flwr-nightly 1.22.0.dev20250913__py3-none-any.whl → 1.22.0.dev20250916__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- flwr/cli/new/new.py +5 -5
- flwr/cli/new/templates/app/code/client.pytorch.py.tpl +71 -46
- flwr/cli/new/templates/app/code/client.pytorch_legacy_api.py.tpl +55 -0
- flwr/cli/new/templates/app/code/server.pytorch.py.tpl +36 -26
- flwr/cli/new/templates/app/code/server.pytorch_legacy_api.py.tpl +31 -0
- flwr/cli/new/templates/app/code/task.pytorch.py.tpl +14 -27
- flwr/cli/new/templates/app/code/{task.pytorch_msg_api.py.tpl → task.pytorch_legacy_api.py.tpl} +27 -14
- flwr/cli/new/templates/app/pyproject.pytorch.toml.tpl +2 -2
- flwr/cli/new/templates/app/{pyproject.pytorch_msg_api.toml.tpl → pyproject.pytorch_legacy_api.toml.tpl} +2 -2
- flwr/serverapp/strategy/__init__.py +8 -0
- flwr/serverapp/strategy/fedavg.py +23 -2
- flwr/serverapp/strategy/fedavgm.py +198 -0
- flwr/serverapp/strategy/fedmedian.py +71 -0
- flwr/serverapp/strategy/fedtrimmedavg.py +176 -0
- flwr/serverapp/strategy/fedxgb_bagging.py +82 -0
- flwr/serverapp/strategy/strategy_utils.py +48 -0
- flwr/serverapp/strategy/strategy_utils_tests.py +20 -1
- {flwr_nightly-1.22.0.dev20250913.dist-info → flwr_nightly-1.22.0.dev20250916.dist-info}/METADATA +6 -16
- {flwr_nightly-1.22.0.dev20250913.dist-info → flwr_nightly-1.22.0.dev20250916.dist-info}/RECORD +22 -18
- flwr/cli/new/templates/app/code/client.pytorch_msg_api.py.tpl +0 -80
- flwr/cli/new/templates/app/code/server.pytorch_msg_api.py.tpl +0 -41
- /flwr/cli/new/templates/app/code/{__init__.pytorch_msg_api.py.tpl → __init__.pytorch_legacy_api.py.tpl} +0 -0
- {flwr_nightly-1.22.0.dev20250913.dist-info → flwr_nightly-1.22.0.dev20250916.dist-info}/WHEEL +0 -0
- {flwr_nightly-1.22.0.dev20250913.dist-info → flwr_nightly-1.22.0.dev20250916.dist-info}/entry_points.txt +0 -0
@@ -0,0 +1,198 @@
|
|
1
|
+
# Copyright 2025 Flower Labs GmbH. All Rights Reserved.
|
2
|
+
#
|
3
|
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4
|
+
# you may not use this file except in compliance with the License.
|
5
|
+
# You may obtain a copy of the License at
|
6
|
+
#
|
7
|
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8
|
+
#
|
9
|
+
# Unless required by applicable law or agreed to in writing, software
|
10
|
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11
|
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12
|
+
# See the License for the specific language governing permissions and
|
13
|
+
# limitations under the License.
|
14
|
+
# ==============================================================================
|
15
|
+
"""Federated Averaging with Momentum (FedAvgM) [Hsu et al., 2019] strategy.
|
16
|
+
|
17
|
+
Paper: arxiv.org/pdf/1909.06335.pdf
|
18
|
+
"""
|
19
|
+
|
20
|
+
|
21
|
+
from collections import OrderedDict
|
22
|
+
from collections.abc import Iterable
|
23
|
+
from logging import INFO
|
24
|
+
from typing import Callable, Optional
|
25
|
+
|
26
|
+
from flwr.common import (
|
27
|
+
Array,
|
28
|
+
ArrayRecord,
|
29
|
+
ConfigRecord,
|
30
|
+
Message,
|
31
|
+
MetricRecord,
|
32
|
+
NDArrays,
|
33
|
+
RecordDict,
|
34
|
+
log,
|
35
|
+
)
|
36
|
+
from flwr.server import Grid
|
37
|
+
|
38
|
+
from ..exception import AggregationError
|
39
|
+
from .fedavg import FedAvg
|
40
|
+
|
41
|
+
|
42
|
+
class FedAvgM(FedAvg):
|
43
|
+
"""Federated Averaging with Momentum strategy.
|
44
|
+
|
45
|
+
Implementation based on https://arxiv.org/abs/1909.06335
|
46
|
+
|
47
|
+
Parameters
|
48
|
+
----------
|
49
|
+
fraction_train : float (default: 1.0)
|
50
|
+
Fraction of nodes used during training. In case `min_train_nodes`
|
51
|
+
is larger than `fraction_train * total_connected_nodes`, `min_train_nodes`
|
52
|
+
will still be sampled.
|
53
|
+
fraction_evaluate : float (default: 1.0)
|
54
|
+
Fraction of nodes used during validation. In case `min_evaluate_nodes`
|
55
|
+
is larger than `fraction_evaluate * total_connected_nodes`,
|
56
|
+
`min_evaluate_nodes` will still be sampled.
|
57
|
+
min_train_nodes : int (default: 2)
|
58
|
+
Minimum number of nodes used during training.
|
59
|
+
min_evaluate_nodes : int (default: 2)
|
60
|
+
Minimum number of nodes used during validation.
|
61
|
+
min_available_nodes : int (default: 2)
|
62
|
+
Minimum number of total nodes in the system.
|
63
|
+
weighted_by_key : str (default: "num-examples")
|
64
|
+
The key within each MetricRecord whose value is used as the weight when
|
65
|
+
computing weighted averages for both ArrayRecords and MetricRecords.
|
66
|
+
arrayrecord_key : str (default: "arrays")
|
67
|
+
Key used to store the ArrayRecord when constructing Messages.
|
68
|
+
configrecord_key : str (default: "config")
|
69
|
+
Key used to store the ConfigRecord when constructing Messages.
|
70
|
+
train_metrics_aggr_fn : Optional[callable] (default: None)
|
71
|
+
Function with signature (list[RecordDict], str) -> MetricRecord,
|
72
|
+
used to aggregate MetricRecords from training round replies.
|
73
|
+
If `None`, defaults to `aggregate_metricrecords`, which performs a weighted
|
74
|
+
average using the provided weight factor key.
|
75
|
+
evaluate_metrics_aggr_fn : Optional[callable] (default: None)
|
76
|
+
Function with signature (list[RecordDict], str) -> MetricRecord,
|
77
|
+
used to aggregate MetricRecords from training round replies.
|
78
|
+
If `None`, defaults to `aggregate_metricrecords`, which performs a weighted
|
79
|
+
average using the provided weight factor key.
|
80
|
+
server_learning_rate: float (default: 1.0)
|
81
|
+
Server-side learning rate used in server-side optimization.
|
82
|
+
server_momentum: float (default: 0.0)
|
83
|
+
Server-side momentum factor used for FedAvgM.
|
84
|
+
"""
|
85
|
+
|
86
|
+
def __init__( # pylint: disable=R0913, R0917
|
87
|
+
self,
|
88
|
+
fraction_train: float = 1.0,
|
89
|
+
fraction_evaluate: float = 1.0,
|
90
|
+
min_train_nodes: int = 2,
|
91
|
+
min_evaluate_nodes: int = 2,
|
92
|
+
min_available_nodes: int = 2,
|
93
|
+
weighted_by_key: str = "num-examples",
|
94
|
+
arrayrecord_key: str = "arrays",
|
95
|
+
configrecord_key: str = "config",
|
96
|
+
train_metrics_aggr_fn: Optional[
|
97
|
+
Callable[[list[RecordDict], str], MetricRecord]
|
98
|
+
] = None,
|
99
|
+
evaluate_metrics_aggr_fn: Optional[
|
100
|
+
Callable[[list[RecordDict], str], MetricRecord]
|
101
|
+
] = None,
|
102
|
+
server_learning_rate: float = 1.0,
|
103
|
+
server_momentum: float = 0.0,
|
104
|
+
) -> None:
|
105
|
+
super().__init__(
|
106
|
+
fraction_train=fraction_train,
|
107
|
+
fraction_evaluate=fraction_evaluate,
|
108
|
+
min_train_nodes=min_train_nodes,
|
109
|
+
min_evaluate_nodes=min_evaluate_nodes,
|
110
|
+
min_available_nodes=min_available_nodes,
|
111
|
+
weighted_by_key=weighted_by_key,
|
112
|
+
arrayrecord_key=arrayrecord_key,
|
113
|
+
configrecord_key=configrecord_key,
|
114
|
+
train_metrics_aggr_fn=train_metrics_aggr_fn,
|
115
|
+
evaluate_metrics_aggr_fn=evaluate_metrics_aggr_fn,
|
116
|
+
)
|
117
|
+
self.server_learning_rate = server_learning_rate
|
118
|
+
self.server_momentum = server_momentum
|
119
|
+
self.server_opt: bool = (self.server_momentum != 0.0) or (
|
120
|
+
self.server_learning_rate != 1.0
|
121
|
+
)
|
122
|
+
self.current_arrays: Optional[ArrayRecord] = None
|
123
|
+
self.momentum_vector: Optional[NDArrays] = None
|
124
|
+
|
125
|
+
def summary(self) -> None:
|
126
|
+
"""Log summary configuration of the strategy."""
|
127
|
+
opt_status = "ON" if self.server_opt else "OFF"
|
128
|
+
log(INFO, "\t├──> FedAvgM settings:")
|
129
|
+
log(INFO, "\t|\t├── Server optimization: %s", opt_status)
|
130
|
+
log(INFO, "\t|\t├── Server learning rate: %s", self.server_learning_rate)
|
131
|
+
log(INFO, "\t|\t└── Server Momentum: %s", self.server_momentum)
|
132
|
+
super().summary()
|
133
|
+
|
134
|
+
def configure_train(
|
135
|
+
self, server_round: int, arrays: ArrayRecord, config: ConfigRecord, grid: Grid
|
136
|
+
) -> Iterable[Message]:
|
137
|
+
"""Configure the next round of federated training."""
|
138
|
+
if self.current_arrays is None:
|
139
|
+
self.current_arrays = arrays
|
140
|
+
return super().configure_train(server_round, arrays, config, grid)
|
141
|
+
|
142
|
+
def aggregate_train(
|
143
|
+
self,
|
144
|
+
server_round: int,
|
145
|
+
replies: Iterable[Message],
|
146
|
+
) -> tuple[Optional[ArrayRecord], Optional[MetricRecord]]:
|
147
|
+
"""Aggregate ArrayRecords and MetricRecords in the received Messages."""
|
148
|
+
# Call FedAvg aggregate_train to perform validation and aggregation
|
149
|
+
aggregated_arrays, aggregated_metrics = super().aggregate_train(
|
150
|
+
server_round, replies
|
151
|
+
)
|
152
|
+
|
153
|
+
# following convention described in
|
154
|
+
# https://pytorch.org/docs/stable/generated/torch.optim.SGD.html
|
155
|
+
if self.server_opt and aggregated_arrays is not None:
|
156
|
+
# The initial parameters should be set in `start()` method already
|
157
|
+
if self.current_arrays is None:
|
158
|
+
raise AggregationError(
|
159
|
+
"No initial parameters set for FedAvgM. "
|
160
|
+
"Ensure that `configure_train` has been called before aggregation."
|
161
|
+
)
|
162
|
+
ndarrays = self.current_arrays.to_numpy_ndarrays()
|
163
|
+
aggregated_ndarrays = aggregated_arrays.to_numpy_ndarrays()
|
164
|
+
|
165
|
+
# Preserve keys for arrays in ArrayRecord
|
166
|
+
array_keys = list(aggregated_arrays.keys())
|
167
|
+
aggregated_arrays.clear()
|
168
|
+
|
169
|
+
# Remember that updates are the opposite of gradients
|
170
|
+
pseudo_gradient = [
|
171
|
+
old - new for new, old in zip(aggregated_ndarrays, ndarrays)
|
172
|
+
]
|
173
|
+
if self.server_momentum > 0.0:
|
174
|
+
if self.momentum_vector is None:
|
175
|
+
# Initialize momentum vector in the first round
|
176
|
+
self.momentum_vector = pseudo_gradient
|
177
|
+
else:
|
178
|
+
self.momentum_vector = [
|
179
|
+
self.server_momentum * mv + pg
|
180
|
+
for mv, pg in zip(self.momentum_vector, pseudo_gradient)
|
181
|
+
]
|
182
|
+
|
183
|
+
# No nesterov for now
|
184
|
+
pseudo_gradient = self.momentum_vector
|
185
|
+
|
186
|
+
# SGD and convert back to ArrayRecord
|
187
|
+
updated_array_list = [
|
188
|
+
Array(old - self.server_learning_rate * pg)
|
189
|
+
for old, pg in zip(ndarrays, pseudo_gradient)
|
190
|
+
]
|
191
|
+
aggregated_arrays = ArrayRecord(
|
192
|
+
OrderedDict(zip(array_keys, updated_array_list))
|
193
|
+
)
|
194
|
+
|
195
|
+
# Update current weights
|
196
|
+
self.current_arrays = aggregated_arrays
|
197
|
+
|
198
|
+
return aggregated_arrays, aggregated_metrics
|
@@ -0,0 +1,71 @@
|
|
1
|
+
# Copyright 2025 Flower Labs GmbH. All Rights Reserved.
|
2
|
+
#
|
3
|
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4
|
+
# you may not use this file except in compliance with the License.
|
5
|
+
# You may obtain a copy of the License at
|
6
|
+
#
|
7
|
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8
|
+
#
|
9
|
+
# Unless required by applicable law or agreed to in writing, software
|
10
|
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11
|
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12
|
+
# See the License for the specific language governing permissions and
|
13
|
+
# limitations under the License.
|
14
|
+
# ==============================================================================
|
15
|
+
"""Federated Median (FedMedian) [Yin et al., 2018] strategy.
|
16
|
+
|
17
|
+
Paper: arxiv.org/pdf/1803.01498v1.pdf
|
18
|
+
"""
|
19
|
+
|
20
|
+
|
21
|
+
from collections.abc import Iterable
|
22
|
+
from typing import Optional, cast
|
23
|
+
|
24
|
+
import numpy as np
|
25
|
+
|
26
|
+
from flwr.common import Array, ArrayRecord, Message, MetricRecord
|
27
|
+
|
28
|
+
from .fedavg import FedAvg
|
29
|
+
|
30
|
+
|
31
|
+
class FedMedian(FedAvg):
|
32
|
+
"""Federated Median (FedMedian) strategy.
|
33
|
+
|
34
|
+
Implementation based on https://arxiv.org/pdf/1803.01498v1
|
35
|
+
"""
|
36
|
+
|
37
|
+
def aggregate_train(
|
38
|
+
self,
|
39
|
+
server_round: int,
|
40
|
+
replies: Iterable[Message],
|
41
|
+
) -> tuple[Optional[ArrayRecord], Optional[MetricRecord]]:
|
42
|
+
"""Aggregate ArrayRecords and MetricRecords in the received Messages."""
|
43
|
+
# Call FedAvg aggregate_train to perform validation and aggregation
|
44
|
+
valid_replies, _ = self._check_and_log_replies(replies, is_train=True)
|
45
|
+
|
46
|
+
if not valid_replies:
|
47
|
+
return None, None
|
48
|
+
|
49
|
+
# Aggregate ArrayRecords using median
|
50
|
+
# Get the key for the only ArrayRecord from the first Message
|
51
|
+
record_key = list(valid_replies[0].content.array_records.keys())[0]
|
52
|
+
# Preserve keys for arrays in ArrayRecord
|
53
|
+
array_keys = list(valid_replies[0].content[record_key].keys())
|
54
|
+
|
55
|
+
# Compute median for each layer and construct ArrayRecord
|
56
|
+
arrays = ArrayRecord()
|
57
|
+
for array_key in array_keys:
|
58
|
+
# Get the corresponding layer from each client
|
59
|
+
layers = [
|
60
|
+
cast(ArrayRecord, msg.content[record_key]).pop(array_key).numpy()
|
61
|
+
for msg in valid_replies
|
62
|
+
]
|
63
|
+
# Compute median and save as Array in ArrayRecord
|
64
|
+
arrays[array_key] = Array(np.median(np.stack(layers), axis=0))
|
65
|
+
|
66
|
+
# Aggregate MetricRecords
|
67
|
+
metrics = self.train_metrics_aggr_fn(
|
68
|
+
[msg.content for msg in valid_replies],
|
69
|
+
self.weighted_by_key,
|
70
|
+
)
|
71
|
+
return arrays, metrics
|
@@ -0,0 +1,176 @@
|
|
1
|
+
# Copyright 2025 Flower Labs GmbH. All Rights Reserved.
|
2
|
+
#
|
3
|
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4
|
+
# you may not use this file except in compliance with the License.
|
5
|
+
# You may obtain a copy of the License at
|
6
|
+
#
|
7
|
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8
|
+
#
|
9
|
+
# Unless required by applicable law or agreed to in writing, software
|
10
|
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11
|
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12
|
+
# See the License for the specific language governing permissions and
|
13
|
+
# limitations under the License.
|
14
|
+
# ==============================================================================
|
15
|
+
"""Federated Averaging with Trimmed Mean [Dong Yin, et al., 2021].
|
16
|
+
|
17
|
+
Paper: arxiv.org/abs/1803.01498
|
18
|
+
"""
|
19
|
+
|
20
|
+
|
21
|
+
from collections.abc import Iterable
|
22
|
+
from logging import INFO
|
23
|
+
from typing import Callable, Optional, cast
|
24
|
+
|
25
|
+
import numpy as np
|
26
|
+
|
27
|
+
from flwr.common import Array, ArrayRecord, Message, MetricRecord, NDArray, RecordDict
|
28
|
+
from flwr.common.logger import log
|
29
|
+
|
30
|
+
from ..exception import AggregationError
|
31
|
+
from .fedavg import FedAvg
|
32
|
+
|
33
|
+
|
34
|
+
class FedTrimmedAvg(FedAvg):
|
35
|
+
"""Federated Averaging with Trimmed Mean [Dong Yin, et al., 2021].
|
36
|
+
|
37
|
+
Implemented based on: https://arxiv.org/abs/1803.01498
|
38
|
+
|
39
|
+
Parameters
|
40
|
+
----------
|
41
|
+
fraction_train : float (default: 1.0)
|
42
|
+
Fraction of nodes used during training. In case `min_train_nodes`
|
43
|
+
is larger than `fraction_train * total_connected_nodes`, `min_train_nodes`
|
44
|
+
will still be sampled.
|
45
|
+
fraction_evaluate : float (default: 1.0)
|
46
|
+
Fraction of nodes used during validation. In case `min_evaluate_nodes`
|
47
|
+
is larger than `fraction_evaluate * total_connected_nodes`,
|
48
|
+
`min_evaluate_nodes` will still be sampled.
|
49
|
+
min_train_nodes : int (default: 2)
|
50
|
+
Minimum number of nodes used during training.
|
51
|
+
min_evaluate_nodes : int (default: 2)
|
52
|
+
Minimum number of nodes used during validation.
|
53
|
+
min_available_nodes : int (default: 2)
|
54
|
+
Minimum number of total nodes in the system.
|
55
|
+
weighted_by_key : str (default: "num-examples")
|
56
|
+
The key within each MetricRecord whose value is used as the weight when
|
57
|
+
computing weighted averages for both ArrayRecords and MetricRecords.
|
58
|
+
arrayrecord_key : str (default: "arrays")
|
59
|
+
Key used to store the ArrayRecord when constructing Messages.
|
60
|
+
configrecord_key : str (default: "config")
|
61
|
+
Key used to store the ConfigRecord when constructing Messages.
|
62
|
+
train_metrics_aggr_fn : Optional[callable] (default: None)
|
63
|
+
Function with signature (list[RecordDict], str) -> MetricRecord,
|
64
|
+
used to aggregate MetricRecords from training round replies.
|
65
|
+
If `None`, defaults to `aggregate_metricrecords`, which performs a weighted
|
66
|
+
average using the provided weight factor key.
|
67
|
+
evaluate_metrics_aggr_fn : Optional[callable] (default: None)
|
68
|
+
Function with signature (list[RecordDict], str) -> MetricRecord,
|
69
|
+
used to aggregate MetricRecords from training round replies.
|
70
|
+
If `None`, defaults to `aggregate_metricrecords`, which performs a weighted
|
71
|
+
average using the provided weight factor key.
|
72
|
+
beta : float (default: 0.2)
|
73
|
+
Fraction to cut off of both tails of the distribution.
|
74
|
+
"""
|
75
|
+
|
76
|
+
def __init__( # pylint: disable=R0913, R0917
|
77
|
+
self,
|
78
|
+
fraction_train: float = 1.0,
|
79
|
+
fraction_evaluate: float = 1.0,
|
80
|
+
min_train_nodes: int = 2,
|
81
|
+
min_evaluate_nodes: int = 2,
|
82
|
+
min_available_nodes: int = 2,
|
83
|
+
weighted_by_key: str = "num-examples",
|
84
|
+
arrayrecord_key: str = "arrays",
|
85
|
+
configrecord_key: str = "config",
|
86
|
+
train_metrics_aggr_fn: Optional[
|
87
|
+
Callable[[list[RecordDict], str], MetricRecord]
|
88
|
+
] = None,
|
89
|
+
evaluate_metrics_aggr_fn: Optional[
|
90
|
+
Callable[[list[RecordDict], str], MetricRecord]
|
91
|
+
] = None,
|
92
|
+
beta: float = 0.2,
|
93
|
+
) -> None:
|
94
|
+
super().__init__(
|
95
|
+
fraction_train=fraction_train,
|
96
|
+
fraction_evaluate=fraction_evaluate,
|
97
|
+
min_train_nodes=min_train_nodes,
|
98
|
+
min_evaluate_nodes=min_evaluate_nodes,
|
99
|
+
min_available_nodes=min_available_nodes,
|
100
|
+
weighted_by_key=weighted_by_key,
|
101
|
+
arrayrecord_key=arrayrecord_key,
|
102
|
+
configrecord_key=configrecord_key,
|
103
|
+
train_metrics_aggr_fn=train_metrics_aggr_fn,
|
104
|
+
evaluate_metrics_aggr_fn=evaluate_metrics_aggr_fn,
|
105
|
+
)
|
106
|
+
self.beta = beta
|
107
|
+
|
108
|
+
def summary(self) -> None:
|
109
|
+
"""Log summary configuration of the strategy."""
|
110
|
+
log(INFO, "\t├──> FedTrimmedAvg settings:")
|
111
|
+
log(INFO, "\t|\t└── beta: %s", self.beta)
|
112
|
+
super().summary()
|
113
|
+
|
114
|
+
def aggregate_train(
|
115
|
+
self,
|
116
|
+
server_round: int,
|
117
|
+
replies: Iterable[Message],
|
118
|
+
) -> tuple[Optional[ArrayRecord], Optional[MetricRecord]]:
|
119
|
+
"""Aggregate ArrayRecords and MetricRecords in the received Messages."""
|
120
|
+
# Call FedAvg aggregate_train to perform validation and aggregation
|
121
|
+
valid_replies, _ = self._check_and_log_replies(replies, is_train=True)
|
122
|
+
|
123
|
+
if not valid_replies:
|
124
|
+
return None, None
|
125
|
+
|
126
|
+
# Aggregate ArrayRecords using trimmed mean
|
127
|
+
# Get the key for the only ArrayRecord from the first Message
|
128
|
+
record_key = list(valid_replies[0].content.array_records.keys())[0]
|
129
|
+
# Preserve keys for arrays in ArrayRecord
|
130
|
+
array_keys = list(valid_replies[0].content[record_key].keys())
|
131
|
+
|
132
|
+
# Compute trimmed mean for each layer and construct ArrayRecord
|
133
|
+
arrays = ArrayRecord()
|
134
|
+
for array_key in array_keys:
|
135
|
+
# Get the corresponding layer from each client
|
136
|
+
layers = [
|
137
|
+
cast(ArrayRecord, msg.content[record_key]).pop(array_key).numpy()
|
138
|
+
for msg in valid_replies
|
139
|
+
]
|
140
|
+
# Compute trimmed mean and save as Array in ArrayRecord
|
141
|
+
try:
|
142
|
+
arrays[array_key] = Array(trim_mean(np.stack(layers), self.beta))
|
143
|
+
except ValueError as e:
|
144
|
+
raise AggregationError(
|
145
|
+
f"Trimmed mean could not be computed. "
|
146
|
+
f"Likely cause: beta={self.beta} is too large."
|
147
|
+
) from e
|
148
|
+
|
149
|
+
# Aggregate MetricRecords
|
150
|
+
metrics = self.train_metrics_aggr_fn(
|
151
|
+
[msg.content for msg in valid_replies],
|
152
|
+
self.weighted_by_key,
|
153
|
+
)
|
154
|
+
return arrays, metrics
|
155
|
+
|
156
|
+
|
157
|
+
def trim_mean(array: NDArray, cut_fraction: float) -> NDArray:
|
158
|
+
"""Compute trimmed mean along axis=0.
|
159
|
+
|
160
|
+
It is based on the scipy implementation:
|
161
|
+
|
162
|
+
https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.trim_mean.html
|
163
|
+
"""
|
164
|
+
axis = 0
|
165
|
+
nobs = array.shape[0]
|
166
|
+
lowercut = int(cut_fraction * nobs)
|
167
|
+
uppercut = nobs - lowercut
|
168
|
+
if lowercut > uppercut:
|
169
|
+
raise ValueError("Fraction too big.")
|
170
|
+
|
171
|
+
atmp = np.partition(array, (lowercut, uppercut - 1), axis)
|
172
|
+
|
173
|
+
slice_list = [slice(None)] * atmp.ndim
|
174
|
+
slice_list[axis] = slice(lowercut, uppercut)
|
175
|
+
result: NDArray = np.mean(atmp[tuple(slice_list)], axis=axis)
|
176
|
+
return result
|
@@ -0,0 +1,82 @@
|
|
1
|
+
# Copyright 2025 Flower Labs GmbH. All Rights Reserved.
|
2
|
+
#
|
3
|
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4
|
+
# you may not use this file except in compliance with the License.
|
5
|
+
# You may obtain a copy of the License at
|
6
|
+
#
|
7
|
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8
|
+
#
|
9
|
+
# Unless required by applicable law or agreed to in writing, software
|
10
|
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11
|
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12
|
+
# See the License for the specific language governing permissions and
|
13
|
+
# limitations under the License.
|
14
|
+
# ==============================================================================
|
15
|
+
"""Flower message-based FedXgbBagging strategy."""
|
16
|
+
from collections.abc import Iterable
|
17
|
+
from typing import Optional, cast
|
18
|
+
|
19
|
+
import numpy as np
|
20
|
+
|
21
|
+
from flwr.common import ArrayRecord, ConfigRecord, Message, MetricRecord
|
22
|
+
from flwr.server import Grid
|
23
|
+
|
24
|
+
from ..exception import InconsistentMessageReplies
|
25
|
+
from .fedavg import FedAvg
|
26
|
+
from .strategy_utils import aggregate_bagging
|
27
|
+
|
28
|
+
|
29
|
+
# pylint: disable=line-too-long
|
30
|
+
class FedXgbBagging(FedAvg):
|
31
|
+
"""Configurable FedXgbBagging strategy implementation."""
|
32
|
+
|
33
|
+
current_bst: Optional[bytes] = None
|
34
|
+
|
35
|
+
def _ensure_single_array(self, arrays: ArrayRecord) -> None:
|
36
|
+
"""Check that ensures there's only one Array in the ArrayRecord."""
|
37
|
+
n = len(arrays)
|
38
|
+
if n != 1:
|
39
|
+
raise InconsistentMessageReplies(
|
40
|
+
reason="Expected exactly one Array in ArrayRecord. "
|
41
|
+
"Skipping aggregation."
|
42
|
+
)
|
43
|
+
|
44
|
+
def configure_train(
|
45
|
+
self, server_round: int, arrays: ArrayRecord, config: ConfigRecord, grid: Grid
|
46
|
+
) -> Iterable[Message]:
|
47
|
+
"""Configure the next round of federated training."""
|
48
|
+
self._ensure_single_array(arrays)
|
49
|
+
# Keep track of array record being communicated
|
50
|
+
self.current_bst = arrays["0"].numpy().tobytes()
|
51
|
+
return super().configure_train(server_round, arrays, config, grid)
|
52
|
+
|
53
|
+
def aggregate_train(
|
54
|
+
self,
|
55
|
+
server_round: int,
|
56
|
+
replies: Iterable[Message],
|
57
|
+
) -> tuple[Optional[ArrayRecord], Optional[MetricRecord]]:
|
58
|
+
"""Aggregate ArrayRecords and MetricRecords in the received Messages."""
|
59
|
+
valid_replies, _ = self._check_and_log_replies(replies, is_train=True)
|
60
|
+
|
61
|
+
arrays, metrics = None, None
|
62
|
+
if valid_replies:
|
63
|
+
reply_contents = [msg.content for msg in valid_replies]
|
64
|
+
array_record_key = next(iter(reply_contents[0].array_records.keys()))
|
65
|
+
|
66
|
+
# Aggregate ArrayRecords
|
67
|
+
for content in reply_contents:
|
68
|
+
self._ensure_single_array(cast(ArrayRecord, content[array_record_key]))
|
69
|
+
bst = content[array_record_key]["0"].numpy().tobytes() # type: ignore[union-attr]
|
70
|
+
|
71
|
+
if self.current_bst is not None:
|
72
|
+
self.current_bst = aggregate_bagging(self.current_bst, bst)
|
73
|
+
|
74
|
+
if self.current_bst is not None:
|
75
|
+
arrays = ArrayRecord([np.frombuffer(self.current_bst, dtype=np.uint8)])
|
76
|
+
|
77
|
+
# Aggregate MetricRecords
|
78
|
+
metrics = self.train_metrics_aggr_fn(
|
79
|
+
reply_contents,
|
80
|
+
self.weighted_by_key,
|
81
|
+
)
|
82
|
+
return arrays, metrics
|
@@ -15,6 +15,7 @@
|
|
15
15
|
"""Flower message-based strategy utilities."""
|
16
16
|
|
17
17
|
|
18
|
+
import json
|
18
19
|
import random
|
19
20
|
from collections import OrderedDict
|
20
21
|
from logging import INFO
|
@@ -249,3 +250,50 @@ def validate_message_reply_consistency(
|
|
249
250
|
"must be a single value (int or float), but a list was found. Skipping "
|
250
251
|
"aggregation."
|
251
252
|
)
|
253
|
+
|
254
|
+
|
255
|
+
def aggregate_bagging(
|
256
|
+
bst_prev_org: bytes,
|
257
|
+
bst_curr_org: bytes,
|
258
|
+
) -> bytes:
|
259
|
+
"""Conduct bagging aggregation for given trees."""
|
260
|
+
if bst_prev_org == b"":
|
261
|
+
return bst_curr_org
|
262
|
+
|
263
|
+
# Get the tree numbers
|
264
|
+
tree_num_prev, _ = _get_tree_nums(bst_prev_org)
|
265
|
+
_, paral_tree_num_curr = _get_tree_nums(bst_curr_org)
|
266
|
+
|
267
|
+
bst_prev = json.loads(bytearray(bst_prev_org))
|
268
|
+
bst_curr = json.loads(bytearray(bst_curr_org))
|
269
|
+
|
270
|
+
previous_model = bst_prev["learner"]["gradient_booster"]["model"]
|
271
|
+
previous_model["gbtree_model_param"]["num_trees"] = str(
|
272
|
+
tree_num_prev + paral_tree_num_curr
|
273
|
+
)
|
274
|
+
iteration_indptr = previous_model["iteration_indptr"]
|
275
|
+
previous_model["iteration_indptr"].append(
|
276
|
+
iteration_indptr[-1] + paral_tree_num_curr
|
277
|
+
)
|
278
|
+
|
279
|
+
# Aggregate new trees
|
280
|
+
trees_curr = bst_curr["learner"]["gradient_booster"]["model"]["trees"]
|
281
|
+
for tree_count in range(paral_tree_num_curr):
|
282
|
+
trees_curr[tree_count]["id"] = tree_num_prev + tree_count
|
283
|
+
previous_model["trees"].append(trees_curr[tree_count])
|
284
|
+
previous_model["tree_info"].append(0)
|
285
|
+
|
286
|
+
bst_prev_bytes = bytes(json.dumps(bst_prev), "utf-8")
|
287
|
+
|
288
|
+
return bst_prev_bytes
|
289
|
+
|
290
|
+
|
291
|
+
def _get_tree_nums(xgb_model_org: bytes) -> tuple[int, int]:
|
292
|
+
xgb_model = json.loads(bytearray(xgb_model_org))
|
293
|
+
|
294
|
+
# Access model parameters
|
295
|
+
model_param = xgb_model["learner"]["gradient_booster"]["model"][
|
296
|
+
"gbtree_model_param"
|
297
|
+
]
|
298
|
+
# Return the number of trees and the number of parallel trees
|
299
|
+
return int(model_param["num_trees"]), int(model_param["num_parallel_tree"])
|
@@ -16,12 +16,20 @@
|
|
16
16
|
|
17
17
|
|
18
18
|
from collections import OrderedDict
|
19
|
+
from unittest.mock import Mock
|
19
20
|
|
20
21
|
import numpy as np
|
21
22
|
import pytest
|
22
23
|
from parameterized import parameterized
|
23
24
|
|
24
|
-
from flwr.common import
|
25
|
+
from flwr.common import (
|
26
|
+
Array,
|
27
|
+
ArrayRecord,
|
28
|
+
ConfigRecord,
|
29
|
+
Message,
|
30
|
+
MetricRecord,
|
31
|
+
RecordDict,
|
32
|
+
)
|
25
33
|
from flwr.serverapp.exception import InconsistentMessageReplies
|
26
34
|
|
27
35
|
from .strategy_utils import (
|
@@ -32,6 +40,17 @@ from .strategy_utils import (
|
|
32
40
|
)
|
33
41
|
|
34
42
|
|
43
|
+
def create_mock_reply(arrays: ArrayRecord, num_examples: float) -> Message:
|
44
|
+
"""Create a mock reply Message with default keys."""
|
45
|
+
message = Mock(spec=Message)
|
46
|
+
message.content = RecordDict(
|
47
|
+
{"arrays": arrays, "metrics": MetricRecord({"num-examples": num_examples})}
|
48
|
+
)
|
49
|
+
message.has_error.side_effect = lambda: False
|
50
|
+
message.has_content.side_effect = lambda: True
|
51
|
+
return message
|
52
|
+
|
53
|
+
|
35
54
|
def test_config_to_str() -> None:
|
36
55
|
"""Test that items of types bytes are masked out."""
|
37
56
|
config = ConfigRecord({"a": 123, "b": [1, 2, 3], "c": b"bytes"})
|
{flwr_nightly-1.22.0.dev20250913.dist-info → flwr_nightly-1.22.0.dev20250916.dist-info}/METADATA
RENAMED
@@ -1,6 +1,6 @@
|
|
1
1
|
Metadata-Version: 2.3
|
2
2
|
Name: flwr-nightly
|
3
|
-
Version: 1.22.0.
|
3
|
+
Version: 1.22.0.dev20250916
|
4
4
|
Summary: Flower: A Friendly Federated AI Framework
|
5
5
|
License: Apache-2.0
|
6
6
|
Keywords: Artificial Intelligence,Federated AI,Federated Analytics,Federated Evaluation,Federated Learning,Flower,Machine Learning
|
@@ -102,25 +102,15 @@ Meet the Flower community on [flower.ai](https://flower.ai)!
|
|
102
102
|
|
103
103
|
Flower's goal is to make federated learning accessible to everyone. This series of tutorials introduces the fundamentals of federated learning and how to implement them in Flower.
|
104
104
|
|
105
|
-
0. **What is Federated Learning
|
105
|
+
0. **[What is Federated Learning?](https://flower.ai/docs/framework/main/en/tutorial-series-what-is-federated-learning.html)**
|
106
106
|
|
107
|
-
|
107
|
+
1. **[An Introduction to Federated Learning](https://flower.ai/docs/framework/main/en/tutorial-series-get-started-with-flower-pytorch.html)**
|
108
108
|
|
109
|
-
|
109
|
+
2. **[Using Strategies in Federated Learning](https://flower.ai/docs/framework/main/en/tutorial-series-use-a-federated-learning-strategy-pytorch.html)**
|
110
110
|
|
111
|
-
|
111
|
+
3. **[Customize a Flower Strategy](https://flower.ai/docs/framework/main/en/tutorial-series-build-a-strategy-from-scratch-pytorch.html)**
|
112
112
|
|
113
|
-
|
114
|
-
|
115
|
-
[](https://colab.research.google.com/github/adap/flower/blob/main/framework/docs/source/tutorial-series-use-a-federated-learning-strategy-pytorch.ipynb) (or open the [Jupyter Notebook](https://github.com/adap/flower/blob/main/framework/docs/source/tutorial-series-use-a-federated-learning-strategy-pytorch.ipynb))
|
116
|
-
|
117
|
-
3. **Building Strategies for Federated Learning**
|
118
|
-
|
119
|
-
[](https://colab.research.google.com/github/adap/flower/blob/main/framework/docs/source/tutorial-series-build-a-strategy-from-scratch-pytorch.ipynb) (or open the [Jupyter Notebook](https://github.com/adap/flower/blob/main/framework/docs/source/tutorial-series-build-a-strategy-from-scratch-pytorch.ipynb))
|
120
|
-
|
121
|
-
4. **Custom Clients for Federated Learning**
|
122
|
-
|
123
|
-
[](https://colab.research.google.com/github/adap/flower/blob/main/framework/docs/source/tutorial-series-customize-the-client-pytorch.ipynb) (or open the [Jupyter Notebook](https://github.com/adap/flower/blob/main/framework/docs/source/tutorial-series-customize-the-client-pytorch.ipynb))
|
113
|
+
4. **[Communicate Custom Messages](https://flower.ai/docs/framework/main/en/tutorial-series-customize-the-client-pytorch.html)**
|
124
114
|
|
125
115
|
Stay tuned, more tutorials are coming soon. Topics include **Privacy and Security in Federated Learning**, and **Scaling Federated Learning**.
|
126
116
|
|