flwr-nightly 1.21.0.dev20250903__py3-none-any.whl → 1.21.0.dev20250904__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- flwr/serverapp/strategy/__init__.py +6 -0
- flwr/serverapp/strategy/fedadagrad.py +162 -0
- flwr/serverapp/strategy/fedadam.py +181 -0
- flwr/serverapp/strategy/fedopt.py +218 -0
- flwr/serverapp/strategy/fedyogi.py +173 -0
- flwr/serverapp/strategy/result.py +4 -3
- flwr/serverapp/strategy/strategy.py +3 -3
- flwr/serverapp/strategy/strategy_utils.py +9 -0
- {flwr_nightly-1.21.0.dev20250903.dist-info → flwr_nightly-1.21.0.dev20250904.dist-info}/METADATA +1 -1
- {flwr_nightly-1.21.0.dev20250903.dist-info → flwr_nightly-1.21.0.dev20250904.dist-info}/RECORD +12 -8
- {flwr_nightly-1.21.0.dev20250903.dist-info → flwr_nightly-1.21.0.dev20250904.dist-info}/WHEEL +0 -0
- {flwr_nightly-1.21.0.dev20250903.dist-info → flwr_nightly-1.21.0.dev20250904.dist-info}/entry_points.txt +0 -0
@@ -19,14 +19,20 @@ from .dp_fixed_clipping import (
|
|
19
19
|
DifferentialPrivacyClientSideFixedClipping,
|
20
20
|
DifferentialPrivacyServerSideFixedClipping,
|
21
21
|
)
|
22
|
+
from .fedadagrad import FedAdagrad
|
23
|
+
from .fedadam import FedAdam
|
22
24
|
from .fedavg import FedAvg
|
25
|
+
from .fedyogi import FedYogi
|
23
26
|
from .result import Result
|
24
27
|
from .strategy import Strategy
|
25
28
|
|
26
29
|
__all__ = [
|
27
30
|
"DifferentialPrivacyClientSideFixedClipping",
|
28
31
|
"DifferentialPrivacyServerSideFixedClipping",
|
32
|
+
"FedAdagrad",
|
33
|
+
"FedAdam",
|
29
34
|
"FedAvg",
|
35
|
+
"FedYogi",
|
30
36
|
"Result",
|
31
37
|
"Strategy",
|
32
38
|
]
|
@@ -0,0 +1,162 @@
|
|
1
|
+
# Copyright 2025 Flower Labs GmbH. All Rights Reserved.
|
2
|
+
#
|
3
|
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4
|
+
# you may not use this file except in compliance with the License.
|
5
|
+
# You may obtain a copy of the License at
|
6
|
+
#
|
7
|
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8
|
+
#
|
9
|
+
# Unless required by applicable law or agreed to in writing, software
|
10
|
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11
|
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12
|
+
# See the License for the specific language governing permissions and
|
13
|
+
# limitations under the License.
|
14
|
+
# ==============================================================================
|
15
|
+
"""FedAdagrad [Reddi et al., 2020] strategy.
|
16
|
+
|
17
|
+
Adaptive Federated Optimization using Adagrad.
|
18
|
+
|
19
|
+
Paper: arxiv.org/abs/2003.00295
|
20
|
+
"""
|
21
|
+
|
22
|
+
from collections import OrderedDict
|
23
|
+
from collections.abc import Iterable
|
24
|
+
from typing import Callable, Optional
|
25
|
+
|
26
|
+
import numpy as np
|
27
|
+
|
28
|
+
from flwr.common import Array, ArrayRecord, Message, MetricRecord, RecordDict
|
29
|
+
|
30
|
+
from .fedopt import FedOpt
|
31
|
+
from .strategy_utils import AggregationError
|
32
|
+
|
33
|
+
|
34
|
+
# pylint: disable=line-too-long
|
35
|
+
class FedAdagrad(FedOpt):
|
36
|
+
"""FedAdagrad strategy - Adaptive Federated Optimization using Adagrad.
|
37
|
+
|
38
|
+
Implementation based on https://arxiv.org/abs/2003.00295v5
|
39
|
+
|
40
|
+
Parameters
|
41
|
+
----------
|
42
|
+
fraction_train : float (default: 1.0)
|
43
|
+
Fraction of nodes used during training. In case `min_train_nodes`
|
44
|
+
is larger than `fraction_train * total_connected_nodes`, `min_train_nodes`
|
45
|
+
will still be sampled.
|
46
|
+
fraction_evaluate : float (default: 1.0)
|
47
|
+
Fraction of nodes used during validation. In case `min_evaluate_nodes`
|
48
|
+
is larger than `fraction_evaluate * total_connected_nodes`,
|
49
|
+
`min_evaluate_nodes` will still be sampled.
|
50
|
+
min_train_nodes : int (default: 2)
|
51
|
+
Minimum number of nodes used during training.
|
52
|
+
min_evaluate_nodes : int (default: 2)
|
53
|
+
Minimum number of nodes used during validation.
|
54
|
+
min_available_nodes : int (default: 2)
|
55
|
+
Minimum number of total nodes in the system.
|
56
|
+
weighted_by_key : str (default: "num-examples")
|
57
|
+
The key within each MetricRecord whose value is used as the weight when
|
58
|
+
computing weighted averages for both ArrayRecords and MetricRecords.
|
59
|
+
arrayrecord_key : str (default: "arrays")
|
60
|
+
Key used to store the ArrayRecord when constructing Messages.
|
61
|
+
configrecord_key : str (default: "config")
|
62
|
+
Key used to store the ConfigRecord when constructing Messages.
|
63
|
+
train_metrics_aggr_fn : Optional[callable] (default: None)
|
64
|
+
Function with signature (list[RecordDict], str) -> MetricRecord,
|
65
|
+
used to aggregate MetricRecords from training round replies.
|
66
|
+
If `None`, defaults to `aggregate_metricrecords`, which performs a weighted
|
67
|
+
average using the provided weight factor key.
|
68
|
+
evaluate_metrics_aggr_fn : Optional[callable] (default: None)
|
69
|
+
Function with signature (list[RecordDict], str) -> MetricRecord,
|
70
|
+
used to aggregate MetricRecords from training round replies.
|
71
|
+
If `None`, defaults to `aggregate_metricrecords`, which performs a weighted
|
72
|
+
average using the provided weight factor key.
|
73
|
+
eta : float, optional
|
74
|
+
Server-side learning rate. Defaults to 1e-1.
|
75
|
+
eta_l : float, optional
|
76
|
+
Client-side learning rate. Defaults to 1e-1.
|
77
|
+
tau : float, optional
|
78
|
+
Controls the algorithm's degree of adaptability. Defaults to 1e-3.
|
79
|
+
"""
|
80
|
+
|
81
|
+
# pylint: disable=too-many-arguments
|
82
|
+
def __init__(
|
83
|
+
self,
|
84
|
+
*,
|
85
|
+
fraction_train: float = 1.0,
|
86
|
+
fraction_evaluate: float = 1.0,
|
87
|
+
min_train_nodes: int = 2,
|
88
|
+
min_evaluate_nodes: int = 2,
|
89
|
+
min_available_nodes: int = 2,
|
90
|
+
weighted_by_key: str = "num-examples",
|
91
|
+
arrayrecord_key: str = "arrays",
|
92
|
+
configrecord_key: str = "config",
|
93
|
+
train_metrics_aggr_fn: Optional[
|
94
|
+
Callable[[list[RecordDict], str], MetricRecord]
|
95
|
+
] = None,
|
96
|
+
evaluate_metrics_aggr_fn: Optional[
|
97
|
+
Callable[[list[RecordDict], str], MetricRecord]
|
98
|
+
] = None,
|
99
|
+
eta: float = 1e-1,
|
100
|
+
eta_l: float = 1e-1,
|
101
|
+
tau: float = 1e-3,
|
102
|
+
) -> None:
|
103
|
+
super().__init__(
|
104
|
+
fraction_train=fraction_train,
|
105
|
+
fraction_evaluate=fraction_evaluate,
|
106
|
+
min_train_nodes=min_train_nodes,
|
107
|
+
min_evaluate_nodes=min_evaluate_nodes,
|
108
|
+
min_available_nodes=min_available_nodes,
|
109
|
+
weighted_by_key=weighted_by_key,
|
110
|
+
arrayrecord_key=arrayrecord_key,
|
111
|
+
configrecord_key=configrecord_key,
|
112
|
+
train_metrics_aggr_fn=train_metrics_aggr_fn,
|
113
|
+
evaluate_metrics_aggr_fn=evaluate_metrics_aggr_fn,
|
114
|
+
eta=eta,
|
115
|
+
eta_l=eta_l,
|
116
|
+
beta_1=0.0,
|
117
|
+
beta_2=0.0,
|
118
|
+
tau=tau,
|
119
|
+
)
|
120
|
+
|
121
|
+
def aggregate_train(
|
122
|
+
self,
|
123
|
+
server_round: int,
|
124
|
+
replies: Iterable[Message],
|
125
|
+
) -> tuple[Optional[ArrayRecord], Optional[MetricRecord]]:
|
126
|
+
"""Aggregate ArrayRecords and MetricRecords in the received Messages."""
|
127
|
+
aggregated_arrayrecord, aggregated_metrics = super().aggregate_train(
|
128
|
+
server_round, replies
|
129
|
+
)
|
130
|
+
|
131
|
+
if aggregated_arrayrecord is None:
|
132
|
+
return aggregated_arrayrecord, aggregated_metrics
|
133
|
+
|
134
|
+
if self.current_arrays is None:
|
135
|
+
reason = (
|
136
|
+
"Current arrays not set. Ensure that `configure_train` has been "
|
137
|
+
"called before aggregation."
|
138
|
+
)
|
139
|
+
raise AggregationError(reason=reason)
|
140
|
+
|
141
|
+
# Compute intermediate variables
|
142
|
+
delta_t, m_t, aggregated_ndarrays = self._compute_deltat_and_mt(
|
143
|
+
aggregated_arrayrecord
|
144
|
+
)
|
145
|
+
|
146
|
+
# v_t
|
147
|
+
if not self.v_t:
|
148
|
+
self.v_t = {k: np.zeros_like(v) for k, v in aggregated_ndarrays.items()}
|
149
|
+
self.v_t = {k: v + (delta_t[k] ** 2) for k, v in self.v_t.items()}
|
150
|
+
|
151
|
+
new_arrays = {
|
152
|
+
k: x + self.eta * m_t[k] / (np.sqrt(self.v_t[k]) + self.tau)
|
153
|
+
for k, x in self.current_arrays.items()
|
154
|
+
}
|
155
|
+
|
156
|
+
# Update current arrays
|
157
|
+
self.current_arrays = new_arrays
|
158
|
+
|
159
|
+
return (
|
160
|
+
ArrayRecord(OrderedDict({k: Array(v) for k, v in new_arrays.items()})),
|
161
|
+
aggregated_metrics,
|
162
|
+
)
|
@@ -0,0 +1,181 @@
|
|
1
|
+
# Copyright 2025 Flower Labs GmbH. All Rights Reserved.
|
2
|
+
#
|
3
|
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4
|
+
# you may not use this file except in compliance with the License.
|
5
|
+
# You may obtain a copy of the License at
|
6
|
+
#
|
7
|
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8
|
+
#
|
9
|
+
# Unless required by applicable law or agreed to in writing, software
|
10
|
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11
|
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12
|
+
# See the License for the specific language governing permissions and
|
13
|
+
# limitations under the License.
|
14
|
+
# ==============================================================================
|
15
|
+
"""Adaptive Federated Optimization using Adam (FedAdam) strategy.
|
16
|
+
|
17
|
+
[Reddi et al., 2020]
|
18
|
+
|
19
|
+
Paper: arxiv.org/abs/2003.00295
|
20
|
+
"""
|
21
|
+
|
22
|
+
from collections import OrderedDict
|
23
|
+
from collections.abc import Iterable
|
24
|
+
from typing import Callable, Optional
|
25
|
+
|
26
|
+
import numpy as np
|
27
|
+
|
28
|
+
from flwr.common import Array, ArrayRecord, Message, MetricRecord, RecordDict
|
29
|
+
|
30
|
+
from .fedopt import FedOpt
|
31
|
+
from .strategy_utils import AggregationError
|
32
|
+
|
33
|
+
|
34
|
+
# pylint: disable=line-too-long
|
35
|
+
class FedAdam(FedOpt):
|
36
|
+
"""FedAdam - Adaptive Federated Optimization using Adam.
|
37
|
+
|
38
|
+
Implementation based on https://arxiv.org/abs/2003.00295v5
|
39
|
+
|
40
|
+
Parameters
|
41
|
+
----------
|
42
|
+
fraction_train : float (default: 1.0)
|
43
|
+
Fraction of nodes used during training. In case `min_train_nodes`
|
44
|
+
is larger than `fraction_train * total_connected_nodes`, `min_train_nodes`
|
45
|
+
will still be sampled.
|
46
|
+
fraction_evaluate : float (default: 1.0)
|
47
|
+
Fraction of nodes used during validation. In case `min_evaluate_nodes`
|
48
|
+
is larger than `fraction_evaluate * total_connected_nodes`,
|
49
|
+
`min_evaluate_nodes` will still be sampled.
|
50
|
+
min_train_nodes : int (default: 2)
|
51
|
+
Minimum number of nodes used during training.
|
52
|
+
min_evaluate_nodes : int (default: 2)
|
53
|
+
Minimum number of nodes used during validation.
|
54
|
+
min_available_nodes : int (default: 2)
|
55
|
+
Minimum number of total nodes in the system.
|
56
|
+
weighted_by_key : str (default: "num-examples")
|
57
|
+
The key within each MetricRecord whose value is used as the weight when
|
58
|
+
computing weighted averages for both ArrayRecords and MetricRecords.
|
59
|
+
arrayrecord_key : str (default: "arrays")
|
60
|
+
Key used to store the ArrayRecord when constructing Messages.
|
61
|
+
configrecord_key : str (default: "config")
|
62
|
+
Key used to store the ConfigRecord when constructing Messages.
|
63
|
+
train_metrics_aggr_fn : Optional[callable] (default: None)
|
64
|
+
Function with signature (list[RecordDict], str) -> MetricRecord,
|
65
|
+
used to aggregate MetricRecords from training round replies.
|
66
|
+
If `None`, defaults to `aggregate_metricrecords`, which performs a weighted
|
67
|
+
average using the provided weight factor key.
|
68
|
+
evaluate_metrics_aggr_fn : Optional[callable] (default: None)
|
69
|
+
Function with signature (list[RecordDict], str) -> MetricRecord,
|
70
|
+
used to aggregate MetricRecords from training round replies.
|
71
|
+
If `None`, defaults to `aggregate_metricrecords`, which performs a weighted
|
72
|
+
average using the provided weight factor key.
|
73
|
+
eta : float, optional
|
74
|
+
Server-side learning rate. Defaults to 1e-1.
|
75
|
+
eta_l : float, optional
|
76
|
+
Client-side learning rate. Defaults to 1e-1.
|
77
|
+
beta_1 : float, optional
|
78
|
+
Momentum parameter. Defaults to 0.9.
|
79
|
+
beta_2 : float, optional
|
80
|
+
Second moment parameter. Defaults to 0.99.
|
81
|
+
tau : float, optional
|
82
|
+
Controls the algorithm's degree of adaptability. Defaults to 1e-3.
|
83
|
+
"""
|
84
|
+
|
85
|
+
# pylint: disable=too-many-arguments, too-many-locals
|
86
|
+
def __init__(
|
87
|
+
self,
|
88
|
+
*,
|
89
|
+
fraction_train: float = 1.0,
|
90
|
+
fraction_evaluate: float = 1.0,
|
91
|
+
min_train_nodes: int = 2,
|
92
|
+
min_evaluate_nodes: int = 2,
|
93
|
+
min_available_nodes: int = 2,
|
94
|
+
weighted_by_key: str = "num-examples",
|
95
|
+
arrayrecord_key: str = "arrays",
|
96
|
+
configrecord_key: str = "config",
|
97
|
+
train_metrics_aggr_fn: Optional[
|
98
|
+
Callable[[list[RecordDict], str], MetricRecord]
|
99
|
+
] = None,
|
100
|
+
evaluate_metrics_aggr_fn: Optional[
|
101
|
+
Callable[[list[RecordDict], str], MetricRecord]
|
102
|
+
] = None,
|
103
|
+
eta: float = 1e-1,
|
104
|
+
eta_l: float = 1e-1,
|
105
|
+
beta_1: float = 0.9,
|
106
|
+
beta_2: float = 0.99,
|
107
|
+
tau: float = 1e-3,
|
108
|
+
) -> None:
|
109
|
+
super().__init__(
|
110
|
+
fraction_train=fraction_train,
|
111
|
+
fraction_evaluate=fraction_evaluate,
|
112
|
+
min_train_nodes=min_train_nodes,
|
113
|
+
min_evaluate_nodes=min_evaluate_nodes,
|
114
|
+
min_available_nodes=min_available_nodes,
|
115
|
+
weighted_by_key=weighted_by_key,
|
116
|
+
arrayrecord_key=arrayrecord_key,
|
117
|
+
configrecord_key=configrecord_key,
|
118
|
+
train_metrics_aggr_fn=train_metrics_aggr_fn,
|
119
|
+
evaluate_metrics_aggr_fn=evaluate_metrics_aggr_fn,
|
120
|
+
eta=eta,
|
121
|
+
eta_l=eta_l,
|
122
|
+
beta_1=beta_1,
|
123
|
+
beta_2=beta_2,
|
124
|
+
tau=tau,
|
125
|
+
)
|
126
|
+
|
127
|
+
def aggregate_train(
|
128
|
+
self,
|
129
|
+
server_round: int,
|
130
|
+
replies: Iterable[Message],
|
131
|
+
) -> tuple[Optional[ArrayRecord], Optional[MetricRecord]]:
|
132
|
+
"""Aggregate ArrayRecords and MetricRecords in the received Messages."""
|
133
|
+
aggregated_arrayrecord, aggregated_metrics = super().aggregate_train(
|
134
|
+
server_round, replies
|
135
|
+
)
|
136
|
+
|
137
|
+
if aggregated_arrayrecord is None:
|
138
|
+
return aggregated_arrayrecord, aggregated_metrics
|
139
|
+
|
140
|
+
if self.current_arrays is None:
|
141
|
+
reason = (
|
142
|
+
"Current arrays not set. Ensure that `configure_train` has been "
|
143
|
+
"called before aggregation."
|
144
|
+
)
|
145
|
+
raise AggregationError(reason=reason)
|
146
|
+
|
147
|
+
# Compute intermediate variables
|
148
|
+
delta_t, m_t, aggregated_ndarrays = self._compute_deltat_and_mt(
|
149
|
+
aggregated_arrayrecord
|
150
|
+
)
|
151
|
+
|
152
|
+
# v_t
|
153
|
+
if not self.v_t:
|
154
|
+
self.v_t = {k: np.zeros_like(v) for k, v in aggregated_ndarrays.items()}
|
155
|
+
self.v_t = {
|
156
|
+
k: self.beta_2 * v + (1 - self.beta_2) * (delta_t[k] ** 2)
|
157
|
+
for k, v in self.v_t.items()
|
158
|
+
}
|
159
|
+
|
160
|
+
# Compute the bias-corrected learning rate, `eta_norm` for improving convergence
|
161
|
+
# in the early rounds of FL training. This `eta_norm` is `\alpha_t` in Kingma &
|
162
|
+
# Ba, 2014 (http://arxiv.org/abs/1412.6980) "Adam: A Method for Stochastic
|
163
|
+
# Optimization" in the formula line right before Section 2.1.
|
164
|
+
eta_norm = (
|
165
|
+
self.eta
|
166
|
+
* np.sqrt(1 - np.power(self.beta_2, server_round + 1.0))
|
167
|
+
/ (1 - np.power(self.beta_1, server_round + 1.0))
|
168
|
+
)
|
169
|
+
|
170
|
+
new_arrays = {
|
171
|
+
k: x + eta_norm * m_t[k] / (np.sqrt(self.v_t[k]) + self.tau)
|
172
|
+
for k, x in self.current_arrays.items()
|
173
|
+
}
|
174
|
+
|
175
|
+
# Update current arrays
|
176
|
+
self.current_arrays = new_arrays
|
177
|
+
|
178
|
+
return (
|
179
|
+
ArrayRecord(OrderedDict({k: Array(v) for k, v in new_arrays.items()})),
|
180
|
+
aggregated_metrics,
|
181
|
+
)
|
@@ -0,0 +1,218 @@
|
|
1
|
+
# Copyright 2025 Flower Labs GmbH. All Rights Reserved.
|
2
|
+
#
|
3
|
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4
|
+
# you may not use this file except in compliance with the License.
|
5
|
+
# You may obtain a copy of the License at
|
6
|
+
#
|
7
|
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8
|
+
#
|
9
|
+
# Unless required by applicable law or agreed to in writing, software
|
10
|
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11
|
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12
|
+
# See the License for the specific language governing permissions and
|
13
|
+
# limitations under the License.
|
14
|
+
# ==============================================================================
|
15
|
+
"""Adaptive Federated Optimization (FedOpt) [Reddi et al., 2020] abstract strategy.
|
16
|
+
|
17
|
+
Paper: arxiv.org/abs/2003.00295
|
18
|
+
"""
|
19
|
+
|
20
|
+
from collections.abc import Iterable
|
21
|
+
from logging import INFO
|
22
|
+
from typing import Callable, Optional
|
23
|
+
|
24
|
+
import numpy as np
|
25
|
+
|
26
|
+
from flwr.common import (
|
27
|
+
ArrayRecord,
|
28
|
+
ConfigRecord,
|
29
|
+
Message,
|
30
|
+
MetricRecord,
|
31
|
+
NDArray,
|
32
|
+
RecordDict,
|
33
|
+
log,
|
34
|
+
)
|
35
|
+
from flwr.server import Grid
|
36
|
+
|
37
|
+
from .fedavg import FedAvg
|
38
|
+
from .strategy_utils import AggregationError
|
39
|
+
|
40
|
+
|
41
|
+
# pylint: disable=line-too-long
|
42
|
+
class FedOpt(FedAvg):
|
43
|
+
"""Federated Optim strategy.
|
44
|
+
|
45
|
+
Implementation based on https://arxiv.org/abs/2003.00295v5
|
46
|
+
|
47
|
+
Parameters
|
48
|
+
----------
|
49
|
+
fraction_train : float (default: 1.0)
|
50
|
+
Fraction of nodes used during training. In case `min_train_nodes`
|
51
|
+
is larger than `fraction_train * total_connected_nodes`, `min_train_nodes`
|
52
|
+
will still be sampled.
|
53
|
+
fraction_evaluate : float (default: 1.0)
|
54
|
+
Fraction of nodes used during validation. In case `min_evaluate_nodes`
|
55
|
+
is larger than `fraction_evaluate * total_connected_nodes`,
|
56
|
+
`min_evaluate_nodes` will still be sampled.
|
57
|
+
min_train_nodes : int (default: 2)
|
58
|
+
Minimum number of nodes used during training.
|
59
|
+
min_evaluate_nodes : int (default: 2)
|
60
|
+
Minimum number of nodes used during validation.
|
61
|
+
min_available_nodes : int (default: 2)
|
62
|
+
Minimum number of total nodes in the system.
|
63
|
+
weighted_by_key : str (default: "num-examples")
|
64
|
+
The key within each MetricRecord whose value is used as the weight when
|
65
|
+
computing weighted averages for both ArrayRecords and MetricRecords.
|
66
|
+
arrayrecord_key : str (default: "arrays")
|
67
|
+
Key used to store the ArrayRecord when constructing Messages.
|
68
|
+
configrecord_key : str (default: "config")
|
69
|
+
Key used to store the ConfigRecord when constructing Messages.
|
70
|
+
train_metrics_aggr_fn : Optional[callable] (default: None)
|
71
|
+
Function with signature (list[RecordDict], str) -> MetricRecord,
|
72
|
+
used to aggregate MetricRecords from training round replies.
|
73
|
+
If `None`, defaults to `aggregate_metricrecords`, which performs a weighted
|
74
|
+
average using the provided weight factor key.
|
75
|
+
evaluate_metrics_aggr_fn : Optional[callable] (default: None)
|
76
|
+
Function with signature (list[RecordDict], str) -> MetricRecord,
|
77
|
+
used to aggregate MetricRecords from training round replies.
|
78
|
+
If `None`, defaults to `aggregate_metricrecords`, which performs a weighted
|
79
|
+
average using the provided weight factor key.
|
80
|
+
eta : float, optional
|
81
|
+
Server-side learning rate. Defaults to 1e-1.
|
82
|
+
eta_l : float, optional
|
83
|
+
Client-side learning rate. Defaults to 1e-1.
|
84
|
+
beta_1 : float, optional
|
85
|
+
Momentum parameter. Defaults to 0.0.
|
86
|
+
beta_2 : float, optional
|
87
|
+
Second moment parameter. Defaults to 0.0.
|
88
|
+
tau : float, optional
|
89
|
+
Controls the algorithm's degree of adaptability. Defaults to 1e-3.
|
90
|
+
"""
|
91
|
+
|
92
|
+
# pylint: disable=too-many-arguments,too-many-instance-attributes,too-many-locals, line-too-long
|
93
|
+
def __init__(
|
94
|
+
self,
|
95
|
+
*,
|
96
|
+
fraction_train: float = 1.0,
|
97
|
+
fraction_evaluate: float = 1.0,
|
98
|
+
min_train_nodes: int = 2,
|
99
|
+
min_evaluate_nodes: int = 2,
|
100
|
+
min_available_nodes: int = 2,
|
101
|
+
weighted_by_key: str = "num-examples",
|
102
|
+
arrayrecord_key: str = "arrays",
|
103
|
+
configrecord_key: str = "config",
|
104
|
+
train_metrics_aggr_fn: Optional[
|
105
|
+
Callable[[list[RecordDict], str], MetricRecord]
|
106
|
+
] = None,
|
107
|
+
evaluate_metrics_aggr_fn: Optional[
|
108
|
+
Callable[[list[RecordDict], str], MetricRecord]
|
109
|
+
] = None,
|
110
|
+
eta: float = 1e-1,
|
111
|
+
eta_l: float = 1e-1,
|
112
|
+
beta_1: float = 0.0,
|
113
|
+
beta_2: float = 0.0,
|
114
|
+
tau: float = 1e-3,
|
115
|
+
) -> None:
|
116
|
+
super().__init__(
|
117
|
+
fraction_train=fraction_train,
|
118
|
+
fraction_evaluate=fraction_evaluate,
|
119
|
+
min_train_nodes=min_train_nodes,
|
120
|
+
min_evaluate_nodes=min_evaluate_nodes,
|
121
|
+
min_available_nodes=min_available_nodes,
|
122
|
+
weighted_by_key=weighted_by_key,
|
123
|
+
arrayrecord_key=arrayrecord_key,
|
124
|
+
configrecord_key=configrecord_key,
|
125
|
+
train_metrics_aggr_fn=train_metrics_aggr_fn,
|
126
|
+
evaluate_metrics_aggr_fn=evaluate_metrics_aggr_fn,
|
127
|
+
)
|
128
|
+
self.current_arrays: Optional[dict[str, NDArray]] = None
|
129
|
+
self.eta = eta
|
130
|
+
self.eta_l = eta_l
|
131
|
+
self.tau = tau
|
132
|
+
self.beta_1 = beta_1
|
133
|
+
self.beta_2 = beta_2
|
134
|
+
self.m_t: Optional[dict[str, NDArray]] = None
|
135
|
+
self.v_t: Optional[dict[str, NDArray]] = None
|
136
|
+
|
137
|
+
def summary(self) -> None:
|
138
|
+
"""Log summary configuration of the strategy."""
|
139
|
+
log(INFO, "\t├──> FedOpt settings:")
|
140
|
+
log(
|
141
|
+
INFO,
|
142
|
+
"\t│\t├── eta (%s) | eta_l (%s)",
|
143
|
+
f"{self.eta:.6g}",
|
144
|
+
f"{self.eta_l:.6g}",
|
145
|
+
)
|
146
|
+
log(
|
147
|
+
INFO,
|
148
|
+
"\t│\t├── beta_1 (%s) | beta_2 (%s)",
|
149
|
+
f"{self.beta_1:.6g}",
|
150
|
+
f"{self.beta_2:.6g}",
|
151
|
+
)
|
152
|
+
log(
|
153
|
+
INFO,
|
154
|
+
"\t│\t└── tau (%s)",
|
155
|
+
f"{self.tau:.6g}",
|
156
|
+
)
|
157
|
+
super().summary()
|
158
|
+
|
159
|
+
def configure_train(
|
160
|
+
self, server_round: int, arrays: ArrayRecord, config: ConfigRecord, grid: Grid
|
161
|
+
) -> Iterable[Message]:
|
162
|
+
"""Configure the next round of federated training."""
|
163
|
+
# Keep track of array record being communicated
|
164
|
+
self.current_arrays = {k: array.numpy() for k, array in arrays.items()}
|
165
|
+
return super().configure_train(server_round, arrays, config, grid)
|
166
|
+
|
167
|
+
def _compute_deltat_and_mt(
|
168
|
+
self, aggregated_arrayrecord: ArrayRecord
|
169
|
+
) -> tuple[dict[str, NDArray], dict[str, NDArray], dict[str, NDArray]]:
|
170
|
+
"""Compute delta_t and m_t.
|
171
|
+
|
172
|
+
This is a shared stage during aggregation for FedAdagrad, FedAdam and FedYogi.
|
173
|
+
"""
|
174
|
+
if self.current_arrays is None:
|
175
|
+
reason = (
|
176
|
+
"Current arrays not set. Ensure that `configure_train` has been "
|
177
|
+
"called before aggregation."
|
178
|
+
)
|
179
|
+
raise AggregationError(reason=reason)
|
180
|
+
|
181
|
+
aggregated_ndarrays = {
|
182
|
+
k: array.numpy() for k, array in aggregated_arrayrecord.items()
|
183
|
+
}
|
184
|
+
|
185
|
+
# Check keys in aggregated arrays match those in current arrays
|
186
|
+
if set(aggregated_ndarrays.keys()) != set(self.current_arrays.keys()):
|
187
|
+
reason = (
|
188
|
+
"Keys of the aggregated arrays do not match those of the arrays "
|
189
|
+
"stored at the strategy. `delta_t = aggregated_arrays - "
|
190
|
+
"current_arrays` cannot be computed."
|
191
|
+
)
|
192
|
+
raise AggregationError(reason=reason)
|
193
|
+
|
194
|
+
# Check that the shape of values match
|
195
|
+
# Only shapes that match can compute delta_t (we don't want
|
196
|
+
# broadcasting to happen)
|
197
|
+
for k, x in aggregated_ndarrays.items():
|
198
|
+
if x.shape != self.current_arrays[k].shape:
|
199
|
+
reason = (
|
200
|
+
f"Shape of aggregated array '{k}' does not match "
|
201
|
+
f"shape of the array under the same key stored in the strategy. "
|
202
|
+
f"Cannot compute `delta_t`."
|
203
|
+
)
|
204
|
+
raise AggregationError(reason=reason)
|
205
|
+
|
206
|
+
delta_t = {
|
207
|
+
k: x - self.current_arrays[k] for k, x in aggregated_ndarrays.items()
|
208
|
+
}
|
209
|
+
|
210
|
+
# m_t
|
211
|
+
if not self.m_t:
|
212
|
+
self.m_t = {k: np.zeros_like(v) for k, v in aggregated_ndarrays.items()}
|
213
|
+
self.m_t = {
|
214
|
+
k: self.beta_1 * v + (1 - self.beta_1) * delta_t[k]
|
215
|
+
for k, v in self.m_t.items()
|
216
|
+
}
|
217
|
+
|
218
|
+
return delta_t, self.m_t, aggregated_ndarrays
|
@@ -0,0 +1,173 @@
|
|
1
|
+
# Copyright 2025 Flower Labs GmbH. All Rights Reserved.
|
2
|
+
#
|
3
|
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4
|
+
# you may not use this file except in compliance with the License.
|
5
|
+
# You may obtain a copy of the License at
|
6
|
+
#
|
7
|
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8
|
+
#
|
9
|
+
# Unless required by applicable law or agreed to in writing, software
|
10
|
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11
|
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12
|
+
# See the License for the specific language governing permissions and
|
13
|
+
# limitations under the License.
|
14
|
+
# ==============================================================================
|
15
|
+
"""Adaptive Federated Optimization using Yogi (FedYogi) [Reddi et al., 2020] strategy.
|
16
|
+
|
17
|
+
Paper: arxiv.org/abs/2003.00295
|
18
|
+
"""
|
19
|
+
|
20
|
+
|
21
|
+
from collections import OrderedDict
|
22
|
+
from collections.abc import Iterable
|
23
|
+
from typing import Callable, Optional
|
24
|
+
|
25
|
+
import numpy as np
|
26
|
+
|
27
|
+
from flwr.common import Array, ArrayRecord, Message, MetricRecord, RecordDict
|
28
|
+
|
29
|
+
from .fedopt import FedOpt
|
30
|
+
from .strategy_utils import AggregationError
|
31
|
+
|
32
|
+
|
33
|
+
# pylint: disable=line-too-long
|
34
|
+
class FedYogi(FedOpt):
|
35
|
+
"""FedYogi [Reddi et al., 2020] strategy.
|
36
|
+
|
37
|
+
Implementation based on https://arxiv.org/abs/2003.00295v5
|
38
|
+
|
39
|
+
|
40
|
+
Parameters
|
41
|
+
----------
|
42
|
+
fraction_train : float (default: 1.0)
|
43
|
+
Fraction of nodes used during training. In case `min_train_nodes`
|
44
|
+
is larger than `fraction_train * total_connected_nodes`, `min_train_nodes`
|
45
|
+
will still be sampled.
|
46
|
+
fraction_evaluate : float (default: 1.0)
|
47
|
+
Fraction of nodes used during validation. In case `min_evaluate_nodes`
|
48
|
+
is larger than `fraction_evaluate * total_connected_nodes`,
|
49
|
+
`min_evaluate_nodes` will still be sampled.
|
50
|
+
min_train_nodes : int (default: 2)
|
51
|
+
Minimum number of nodes used during training.
|
52
|
+
min_evaluate_nodes : int (default: 2)
|
53
|
+
Minimum number of nodes used during validation.
|
54
|
+
min_available_nodes : int (default: 2)
|
55
|
+
Minimum number of total nodes in the system.
|
56
|
+
weighted_by_key : str (default: "num-examples")
|
57
|
+
The key within each MetricRecord whose value is used as the weight when
|
58
|
+
computing weighted averages for both ArrayRecords and MetricRecords.
|
59
|
+
arrayrecord_key : str (default: "arrays")
|
60
|
+
Key used to store the ArrayRecord when constructing Messages.
|
61
|
+
configrecord_key : str (default: "config")
|
62
|
+
Key used to store the ConfigRecord when constructing Messages.
|
63
|
+
train_metrics_aggr_fn : Optional[callable] (default: None)
|
64
|
+
Function with signature (list[RecordDict], str) -> MetricRecord,
|
65
|
+
used to aggregate MetricRecords from training round replies.
|
66
|
+
If `None`, defaults to `aggregate_metricrecords`, which performs a weighted
|
67
|
+
average using the provided weight factor key.
|
68
|
+
evaluate_metrics_aggr_fn : Optional[callable] (default: None)
|
69
|
+
Function with signature (list[RecordDict], str) -> MetricRecord,
|
70
|
+
used to aggregate MetricRecords from training round replies.
|
71
|
+
If `None`, defaults to `aggregate_metricrecords`, which performs a weighted
|
72
|
+
average using the provided weight factor key.
|
73
|
+
eta : float, optional
|
74
|
+
Server-side learning rate. Defaults to 1e-2.
|
75
|
+
eta_l : float, optional
|
76
|
+
Client-side learning rate. Defaults to 0.0316.
|
77
|
+
beta_1 : float, optional
|
78
|
+
Momentum parameter. Defaults to 0.9.
|
79
|
+
beta_2 : float, optional
|
80
|
+
Second moment parameter. Defaults to 0.99.
|
81
|
+
tau : float, optional
|
82
|
+
Controls the algorithm's degree of adaptability.
|
83
|
+
Defaults to 1e-3.
|
84
|
+
"""
|
85
|
+
|
86
|
+
# pylint: disable=too-many-arguments, too-many-locals
|
87
|
+
def __init__(
|
88
|
+
self,
|
89
|
+
*,
|
90
|
+
fraction_train: float = 1.0,
|
91
|
+
fraction_evaluate: float = 1.0,
|
92
|
+
min_train_nodes: int = 2,
|
93
|
+
min_evaluate_nodes: int = 2,
|
94
|
+
min_available_nodes: int = 2,
|
95
|
+
weighted_by_key: str = "num-examples",
|
96
|
+
arrayrecord_key: str = "arrays",
|
97
|
+
configrecord_key: str = "config",
|
98
|
+
train_metrics_aggr_fn: Optional[
|
99
|
+
Callable[[list[RecordDict], str], MetricRecord]
|
100
|
+
] = None,
|
101
|
+
evaluate_metrics_aggr_fn: Optional[
|
102
|
+
Callable[[list[RecordDict], str], MetricRecord]
|
103
|
+
] = None,
|
104
|
+
eta: float = 1e-2,
|
105
|
+
eta_l: float = 0.0316,
|
106
|
+
beta_1: float = 0.9,
|
107
|
+
beta_2: float = 0.99,
|
108
|
+
tau: float = 1e-3,
|
109
|
+
) -> None:
|
110
|
+
super().__init__(
|
111
|
+
fraction_train=fraction_train,
|
112
|
+
fraction_evaluate=fraction_evaluate,
|
113
|
+
min_train_nodes=min_train_nodes,
|
114
|
+
min_evaluate_nodes=min_evaluate_nodes,
|
115
|
+
min_available_nodes=min_available_nodes,
|
116
|
+
weighted_by_key=weighted_by_key,
|
117
|
+
arrayrecord_key=arrayrecord_key,
|
118
|
+
configrecord_key=configrecord_key,
|
119
|
+
train_metrics_aggr_fn=train_metrics_aggr_fn,
|
120
|
+
evaluate_metrics_aggr_fn=evaluate_metrics_aggr_fn,
|
121
|
+
eta=eta,
|
122
|
+
eta_l=eta_l,
|
123
|
+
beta_1=beta_1,
|
124
|
+
beta_2=beta_2,
|
125
|
+
tau=tau,
|
126
|
+
)
|
127
|
+
|
128
|
+
def aggregate_train(
|
129
|
+
self,
|
130
|
+
server_round: int,
|
131
|
+
replies: Iterable[Message],
|
132
|
+
) -> tuple[Optional[ArrayRecord], Optional[MetricRecord]]:
|
133
|
+
"""Aggregate ArrayRecords and MetricRecords in the received Messages."""
|
134
|
+
aggregated_arrayrecord, aggregated_metrics = super().aggregate_train(
|
135
|
+
server_round, replies
|
136
|
+
)
|
137
|
+
|
138
|
+
if aggregated_arrayrecord is None:
|
139
|
+
return aggregated_arrayrecord, aggregated_metrics
|
140
|
+
|
141
|
+
if self.current_arrays is None:
|
142
|
+
reason = (
|
143
|
+
"Current arrays not set. Ensure that `configure_train` has been "
|
144
|
+
"called before aggregation."
|
145
|
+
)
|
146
|
+
raise AggregationError(reason=reason)
|
147
|
+
|
148
|
+
# Compute intermediate variables
|
149
|
+
delta_t, m_t, aggregated_ndarrays = self._compute_deltat_and_mt(
|
150
|
+
aggregated_arrayrecord
|
151
|
+
)
|
152
|
+
|
153
|
+
# v_t
|
154
|
+
if not self.v_t:
|
155
|
+
self.v_t = {k: np.zeros_like(v) for k, v in aggregated_ndarrays.items()}
|
156
|
+
self.v_t = {
|
157
|
+
k: v
|
158
|
+
- (1.0 - self.beta_2) * (delta_t[k] ** 2) * np.sign(v - delta_t[k] ** 2)
|
159
|
+
for k, v in self.v_t.items()
|
160
|
+
}
|
161
|
+
|
162
|
+
new_arrays = {
|
163
|
+
k: x + self.eta * m_t[k] / (np.sqrt(self.v_t[k]) + self.tau)
|
164
|
+
for k, x in self.current_arrays.items()
|
165
|
+
}
|
166
|
+
|
167
|
+
# Update current arrays
|
168
|
+
self.current_arrays = new_arrays
|
169
|
+
|
170
|
+
return (
|
171
|
+
ArrayRecord(OrderedDict({k: Array(v) for k, v in new_arrays.items()})),
|
172
|
+
aggregated_metrics,
|
173
|
+
)
|
@@ -14,6 +14,7 @@
|
|
14
14
|
# ==============================================================================
|
15
15
|
"""Strategy results."""
|
16
16
|
|
17
|
+
|
17
18
|
import pprint
|
18
19
|
from dataclasses import dataclass, field
|
19
20
|
|
@@ -61,19 +62,19 @@ class Result:
|
|
61
62
|
arr_size = sum(len(array.data) for array in self.arrays.values()) / (1024**2)
|
62
63
|
rep += "Global Arrays:\n" + f"\tArrayRecord ({arr_size:.3f} MB)\n" + "\n"
|
63
64
|
rep += (
|
64
|
-
"Aggregated
|
65
|
+
"Aggregated ClientApp-side Train Metrics:\n"
|
65
66
|
+ pprint.pformat(stringify_dict(self.train_metrics_clientapp), indent=2)
|
66
67
|
+ "\n\n"
|
67
68
|
)
|
68
69
|
|
69
70
|
rep += (
|
70
|
-
"Aggregated
|
71
|
+
"Aggregated ClientApp-side Evaluate Metrics:\n"
|
71
72
|
+ pprint.pformat(stringify_dict(self.evaluate_metrics_clientapp), indent=2)
|
72
73
|
+ "\n\n"
|
73
74
|
)
|
74
75
|
|
75
76
|
rep += (
|
76
|
-
"
|
77
|
+
"ServerApp-side Evaluate Metrics:\n"
|
77
78
|
+ pprint.pformat(stringify_dict(self.evaluate_metrics_serverapp), indent=2)
|
78
79
|
+ "\n"
|
79
80
|
)
|
@@ -202,7 +202,7 @@ class Strategy(ABC):
|
|
202
202
|
log(INFO, "[ROUND %s/%s]", current_round, num_rounds)
|
203
203
|
|
204
204
|
# -----------------------------------------------------------------
|
205
|
-
# --- TRAINING
|
205
|
+
# --- TRAINING (CLIENTAPP-SIDE) -----------------------------------
|
206
206
|
# -----------------------------------------------------------------
|
207
207
|
|
208
208
|
# Call strategy to configure training round
|
@@ -232,7 +232,7 @@ class Strategy(ABC):
|
|
232
232
|
result.train_metrics_clientapp[current_round] = agg_train_metrics
|
233
233
|
|
234
234
|
# -----------------------------------------------------------------
|
235
|
-
# --- EVALUATION (
|
235
|
+
# --- EVALUATION (CLIENTAPP-SIDE) ---------------------------------
|
236
236
|
# -----------------------------------------------------------------
|
237
237
|
|
238
238
|
# Call strategy to configure evaluation round
|
@@ -259,7 +259,7 @@ class Strategy(ABC):
|
|
259
259
|
result.evaluate_metrics_clientapp[current_round] = agg_evaluate_metrics
|
260
260
|
|
261
261
|
# -----------------------------------------------------------------
|
262
|
-
# --- EVALUATION (
|
262
|
+
# --- EVALUATION (SERVERAPP-SIDE) ---------------------------------
|
263
263
|
# -----------------------------------------------------------------
|
264
264
|
|
265
265
|
# Centralized evaluation
|
@@ -45,6 +45,15 @@ class InconsistentMessageReplies(AppExitException):
|
|
45
45
|
super().__init__(reason)
|
46
46
|
|
47
47
|
|
48
|
+
class AggregationError(AppExitException):
|
49
|
+
"""Exception triggered when aggregation fails."""
|
50
|
+
|
51
|
+
exit_code = ExitCode.SERVERAPP_STRATEGY_AGGREGATION_ERROR
|
52
|
+
|
53
|
+
def __init__(self, reason: str):
|
54
|
+
super().__init__(reason)
|
55
|
+
|
56
|
+
|
48
57
|
def config_to_str(config: ConfigRecord) -> str:
|
49
58
|
"""Convert a ConfigRecord to a string representation masking bytes."""
|
50
59
|
content = ", ".join(
|
{flwr_nightly-1.21.0.dev20250903.dist-info → flwr_nightly-1.21.0.dev20250904.dist-info}/METADATA
RENAMED
@@ -1,6 +1,6 @@
|
|
1
1
|
Metadata-Version: 2.3
|
2
2
|
Name: flwr-nightly
|
3
|
-
Version: 1.21.0.
|
3
|
+
Version: 1.21.0.dev20250904
|
4
4
|
Summary: Flower: A Friendly Federated AI Framework
|
5
5
|
License: Apache-2.0
|
6
6
|
Keywords: Artificial Intelligence,Federated AI,Federated Analytics,Federated Evaluation,Federated Learning,Flower,Machine Learning
|
{flwr_nightly-1.21.0.dev20250903.dist-info → flwr_nightly-1.21.0.dev20250904.dist-info}/RECORD
RENAMED
@@ -330,12 +330,16 @@ flwr/server/workflow/secure_aggregation/secagg_workflow.py,sha256=b_pKk7gmbahwyj
|
|
330
330
|
flwr/server/workflow/secure_aggregation/secaggplus_workflow.py,sha256=DkayCsnlAya6Y2PZsueLgoUCMRtV-GbnW08RfWx_SXM,29460
|
331
331
|
flwr/serverapp/__init__.py,sha256=dUGPpyO0YEJRIjwNw2YrUWXgsEj9JOUrP5OGm8bPX9k,774
|
332
332
|
flwr/serverapp/dp_fixed_clipping.py,sha256=wbP4W7CaUHXdll8ZSVUnTBSEWrnWM00CGk63rOR-Q2s,12133
|
333
|
-
flwr/serverapp/strategy/__init__.py,sha256=
|
333
|
+
flwr/serverapp/strategy/__init__.py,sha256=yAYBZUkp4aNmcTLsvormEc9HyO34oEoFN45LiHgujE0,1229
|
334
334
|
flwr/serverapp/strategy/dp_fixed_clipping.py,sha256=wbP4W7CaUHXdll8ZSVUnTBSEWrnWM00CGk63rOR-Q2s,12133
|
335
|
+
flwr/serverapp/strategy/fedadagrad.py,sha256=talxGzeGSIIkLPtZk4i_qXZTksRoBeajrmeUbnGHTUY,6347
|
336
|
+
flwr/serverapp/strategy/fedadam.py,sha256=TGLnxoJro758DUc9tAxBks9tSRtXDqy-4vWthiqscIo,7142
|
335
337
|
flwr/serverapp/strategy/fedavg.py,sha256=C8UUvLTjodMpGRb4PNej5gW2cPbXsPKebGX1zPfAMUo,11020
|
336
|
-
flwr/serverapp/strategy/
|
337
|
-
flwr/serverapp/strategy/
|
338
|
-
flwr/serverapp/strategy/
|
338
|
+
flwr/serverapp/strategy/fedopt.py,sha256=aIN5CtgsE88bAodN_M_pf_01a2vMIj9R_7CYwd8VeMU,8481
|
339
|
+
flwr/serverapp/strategy/fedyogi.py,sha256=UQnEKVTpJiB_zbCREfI8CEHiuJMIRmEIu5DV50FG_5s,6657
|
340
|
+
flwr/serverapp/strategy/result.py,sha256=E0Hl2VLnZAgQJjE2GDoKsK7JX-kPPU2KXc47Axt6hGw,4295
|
341
|
+
flwr/serverapp/strategy/strategy.py,sha256=Frj4VLXOHt7fo18Nh_EvkCUBF8vPR7YxRyx3TD7vV7s,10663
|
342
|
+
flwr/serverapp/strategy/strategy_utils.py,sha256=C8vU8JqKhMylq102x5jjQITzv_X2Khfo-uXkPTpnHms,9779
|
339
343
|
flwr/serverapp/strategy/strategy_utils_tests.py,sha256=taG6HwApwutkjUuMY3R8Ib48Xepw6g5xl9HEB_-leoY,9232
|
340
344
|
flwr/simulation/__init__.py,sha256=Gg6OsP1Z-ixc3-xxzvl7j7rz2Fijy9rzyEPpxgAQCeM,1556
|
341
345
|
flwr/simulation/app.py,sha256=LbGLMvN9Ap119yBqsUcNNmVLRnCySnr4VechqcQ1hpA,10401
|
@@ -397,7 +401,7 @@ flwr/supernode/servicer/__init__.py,sha256=lucTzre5WPK7G1YLCfaqg3rbFWdNSb7ZTt-ca
|
|
397
401
|
flwr/supernode/servicer/clientappio/__init__.py,sha256=7Oy62Y_oijqF7Dxi6tpcUQyOpLc_QpIRZ83NvwmB0Yg,813
|
398
402
|
flwr/supernode/servicer/clientappio/clientappio_servicer.py,sha256=nIHRu38EWK-rpNOkcgBRAAKwYQQWFeCwu0lkO7OPZGQ,10239
|
399
403
|
flwr/supernode/start_client_internal.py,sha256=Y9S1-QlO2WP6eo4JvWzIpfaCoh2aoE7bjEYyxNNnlyg,20777
|
400
|
-
flwr_nightly-1.21.0.
|
401
|
-
flwr_nightly-1.21.0.
|
402
|
-
flwr_nightly-1.21.0.
|
403
|
-
flwr_nightly-1.21.0.
|
404
|
+
flwr_nightly-1.21.0.dev20250904.dist-info/METADATA,sha256=9E6SH2cTD1Sm600rg-mXhCYFFqJ_5LbhycC6OYGbr-I,15967
|
405
|
+
flwr_nightly-1.21.0.dev20250904.dist-info/WHEEL,sha256=b4K_helf-jlQoXBBETfwnf4B04YC67LOev0jo4fX5m8,88
|
406
|
+
flwr_nightly-1.21.0.dev20250904.dist-info/entry_points.txt,sha256=hxHD2ixb_vJFDOlZV-zB4Ao32_BQlL34ftsDh1GXv14,420
|
407
|
+
flwr_nightly-1.21.0.dev20250904.dist-info/RECORD,,
|
{flwr_nightly-1.21.0.dev20250903.dist-info → flwr_nightly-1.21.0.dev20250904.dist-info}/WHEEL
RENAMED
File without changes
|
File without changes
|