr-nightly 1.22.0.dev20250915__py3-none-any.whl → 1.22.0.dev20250917__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (37) hide show
  1. flwr/cli/app.py +2 -0
  2. flwr/cli/new/new.py +2 -2
  3. flwr/cli/new/templates/app/README.flowertune.md.tpl +1 -1
  4. flwr/cli/new/templates/app/code/client.baseline.py.tpl +64 -47
  5. flwr/cli/new/templates/app/code/flwr_tune/client_app.py.tpl +56 -90
  6. flwr/cli/new/templates/app/code/flwr_tune/models.py.tpl +1 -23
  7. flwr/cli/new/templates/app/code/flwr_tune/server_app.py.tpl +37 -58
  8. flwr/cli/new/templates/app/code/flwr_tune/strategy.py.tpl +39 -44
  9. flwr/cli/new/templates/app/code/model.baseline.py.tpl +0 -14
  10. flwr/cli/new/templates/app/code/server.baseline.py.tpl +27 -29
  11. flwr/cli/new/templates/app/pyproject.baseline.toml.tpl +3 -3
  12. flwr/cli/new/templates/app/pyproject.flowertune.toml.tpl +1 -1
  13. flwr/cli/pull.py +100 -0
  14. flwr/cli/utils.py +17 -0
  15. flwr/common/constant.py +2 -0
  16. flwr/proto/control_pb2.py +7 -3
  17. flwr/proto/control_pb2.pyi +24 -0
  18. flwr/proto/control_pb2_grpc.py +34 -0
  19. flwr/proto/control_pb2_grpc.pyi +13 -0
  20. flwr/server/app.py +13 -0
  21. flwr/serverapp/strategy/__init__.py +8 -0
  22. flwr/serverapp/strategy/fedavg.py +23 -2
  23. flwr/serverapp/strategy/fedavgm.py +198 -0
  24. flwr/serverapp/strategy/fedmedian.py +71 -0
  25. flwr/serverapp/strategy/fedprox.py +174 -0
  26. flwr/serverapp/strategy/fedtrimmedavg.py +176 -0
  27. flwr/serverapp/strategy/strategy_utils_tests.py +20 -1
  28. flwr/simulation/app.py +1 -1
  29. flwr/simulation/run_simulation.py +25 -30
  30. flwr/superlink/artifact_provider/__init__.py +22 -0
  31. flwr/superlink/artifact_provider/artifact_provider.py +37 -0
  32. flwr/superlink/servicer/control/control_grpc.py +3 -0
  33. flwr/superlink/servicer/control/control_servicer.py +59 -2
  34. {flwr_nightly-1.22.0.dev20250915.dist-info → flwr_nightly-1.22.0.dev20250917.dist-info}/METADATA +6 -16
  35. {flwr_nightly-1.22.0.dev20250915.dist-info → flwr_nightly-1.22.0.dev20250917.dist-info}/RECORD +37 -30
  36. {flwr_nightly-1.22.0.dev20250915.dist-info → flwr_nightly-1.22.0.dev20250917.dist-info}/WHEEL +0 -0
  37. {flwr_nightly-1.22.0.dev20250915.dist-info → flwr_nightly-1.22.0.dev20250917.dist-info}/entry_points.txt +0 -0
@@ -0,0 +1,198 @@
1
+ # Copyright 2025 Flower Labs GmbH. All Rights Reserved.
2
+ #
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License at
6
+ #
7
+ # http://www.apache.org/licenses/LICENSE-2.0
8
+ #
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License.
14
+ # ==============================================================================
15
+ """Federated Averaging with Momentum (FedAvgM) [Hsu et al., 2019] strategy.
16
+
17
+ Paper: arxiv.org/pdf/1909.06335.pdf
18
+ """
19
+
20
+
21
+ from collections import OrderedDict
22
+ from collections.abc import Iterable
23
+ from logging import INFO
24
+ from typing import Callable, Optional
25
+
26
+ from flwr.common import (
27
+ Array,
28
+ ArrayRecord,
29
+ ConfigRecord,
30
+ Message,
31
+ MetricRecord,
32
+ NDArrays,
33
+ RecordDict,
34
+ log,
35
+ )
36
+ from flwr.server import Grid
37
+
38
+ from ..exception import AggregationError
39
+ from .fedavg import FedAvg
40
+
41
+
42
+ class FedAvgM(FedAvg):
43
+ """Federated Averaging with Momentum strategy.
44
+
45
+ Implementation based on https://arxiv.org/abs/1909.06335
46
+
47
+ Parameters
48
+ ----------
49
+ fraction_train : float (default: 1.0)
50
+ Fraction of nodes used during training. In case `min_train_nodes`
51
+ is larger than `fraction_train * total_connected_nodes`, `min_train_nodes`
52
+ will still be sampled.
53
+ fraction_evaluate : float (default: 1.0)
54
+ Fraction of nodes used during validation. In case `min_evaluate_nodes`
55
+ is larger than `fraction_evaluate * total_connected_nodes`,
56
+ `min_evaluate_nodes` will still be sampled.
57
+ min_train_nodes : int (default: 2)
58
+ Minimum number of nodes used during training.
59
+ min_evaluate_nodes : int (default: 2)
60
+ Minimum number of nodes used during validation.
61
+ min_available_nodes : int (default: 2)
62
+ Minimum number of total nodes in the system.
63
+ weighted_by_key : str (default: "num-examples")
64
+ The key within each MetricRecord whose value is used as the weight when
65
+ computing weighted averages for both ArrayRecords and MetricRecords.
66
+ arrayrecord_key : str (default: "arrays")
67
+ Key used to store the ArrayRecord when constructing Messages.
68
+ configrecord_key : str (default: "config")
69
+ Key used to store the ConfigRecord when constructing Messages.
70
+ train_metrics_aggr_fn : Optional[callable] (default: None)
71
+ Function with signature (list[RecordDict], str) -> MetricRecord,
72
+ used to aggregate MetricRecords from training round replies.
73
+ If `None`, defaults to `aggregate_metricrecords`, which performs a weighted
74
+ average using the provided weight factor key.
75
+ evaluate_metrics_aggr_fn : Optional[callable] (default: None)
76
+ Function with signature (list[RecordDict], str) -> MetricRecord,
77
+ used to aggregate MetricRecords from training round replies.
78
+ If `None`, defaults to `aggregate_metricrecords`, which performs a weighted
79
+ average using the provided weight factor key.
80
+ server_learning_rate: float (default: 1.0)
81
+ Server-side learning rate used in server-side optimization.
82
+ server_momentum: float (default: 0.0)
83
+ Server-side momentum factor used for FedAvgM.
84
+ """
85
+
86
+ def __init__( # pylint: disable=R0913, R0917
87
+ self,
88
+ fraction_train: float = 1.0,
89
+ fraction_evaluate: float = 1.0,
90
+ min_train_nodes: int = 2,
91
+ min_evaluate_nodes: int = 2,
92
+ min_available_nodes: int = 2,
93
+ weighted_by_key: str = "num-examples",
94
+ arrayrecord_key: str = "arrays",
95
+ configrecord_key: str = "config",
96
+ train_metrics_aggr_fn: Optional[
97
+ Callable[[list[RecordDict], str], MetricRecord]
98
+ ] = None,
99
+ evaluate_metrics_aggr_fn: Optional[
100
+ Callable[[list[RecordDict], str], MetricRecord]
101
+ ] = None,
102
+ server_learning_rate: float = 1.0,
103
+ server_momentum: float = 0.0,
104
+ ) -> None:
105
+ super().__init__(
106
+ fraction_train=fraction_train,
107
+ fraction_evaluate=fraction_evaluate,
108
+ min_train_nodes=min_train_nodes,
109
+ min_evaluate_nodes=min_evaluate_nodes,
110
+ min_available_nodes=min_available_nodes,
111
+ weighted_by_key=weighted_by_key,
112
+ arrayrecord_key=arrayrecord_key,
113
+ configrecord_key=configrecord_key,
114
+ train_metrics_aggr_fn=train_metrics_aggr_fn,
115
+ evaluate_metrics_aggr_fn=evaluate_metrics_aggr_fn,
116
+ )
117
+ self.server_learning_rate = server_learning_rate
118
+ self.server_momentum = server_momentum
119
+ self.server_opt: bool = (self.server_momentum != 0.0) or (
120
+ self.server_learning_rate != 1.0
121
+ )
122
+ self.current_arrays: Optional[ArrayRecord] = None
123
+ self.momentum_vector: Optional[NDArrays] = None
124
+
125
+ def summary(self) -> None:
126
+ """Log summary configuration of the strategy."""
127
+ opt_status = "ON" if self.server_opt else "OFF"
128
+ log(INFO, "\t├──> FedAvgM settings:")
129
+ log(INFO, "\t|\t├── Server optimization: %s", opt_status)
130
+ log(INFO, "\t|\t├── Server learning rate: %s", self.server_learning_rate)
131
+ log(INFO, "\t|\t└── Server Momentum: %s", self.server_momentum)
132
+ super().summary()
133
+
134
+ def configure_train(
135
+ self, server_round: int, arrays: ArrayRecord, config: ConfigRecord, grid: Grid
136
+ ) -> Iterable[Message]:
137
+ """Configure the next round of federated training."""
138
+ if self.current_arrays is None:
139
+ self.current_arrays = arrays
140
+ return super().configure_train(server_round, arrays, config, grid)
141
+
142
+ def aggregate_train(
143
+ self,
144
+ server_round: int,
145
+ replies: Iterable[Message],
146
+ ) -> tuple[Optional[ArrayRecord], Optional[MetricRecord]]:
147
+ """Aggregate ArrayRecords and MetricRecords in the received Messages."""
148
+ # Call FedAvg aggregate_train to perform validation and aggregation
149
+ aggregated_arrays, aggregated_metrics = super().aggregate_train(
150
+ server_round, replies
151
+ )
152
+
153
+ # following convention described in
154
+ # https://pytorch.org/docs/stable/generated/torch.optim.SGD.html
155
+ if self.server_opt and aggregated_arrays is not None:
156
+ # The initial parameters should be set in `start()` method already
157
+ if self.current_arrays is None:
158
+ raise AggregationError(
159
+ "No initial parameters set for FedAvgM. "
160
+ "Ensure that `configure_train` has been called before aggregation."
161
+ )
162
+ ndarrays = self.current_arrays.to_numpy_ndarrays()
163
+ aggregated_ndarrays = aggregated_arrays.to_numpy_ndarrays()
164
+
165
+ # Preserve keys for arrays in ArrayRecord
166
+ array_keys = list(aggregated_arrays.keys())
167
+ aggregated_arrays.clear()
168
+
169
+ # Remember that updates are the opposite of gradients
170
+ pseudo_gradient = [
171
+ old - new for new, old in zip(aggregated_ndarrays, ndarrays)
172
+ ]
173
+ if self.server_momentum > 0.0:
174
+ if self.momentum_vector is None:
175
+ # Initialize momentum vector in the first round
176
+ self.momentum_vector = pseudo_gradient
177
+ else:
178
+ self.momentum_vector = [
179
+ self.server_momentum * mv + pg
180
+ for mv, pg in zip(self.momentum_vector, pseudo_gradient)
181
+ ]
182
+
183
+ # No nesterov for now
184
+ pseudo_gradient = self.momentum_vector
185
+
186
+ # SGD and convert back to ArrayRecord
187
+ updated_array_list = [
188
+ Array(old - self.server_learning_rate * pg)
189
+ for old, pg in zip(ndarrays, pseudo_gradient)
190
+ ]
191
+ aggregated_arrays = ArrayRecord(
192
+ OrderedDict(zip(array_keys, updated_array_list))
193
+ )
194
+
195
+ # Update current weights
196
+ self.current_arrays = aggregated_arrays
197
+
198
+ return aggregated_arrays, aggregated_metrics
@@ -0,0 +1,71 @@
1
+ # Copyright 2025 Flower Labs GmbH. All Rights Reserved.
2
+ #
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License at
6
+ #
7
+ # http://www.apache.org/licenses/LICENSE-2.0
8
+ #
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License.
14
+ # ==============================================================================
15
+ """Federated Median (FedMedian) [Yin et al., 2018] strategy.
16
+
17
+ Paper: arxiv.org/pdf/1803.01498v1.pdf
18
+ """
19
+
20
+
21
+ from collections.abc import Iterable
22
+ from typing import Optional, cast
23
+
24
+ import numpy as np
25
+
26
+ from flwr.common import Array, ArrayRecord, Message, MetricRecord
27
+
28
+ from .fedavg import FedAvg
29
+
30
+
31
+ class FedMedian(FedAvg):
32
+ """Federated Median (FedMedian) strategy.
33
+
34
+ Implementation based on https://arxiv.org/pdf/1803.01498v1
35
+ """
36
+
37
+ def aggregate_train(
38
+ self,
39
+ server_round: int,
40
+ replies: Iterable[Message],
41
+ ) -> tuple[Optional[ArrayRecord], Optional[MetricRecord]]:
42
+ """Aggregate ArrayRecords and MetricRecords in the received Messages."""
43
+ # Call FedAvg aggregate_train to perform validation and aggregation
44
+ valid_replies, _ = self._check_and_log_replies(replies, is_train=True)
45
+
46
+ if not valid_replies:
47
+ return None, None
48
+
49
+ # Aggregate ArrayRecords using median
50
+ # Get the key for the only ArrayRecord from the first Message
51
+ record_key = list(valid_replies[0].content.array_records.keys())[0]
52
+ # Preserve keys for arrays in ArrayRecord
53
+ array_keys = list(valid_replies[0].content[record_key].keys())
54
+
55
+ # Compute median for each layer and construct ArrayRecord
56
+ arrays = ArrayRecord()
57
+ for array_key in array_keys:
58
+ # Get the corresponding layer from each client
59
+ layers = [
60
+ cast(ArrayRecord, msg.content[record_key]).pop(array_key).numpy()
61
+ for msg in valid_replies
62
+ ]
63
+ # Compute median and save as Array in ArrayRecord
64
+ arrays[array_key] = Array(np.median(np.stack(layers), axis=0))
65
+
66
+ # Aggregate MetricRecords
67
+ metrics = self.train_metrics_aggr_fn(
68
+ [msg.content for msg in valid_replies],
69
+ self.weighted_by_key,
70
+ )
71
+ return arrays, metrics
@@ -0,0 +1,174 @@
1
+ # Copyright 2025 Flower Labs GmbH. All Rights Reserved.
2
+ #
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License at
6
+ #
7
+ # http://www.apache.org/licenses/LICENSE-2.0
8
+ #
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License.
14
+ # ==============================================================================
15
+ """Federated Optimization (FedProx) [Li et al., 2018] strategy.
16
+
17
+ Paper: arxiv.org/abs/1812.06127
18
+ """
19
+
20
+
21
+ from collections.abc import Iterable
22
+ from logging import INFO, WARN
23
+ from typing import Callable, Optional
24
+
25
+ from flwr.common import (
26
+ ArrayRecord,
27
+ ConfigRecord,
28
+ Message,
29
+ MetricRecord,
30
+ RecordDict,
31
+ log,
32
+ )
33
+ from flwr.server import Grid
34
+
35
+ from .fedavg import FedAvg
36
+
37
+
38
+ class FedProx(FedAvg):
39
+ r"""Federated Optimization strategy.
40
+
41
+ Implementation based on https://arxiv.org/abs/1812.06127
42
+
43
+ FedProx extends FedAvg by introducing a proximal term into the client-side
44
+ optimization objective. The strategy itself behaves identically to FedAvg
45
+ on the server side, but each client **MUST** add a proximal regularization
46
+ term to its local loss function during training:
47
+
48
+ .. math::
49
+ \frac{\mu}{2} || w - w^t ||^2
50
+
51
+ Where $w^t$ denotes the global parameters and $w$ denotes the local weights
52
+ being optimized.
53
+
54
+ This strategy sends the proximal term inside the ``ConfigRecord`` as part of the
55
+ ``configure_train`` method under key ``"proximal-mu"``. The client can then use this
56
+ value to add the proximal term to the loss function.
57
+
58
+ In PyTorch, for example, the loss would go from:
59
+
60
+ .. code:: python
61
+ loss = criterion(net(inputs), labels)
62
+
63
+ To:
64
+
65
+ .. code:: python
66
+ # Get proximal term weight from message
67
+ mu = msg.content["config"]["proximal-mu"]
68
+
69
+ # Compute proximal term
70
+ proximal_term = 0.0
71
+ for local_weights, global_weights in zip(net.parameters(), global_params):
72
+ proximal_term += (local_weights - global_weights).norm(2)
73
+
74
+ # Update loss
75
+ loss = criterion(net(inputs), labels) + (mu / 2) * proximal_term
76
+
77
+ With ``global_params`` being a copy of the model parameters, created **after**
78
+ applying the received global weights but **before** local training begins.
79
+
80
+ .. code:: python
81
+ global_params = copy.deepcopy(net).parameters()
82
+
83
+ Parameters
84
+ ----------
85
+ fraction_train : float (default: 1.0)
86
+ Fraction of nodes used during training. In case `min_train_nodes`
87
+ is larger than `fraction_train * total_connected_nodes`, `min_train_nodes`
88
+ will still be sampled.
89
+ fraction_evaluate : float (default: 1.0)
90
+ Fraction of nodes used during validation. In case `min_evaluate_nodes`
91
+ is larger than `fraction_evaluate * total_connected_nodes`,
92
+ `min_evaluate_nodes` will still be sampled.
93
+ min_train_nodes : int (default: 2)
94
+ Minimum number of nodes used during training.
95
+ min_evaluate_nodes : int (default: 2)
96
+ Minimum number of nodes used during validation.
97
+ min_available_nodes : int (default: 2)
98
+ Minimum number of total nodes in the system.
99
+ weighted_by_key : str (default: "num-examples")
100
+ The key within each MetricRecord whose value is used as the weight when
101
+ computing weighted averages for both ArrayRecords and MetricRecords.
102
+ arrayrecord_key : str (default: "arrays")
103
+ Key used to store the ArrayRecord when constructing Messages.
104
+ configrecord_key : str (default: "config")
105
+ Key used to store the ConfigRecord when constructing Messages.
106
+ train_metrics_aggr_fn : Optional[callable] (default: None)
107
+ Function with signature (list[RecordDict], str) -> MetricRecord,
108
+ used to aggregate MetricRecords from training round replies.
109
+ If `None`, defaults to `aggregate_metricrecords`, which performs a weighted
110
+ average using the provided weight factor key.
111
+ evaluate_metrics_aggr_fn : Optional[callable] (default: None)
112
+ Function with signature (list[RecordDict], str) -> MetricRecord,
113
+ used to aggregate MetricRecords from training round replies.
114
+ If `None`, defaults to `aggregate_metricrecords`, which performs a weighted
115
+ average using the provided weight factor key.
116
+ proximal_mu : float (default: 0.0)
117
+ The weight of the proximal term used in the optimization. 0.0 makes
118
+ this strategy equivalent to FedAvg, and the higher the coefficient, the more
119
+ regularization will be used (that is, the client parameters will need to be
120
+ closer to the server parameters during training).
121
+ """
122
+
123
+ def __init__( # pylint: disable=R0913, R0917
124
+ self,
125
+ fraction_train: float = 1.0,
126
+ fraction_evaluate: float = 1.0,
127
+ min_train_nodes: int = 2,
128
+ min_evaluate_nodes: int = 2,
129
+ min_available_nodes: int = 2,
130
+ weighted_by_key: str = "num-examples",
131
+ arrayrecord_key: str = "arrays",
132
+ configrecord_key: str = "config",
133
+ train_metrics_aggr_fn: Optional[
134
+ Callable[[list[RecordDict], str], MetricRecord]
135
+ ] = None,
136
+ evaluate_metrics_aggr_fn: Optional[
137
+ Callable[[list[RecordDict], str], MetricRecord]
138
+ ] = None,
139
+ proximal_mu: float = 0.0,
140
+ ) -> None:
141
+ super().__init__(
142
+ fraction_train=fraction_train,
143
+ fraction_evaluate=fraction_evaluate,
144
+ min_train_nodes=min_train_nodes,
145
+ min_evaluate_nodes=min_evaluate_nodes,
146
+ min_available_nodes=min_available_nodes,
147
+ weighted_by_key=weighted_by_key,
148
+ arrayrecord_key=arrayrecord_key,
149
+ configrecord_key=configrecord_key,
150
+ train_metrics_aggr_fn=train_metrics_aggr_fn,
151
+ evaluate_metrics_aggr_fn=evaluate_metrics_aggr_fn,
152
+ )
153
+ self.proximal_mu = proximal_mu
154
+
155
+ if self.proximal_mu == 0.0:
156
+ log(
157
+ WARN,
158
+ "FedProx initialized with `proximal_mu=0.0`. "
159
+ "This makes the strategy equivalent to FedAvg.",
160
+ )
161
+
162
+ def summary(self) -> None:
163
+ """Log summary configuration of the strategy."""
164
+ log(INFO, "\t├──> FedProx settings:")
165
+ log(INFO, "\t|\t└── Proximal mu: %s", self.proximal_mu)
166
+ super().summary()
167
+
168
+ def configure_train(
169
+ self, server_round: int, arrays: ArrayRecord, config: ConfigRecord, grid: Grid
170
+ ) -> Iterable[Message]:
171
+ """Configure the next round of federated training."""
172
+ # Inject proximal term weight into config
173
+ config["proximal-mu"] = self.proximal_mu
174
+ return super().configure_train(server_round, arrays, config, grid)
@@ -0,0 +1,176 @@
1
+ # Copyright 2025 Flower Labs GmbH. All Rights Reserved.
2
+ #
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License at
6
+ #
7
+ # http://www.apache.org/licenses/LICENSE-2.0
8
+ #
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License.
14
+ # ==============================================================================
15
+ """Federated Averaging with Trimmed Mean [Dong Yin, et al., 2021].
16
+
17
+ Paper: arxiv.org/abs/1803.01498
18
+ """
19
+
20
+
21
+ from collections.abc import Iterable
22
+ from logging import INFO
23
+ from typing import Callable, Optional, cast
24
+
25
+ import numpy as np
26
+
27
+ from flwr.common import Array, ArrayRecord, Message, MetricRecord, NDArray, RecordDict
28
+ from flwr.common.logger import log
29
+
30
+ from ..exception import AggregationError
31
+ from .fedavg import FedAvg
32
+
33
+
34
+ class FedTrimmedAvg(FedAvg):
35
+ """Federated Averaging with Trimmed Mean [Dong Yin, et al., 2021].
36
+
37
+ Implemented based on: https://arxiv.org/abs/1803.01498
38
+
39
+ Parameters
40
+ ----------
41
+ fraction_train : float (default: 1.0)
42
+ Fraction of nodes used during training. In case `min_train_nodes`
43
+ is larger than `fraction_train * total_connected_nodes`, `min_train_nodes`
44
+ will still be sampled.
45
+ fraction_evaluate : float (default: 1.0)
46
+ Fraction of nodes used during validation. In case `min_evaluate_nodes`
47
+ is larger than `fraction_evaluate * total_connected_nodes`,
48
+ `min_evaluate_nodes` will still be sampled.
49
+ min_train_nodes : int (default: 2)
50
+ Minimum number of nodes used during training.
51
+ min_evaluate_nodes : int (default: 2)
52
+ Minimum number of nodes used during validation.
53
+ min_available_nodes : int (default: 2)
54
+ Minimum number of total nodes in the system.
55
+ weighted_by_key : str (default: "num-examples")
56
+ The key within each MetricRecord whose value is used as the weight when
57
+ computing weighted averages for both ArrayRecords and MetricRecords.
58
+ arrayrecord_key : str (default: "arrays")
59
+ Key used to store the ArrayRecord when constructing Messages.
60
+ configrecord_key : str (default: "config")
61
+ Key used to store the ConfigRecord when constructing Messages.
62
+ train_metrics_aggr_fn : Optional[callable] (default: None)
63
+ Function with signature (list[RecordDict], str) -> MetricRecord,
64
+ used to aggregate MetricRecords from training round replies.
65
+ If `None`, defaults to `aggregate_metricrecords`, which performs a weighted
66
+ average using the provided weight factor key.
67
+ evaluate_metrics_aggr_fn : Optional[callable] (default: None)
68
+ Function with signature (list[RecordDict], str) -> MetricRecord,
69
+ used to aggregate MetricRecords from training round replies.
70
+ If `None`, defaults to `aggregate_metricrecords`, which performs a weighted
71
+ average using the provided weight factor key.
72
+ beta : float (default: 0.2)
73
+ Fraction to cut off of both tails of the distribution.
74
+ """
75
+
76
+ def __init__( # pylint: disable=R0913, R0917
77
+ self,
78
+ fraction_train: float = 1.0,
79
+ fraction_evaluate: float = 1.0,
80
+ min_train_nodes: int = 2,
81
+ min_evaluate_nodes: int = 2,
82
+ min_available_nodes: int = 2,
83
+ weighted_by_key: str = "num-examples",
84
+ arrayrecord_key: str = "arrays",
85
+ configrecord_key: str = "config",
86
+ train_metrics_aggr_fn: Optional[
87
+ Callable[[list[RecordDict], str], MetricRecord]
88
+ ] = None,
89
+ evaluate_metrics_aggr_fn: Optional[
90
+ Callable[[list[RecordDict], str], MetricRecord]
91
+ ] = None,
92
+ beta: float = 0.2,
93
+ ) -> None:
94
+ super().__init__(
95
+ fraction_train=fraction_train,
96
+ fraction_evaluate=fraction_evaluate,
97
+ min_train_nodes=min_train_nodes,
98
+ min_evaluate_nodes=min_evaluate_nodes,
99
+ min_available_nodes=min_available_nodes,
100
+ weighted_by_key=weighted_by_key,
101
+ arrayrecord_key=arrayrecord_key,
102
+ configrecord_key=configrecord_key,
103
+ train_metrics_aggr_fn=train_metrics_aggr_fn,
104
+ evaluate_metrics_aggr_fn=evaluate_metrics_aggr_fn,
105
+ )
106
+ self.beta = beta
107
+
108
+ def summary(self) -> None:
109
+ """Log summary configuration of the strategy."""
110
+ log(INFO, "\t├──> FedTrimmedAvg settings:")
111
+ log(INFO, "\t|\t└── beta: %s", self.beta)
112
+ super().summary()
113
+
114
+ def aggregate_train(
115
+ self,
116
+ server_round: int,
117
+ replies: Iterable[Message],
118
+ ) -> tuple[Optional[ArrayRecord], Optional[MetricRecord]]:
119
+ """Aggregate ArrayRecords and MetricRecords in the received Messages."""
120
+ # Call FedAvg aggregate_train to perform validation and aggregation
121
+ valid_replies, _ = self._check_and_log_replies(replies, is_train=True)
122
+
123
+ if not valid_replies:
124
+ return None, None
125
+
126
+ # Aggregate ArrayRecords using trimmed mean
127
+ # Get the key for the only ArrayRecord from the first Message
128
+ record_key = list(valid_replies[0].content.array_records.keys())[0]
129
+ # Preserve keys for arrays in ArrayRecord
130
+ array_keys = list(valid_replies[0].content[record_key].keys())
131
+
132
+ # Compute trimmed mean for each layer and construct ArrayRecord
133
+ arrays = ArrayRecord()
134
+ for array_key in array_keys:
135
+ # Get the corresponding layer from each client
136
+ layers = [
137
+ cast(ArrayRecord, msg.content[record_key]).pop(array_key).numpy()
138
+ for msg in valid_replies
139
+ ]
140
+ # Compute trimmed mean and save as Array in ArrayRecord
141
+ try:
142
+ arrays[array_key] = Array(trim_mean(np.stack(layers), self.beta))
143
+ except ValueError as e:
144
+ raise AggregationError(
145
+ f"Trimmed mean could not be computed. "
146
+ f"Likely cause: beta={self.beta} is too large."
147
+ ) from e
148
+
149
+ # Aggregate MetricRecords
150
+ metrics = self.train_metrics_aggr_fn(
151
+ [msg.content for msg in valid_replies],
152
+ self.weighted_by_key,
153
+ )
154
+ return arrays, metrics
155
+
156
+
157
+ def trim_mean(array: NDArray, cut_fraction: float) -> NDArray:
158
+ """Compute trimmed mean along axis=0.
159
+
160
+ It is based on the scipy implementation:
161
+
162
+ https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.trim_mean.html
163
+ """
164
+ axis = 0
165
+ nobs = array.shape[0]
166
+ lowercut = int(cut_fraction * nobs)
167
+ uppercut = nobs - lowercut
168
+ if lowercut > uppercut:
169
+ raise ValueError("Fraction too big.")
170
+
171
+ atmp = np.partition(array, (lowercut, uppercut - 1), axis)
172
+
173
+ slice_list = [slice(None)] * atmp.ndim
174
+ slice_list[axis] = slice(lowercut, uppercut)
175
+ result: NDArray = np.mean(atmp[tuple(slice_list)], axis=axis)
176
+ return result
@@ -16,12 +16,20 @@
16
16
 
17
17
 
18
18
  from collections import OrderedDict
19
+ from unittest.mock import Mock
19
20
 
20
21
  import numpy as np
21
22
  import pytest
22
23
  from parameterized import parameterized
23
24
 
24
- from flwr.common import Array, ArrayRecord, ConfigRecord, MetricRecord, RecordDict
25
+ from flwr.common import (
26
+ Array,
27
+ ArrayRecord,
28
+ ConfigRecord,
29
+ Message,
30
+ MetricRecord,
31
+ RecordDict,
32
+ )
25
33
  from flwr.serverapp.exception import InconsistentMessageReplies
26
34
 
27
35
  from .strategy_utils import (
@@ -32,6 +40,17 @@ from .strategy_utils import (
32
40
  )
33
41
 
34
42
 
43
+ def create_mock_reply(arrays: ArrayRecord, num_examples: float) -> Message:
44
+ """Create a mock reply Message with default keys."""
45
+ message = Mock(spec=Message)
46
+ message.content = RecordDict(
47
+ {"arrays": arrays, "metrics": MetricRecord({"num-examples": num_examples})}
48
+ )
49
+ message.has_error.side_effect = lambda: False
50
+ message.has_content.side_effect = lambda: True
51
+ return message
52
+
53
+
35
54
  def test_config_to_str() -> None:
36
55
  """Test that items of types bytes are masked out."""
37
56
  config = ConfigRecord({"a": 123, "b": [1, 2, 3], "c": b"bytes"})
flwr/simulation/app.py CHANGED
@@ -245,7 +245,7 @@ def run_simulation_process( # pylint: disable=R0913, R0914, R0915, R0917, W0212
245
245
  run=run,
246
246
  enable_tf_gpu_growth=enable_tf_gpu_growth,
247
247
  verbose_logging=verbose,
248
- server_app_run_config=fused_config,
248
+ server_app_context=context,
249
249
  is_app=True,
250
250
  exit_event=EventType.FLWR_SIMULATION_RUN_LEAVE,
251
251
  )