flwr-nightly 1.21.0.dev20250902__py3-none-any.whl → 1.21.0.dev20250903__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
@@ -0,0 +1,352 @@
1
+ # Copyright 2025 Flower Labs GmbH. All Rights Reserved.
2
+ #
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License at
6
+ #
7
+ # http://www.apache.org/licenses/LICENSE-2.0
8
+ #
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License.
14
+ # ==============================================================================
15
+ """Message-based Central differential privacy with fixed clipping.
16
+
17
+ Papers: https://arxiv.org/abs/1712.07557, https://arxiv.org/abs/1710.06963
18
+ """
19
+
20
+ from abc import ABC
21
+ from collections import OrderedDict
22
+ from collections.abc import Iterable
23
+ from logging import INFO, WARNING
24
+ from typing import Optional
25
+
26
+ from flwr.common import Array, ArrayRecord, ConfigRecord, Message, MetricRecord, log
27
+ from flwr.common.differential_privacy import (
28
+ add_gaussian_noise_inplace,
29
+ compute_clip_model_update,
30
+ compute_stdv,
31
+ )
32
+ from flwr.common.differential_privacy_constants import (
33
+ CLIENTS_DISCREPANCY_WARNING,
34
+ KEY_CLIPPING_NORM,
35
+ )
36
+ from flwr.server import Grid
37
+
38
+ from .strategy import Strategy
39
+
40
+
41
+ class DifferentialPrivacyFixedClippingBase(Strategy, ABC):
42
+ """Base class for DP strategies with fixed clipping.
43
+
44
+ This class contains common functionality shared between server-side and
45
+ client-side fixed clipping implementations.
46
+
47
+ Parameters
48
+ ----------
49
+ strategy : Strategy
50
+ The strategy to which DP functionalities will be added by this wrapper.
51
+ noise_multiplier : float
52
+ The noise multiplier for the Gaussian mechanism for model updates.
53
+ A value of 1.0 or higher is recommended for strong privacy.
54
+ clipping_norm : float
55
+ The value of the clipping norm.
56
+ num_sampled_clients : int
57
+ The number of clients that are sampled on each round.
58
+ """
59
+
60
+ # pylint: disable=too-many-arguments,too-many-instance-attributes
61
+ def __init__(
62
+ self,
63
+ strategy: Strategy,
64
+ noise_multiplier: float,
65
+ clipping_norm: float,
66
+ num_sampled_clients: int,
67
+ ) -> None:
68
+ super().__init__()
69
+
70
+ self.strategy = strategy
71
+
72
+ if noise_multiplier < 0:
73
+ raise ValueError("The noise multiplier should be a non-negative value.")
74
+
75
+ if clipping_norm <= 0:
76
+ raise ValueError("The clipping norm should be a positive value.")
77
+
78
+ if num_sampled_clients <= 0:
79
+ raise ValueError(
80
+ "The number of sampled clients should be a positive value."
81
+ )
82
+
83
+ self.noise_multiplier = noise_multiplier
84
+ self.clipping_norm = clipping_norm
85
+ self.num_sampled_clients = num_sampled_clients
86
+
87
+ def _validate_replies(self, replies: Iterable[Message]) -> bool:
88
+ """Validate replies and log errors/warnings.
89
+
90
+ Returns
91
+ -------
92
+ bool
93
+ True if replies are valid for aggregation, False otherwise.
94
+ """
95
+ num_errors = 0
96
+ num_replies_with_content = 0
97
+ for msg in replies:
98
+ if msg.has_error():
99
+ log(
100
+ INFO,
101
+ "Received error in reply from node %d: %s",
102
+ msg.metadata.src_node_id,
103
+ msg.error,
104
+ )
105
+ num_errors += 1
106
+ else:
107
+ num_replies_with_content += 1
108
+
109
+ # Errors are not allowed
110
+ if num_errors:
111
+ log(
112
+ INFO,
113
+ "aggregate_train: Some clients reported errors. Skipping aggregation.",
114
+ )
115
+ return False
116
+
117
+ log(
118
+ INFO,
119
+ "aggregate_train: Received %s results and %s failures",
120
+ num_replies_with_content,
121
+ num_errors,
122
+ )
123
+
124
+ if num_replies_with_content != self.num_sampled_clients:
125
+ log(
126
+ WARNING,
127
+ CLIENTS_DISCREPANCY_WARNING,
128
+ num_replies_with_content,
129
+ self.num_sampled_clients,
130
+ )
131
+
132
+ return True
133
+
134
+ def _add_noise_to_aggregated_arrays(
135
+ self, aggregated_arrays: ArrayRecord
136
+ ) -> ArrayRecord:
137
+ """Add Gaussian noise to aggregated arrays.
138
+
139
+ Parameters
140
+ ----------
141
+ aggregated_arrays : ArrayRecord
142
+ The aggregated arrays to add noise to.
143
+
144
+ Returns
145
+ -------
146
+ ArrayRecord
147
+ The aggregated arrays with noise added.
148
+ """
149
+ aggregated_ndarrays = aggregated_arrays.to_numpy_ndarrays()
150
+ stdv = compute_stdv(
151
+ self.noise_multiplier, self.clipping_norm, self.num_sampled_clients
152
+ )
153
+ add_gaussian_noise_inplace(aggregated_ndarrays, stdv)
154
+
155
+ log(
156
+ INFO,
157
+ "aggregate_fit: central DP noise with %.4f stdev added",
158
+ stdv,
159
+ )
160
+
161
+ return ArrayRecord(
162
+ OrderedDict(
163
+ {
164
+ k: Array(v)
165
+ for k, v in zip(aggregated_arrays.keys(), aggregated_ndarrays)
166
+ }
167
+ )
168
+ )
169
+
170
+ def configure_evaluate(
171
+ self, server_round: int, arrays: ArrayRecord, config: ConfigRecord, grid: Grid
172
+ ) -> Iterable[Message]:
173
+ """Configure the next round of federated evaluation."""
174
+ return self.strategy.configure_evaluate(server_round, arrays, config, grid)
175
+
176
+ def aggregate_evaluate(
177
+ self,
178
+ server_round: int,
179
+ replies: Iterable[Message],
180
+ ) -> Optional[MetricRecord]:
181
+ """Aggregate MetricRecords in the received Messages."""
182
+ return self.strategy.aggregate_evaluate(server_round, replies)
183
+
184
+ def summary(self) -> None:
185
+ """Log summary configuration of the strategy."""
186
+ self.strategy.summary()
187
+
188
+
189
+ class DifferentialPrivacyServerSideFixedClipping(DifferentialPrivacyFixedClippingBase):
190
+ """Strategy wrapper for central DP with server-side fixed clipping.
191
+
192
+ Parameters
193
+ ----------
194
+ strategy : Strategy
195
+ The strategy to which DP functionalities will be added by this wrapper.
196
+ noise_multiplier : float
197
+ The noise multiplier for the Gaussian mechanism for model updates.
198
+ A value of 1.0 or higher is recommended for strong privacy.
199
+ clipping_norm : float
200
+ The value of the clipping norm.
201
+ num_sampled_clients : int
202
+ The number of clients that are sampled on each round.
203
+
204
+ Examples
205
+ --------
206
+ Create a strategy::
207
+
208
+ strategy = fl.serverapp.FedAvg( ... )
209
+
210
+ Wrap the strategy with the `DifferentialPrivacyServerSideFixedClipping` wrapper::
211
+
212
+ dp_strategy = DifferentialPrivacyServerSideFixedClipping(
213
+ strategy, cfg.noise_multiplier, cfg.clipping_norm, cfg.num_sampled_clients
214
+ )
215
+ """
216
+
217
+ def __init__(
218
+ self,
219
+ strategy: Strategy,
220
+ noise_multiplier: float,
221
+ clipping_norm: float,
222
+ num_sampled_clients: int,
223
+ ) -> None:
224
+ super().__init__(strategy, noise_multiplier, clipping_norm, num_sampled_clients)
225
+ self.current_arrays: ArrayRecord = ArrayRecord()
226
+
227
+ def __repr__(self) -> str:
228
+ """Compute a string representation of the strategy."""
229
+ return "Differential Privacy Strategy Wrapper (Server-Side Fixed Clipping)"
230
+
231
+ def configure_train(
232
+ self, server_round: int, arrays: ArrayRecord, config: ConfigRecord, grid: Grid
233
+ ) -> Iterable[Message]:
234
+ """Configure the next round of training."""
235
+ self.current_arrays = arrays
236
+ return self.strategy.configure_train(server_round, arrays, config, grid)
237
+
238
+ def aggregate_train(
239
+ self,
240
+ server_round: int,
241
+ replies: Iterable[Message],
242
+ ) -> tuple[Optional[ArrayRecord], Optional[MetricRecord]]:
243
+ """Aggregate ArrayRecords and MetricRecords in the received Messages."""
244
+ if not self._validate_replies(replies):
245
+ return None, None
246
+
247
+ # Clip arrays in replies
248
+ current_ndarrays = self.current_arrays.to_numpy_ndarrays()
249
+ for reply in replies:
250
+ for arr_name, record in reply.content.array_records.items():
251
+ # Clip
252
+ reply_ndarrays = record.to_numpy_ndarrays()
253
+ compute_clip_model_update(
254
+ param1=reply_ndarrays,
255
+ param2=current_ndarrays,
256
+ clipping_norm=self.clipping_norm,
257
+ )
258
+ # Replace content while preserving keys
259
+ reply.content[arr_name] = ArrayRecord(
260
+ OrderedDict(
261
+ {k: Array(v) for k, v in zip(record.keys(), reply_ndarrays)}
262
+ )
263
+ )
264
+ log(
265
+ INFO,
266
+ "aggregate_fit: parameters are clipped by value: %.4f.",
267
+ self.clipping_norm,
268
+ )
269
+
270
+ # Pass the new parameters for aggregation
271
+ aggregated_arrays, aggregated_metrics = self.strategy.aggregate_train(
272
+ server_round, replies
273
+ )
274
+
275
+ # Add Gaussian noise to the aggregated arrays
276
+ if aggregated_arrays:
277
+ aggregated_arrays = self._add_noise_to_aggregated_arrays(aggregated_arrays)
278
+
279
+ return aggregated_arrays, aggregated_metrics
280
+
281
+
282
+ class DifferentialPrivacyClientSideFixedClipping(DifferentialPrivacyFixedClippingBase):
283
+ """Strategy wrapper for central DP with client-side fixed clipping.
284
+
285
+ Use `fixedclipping_mod` modifier at the client side.
286
+
287
+ In comparison to `DifferentialPrivacyServerSideFixedClipping`,
288
+ which performs clipping on the server-side,
289
+ `DifferentialPrivacyClientSideFixedClipping` expects clipping to happen
290
+ on the client-side, usually by using the built-in `fixedclipping_mod`.
291
+
292
+ Parameters
293
+ ----------
294
+ strategy : Strategy
295
+ The strategy to which DP functionalities will be added by this wrapper.
296
+ noise_multiplier : float
297
+ The noise multiplier for the Gaussian mechanism for model updates.
298
+ A value of 1.0 or higher is recommended for strong privacy.
299
+ clipping_norm : float
300
+ The value of the clipping norm.
301
+ num_sampled_clients : int
302
+ The number of clients that are sampled on each round.
303
+
304
+ Examples
305
+ --------
306
+ Create a strategy::
307
+
308
+ strategy = fl.serverapp.FedAvg(...)
309
+
310
+ Wrap the strategy with the `DifferentialPrivacyClientSideFixedClipping` wrapper::
311
+
312
+ dp_strategy = DifferentialPrivacyClientSideFixedClipping(
313
+ strategy, cfg.noise_multiplier, cfg.clipping_norm, cfg.num_sampled_clients
314
+ )
315
+
316
+ On the client, add the `fixedclipping_mod` to the client-side mods::
317
+
318
+ app = fl.client.ClientApp(mods=[fixedclipping_mod])
319
+ """
320
+
321
+ def __repr__(self) -> str:
322
+ """Compute a string representation of the strategy."""
323
+ return "Differential Privacy Strategy Wrapper (Client-Side Fixed Clipping)"
324
+
325
+ def configure_train(
326
+ self, server_round: int, arrays: ArrayRecord, config: ConfigRecord, grid: Grid
327
+ ) -> Iterable[Message]:
328
+ """Configure the next round of training."""
329
+ # Inject clipping norm in config
330
+ config[KEY_CLIPPING_NORM] = self.clipping_norm
331
+ # Call parent method
332
+ return self.strategy.configure_train(server_round, arrays, config, grid)
333
+
334
+ def aggregate_train(
335
+ self,
336
+ server_round: int,
337
+ replies: Iterable[Message],
338
+ ) -> tuple[Optional[ArrayRecord], Optional[MetricRecord]]:
339
+ """Aggregate ArrayRecords and MetricRecords in the received Messages."""
340
+ if not self._validate_replies(replies):
341
+ return None, None
342
+
343
+ # Aggregate
344
+ aggregated_arrays, aggregated_metrics = self.strategy.aggregate_train(
345
+ server_round, replies
346
+ )
347
+
348
+ # Add Gaussian noise to the aggregated arrays
349
+ if aggregated_arrays:
350
+ aggregated_arrays = self._add_noise_to_aggregated_arrays(aggregated_arrays)
351
+
352
+ return aggregated_arrays, aggregated_metrics
@@ -14,17 +14,91 @@
14
14
  # ==============================================================================
15
15
  """Strategy results."""
16
16
 
17
-
17
+ import pprint
18
18
  from dataclasses import dataclass, field
19
19
 
20
20
  from flwr.common import ArrayRecord, MetricRecord
21
+ from flwr.common.typing import MetricRecordValues
21
22
 
22
23
 
23
24
  @dataclass
24
25
  class Result:
25
- """Data class carrying records generated during the execution of a strategy."""
26
+ """Data class carrying records generated during the execution of a strategy.
27
+
28
+ This class encapsulates the results of a federated learning strategy execution,
29
+ including the final global model parameters and metrics collected throughout
30
+ the federated training and evaluation (both federated and centralized) stages.
31
+
32
+ Attributes
33
+ ----------
34
+ arrays : ArrayRecord
35
+ The final global model parameters. Contains the
36
+ aggregated model weights/parameters that resulted from the federated
37
+ learning process.
38
+ train_metrics_clientapp : dict[int, MetricRecord]
39
+ Training metrics collected from ClientApps, indexed by round number.
40
+ Contains aggregated metrics (e.g., loss, accuracy) from the training
41
+ phase of each federated learning round.
42
+ evaluate_metrics_clientapp : dict[int, MetricRecord]
43
+ Evaluation metrics collected from ClientApps, indexed by round number.
44
+ Contains aggregated metrics (e.g. validation loss) from the evaluation
45
+ phase where ClientApps evaluate the global model on their local
46
+ validation/test data.
47
+ evaluate_metrics_serverapp : dict[int, MetricRecord]
48
+ Evaluation metrics generated at the ServerApp, indexed by round number.
49
+ Contains metrics from centralized evaluation performed by the ServerApp
50
+ (e.g., when the server evaluates the global model on a held-out dataset).
51
+ """
26
52
 
27
53
  arrays: ArrayRecord = field(default_factory=ArrayRecord)
28
54
  train_metrics_clientapp: dict[int, MetricRecord] = field(default_factory=dict)
29
55
  evaluate_metrics_clientapp: dict[int, MetricRecord] = field(default_factory=dict)
30
56
  evaluate_metrics_serverapp: dict[int, MetricRecord] = field(default_factory=dict)
57
+
58
+ def __repr__(self) -> str:
59
+ """Create a representation of the Result instance."""
60
+ rep = ""
61
+ arr_size = sum(len(array.data) for array in self.arrays.values()) / (1024**2)
62
+ rep += "Global Arrays:\n" + f"\tArrayRecord ({arr_size:.3f} MB)\n" + "\n"
63
+ rep += (
64
+ "Aggregated Client-side Train Metrics:\n"
65
+ + pprint.pformat(stringify_dict(self.train_metrics_clientapp), indent=2)
66
+ + "\n\n"
67
+ )
68
+
69
+ rep += (
70
+ "Aggregated Client-side Evaluate Metrics:\n"
71
+ + pprint.pformat(stringify_dict(self.evaluate_metrics_clientapp), indent=2)
72
+ + "\n\n"
73
+ )
74
+
75
+ rep += (
76
+ "Server-side Evaluate Metrics:\n"
77
+ + pprint.pformat(stringify_dict(self.evaluate_metrics_serverapp), indent=2)
78
+ + "\n"
79
+ )
80
+
81
+ return rep
82
+
83
+
84
+ def format_value(val: MetricRecordValues) -> str:
85
+ """Format a value as string, applying scientific notation for floats."""
86
+ if isinstance(val, float):
87
+ return f"{val:.4e}"
88
+ if isinstance(val, int):
89
+ return str(val)
90
+ if isinstance(val, list):
91
+ return str([f"{x:.4e}" if isinstance(x, float) else str(x) for x in val])
92
+ return str(val)
93
+
94
+
95
+ def stringify_dict(d: dict[int, MetricRecord]) -> dict[int, dict[str, str]]:
96
+ """Return a copy results metrics but with values converted to string and formatted
97
+ accordingtly."""
98
+ new_metrics_dict = {}
99
+ for k, inner in d.items():
100
+ new_inner = {}
101
+ for ik, iv in inner.items():
102
+ new_inner[ik] = format_value(iv)
103
+ new_metrics_dict[k] = new_inner
104
+ return new_metrics_dict
@@ -15,6 +15,7 @@
15
15
  """Flower message-based strategy."""
16
16
 
17
17
 
18
+ import io
18
19
  import time
19
20
  from abc import ABC, abstractmethod
20
21
  from collections.abc import Iterable
@@ -22,11 +23,10 @@ from logging import INFO
22
23
  from typing import Callable, Optional
23
24
 
24
25
  from flwr.common import ArrayRecord, ConfigRecord, Message, MetricRecord, log
25
- from flwr.common.exit import ExitCode, flwr_exit
26
26
  from flwr.server import Grid
27
27
 
28
28
  from .result import Result
29
- from .strategy_utils import InconsistentMessageReplies, log_strategy_start_info
29
+ from .strategy_utils import log_strategy_start_info
30
30
 
31
31
 
32
32
  class Strategy(ABC):
@@ -218,15 +218,10 @@ class Strategy(ABC):
218
218
  )
219
219
 
220
220
  # Aggregate train
221
- try:
222
- agg_arrays, agg_train_metrics = self.aggregate_train(
223
- current_round,
224
- train_replies,
225
- )
226
- except InconsistentMessageReplies as e:
227
- flwr_exit(
228
- ExitCode.SERVERAPP_STRATEGY_PRECONDITION_UNMET, message=str(e)
229
- )
221
+ agg_arrays, agg_train_metrics = self.aggregate_train(
222
+ current_round,
223
+ train_replies,
224
+ )
230
225
 
231
226
  # Log training metrics and append to history
232
227
  if agg_arrays is not None:
@@ -253,15 +248,10 @@ class Strategy(ABC):
253
248
  )
254
249
 
255
250
  # Aggregate evaluate
256
- try:
257
- agg_evaluate_metrics = self.aggregate_evaluate(
258
- current_round,
259
- evaluate_replies,
260
- )
261
- except InconsistentMessageReplies as e:
262
- flwr_exit(
263
- ExitCode.SERVERAPP_STRATEGY_PRECONDITION_UNMET, message=str(e)
264
- )
251
+ agg_evaluate_metrics = self.aggregate_evaluate(
252
+ current_round,
253
+ evaluate_replies,
254
+ )
265
255
 
266
256
  # Log training metrics and append to history
267
257
  if agg_evaluate_metrics is not None:
@@ -282,5 +272,10 @@ class Strategy(ABC):
282
272
  log(INFO, "")
283
273
  log(INFO, "Strategy execution finished in %.2fs", time.time() - t_start)
284
274
  log(INFO, "")
275
+ log(INFO, "Final results:")
276
+ log(INFO, "")
277
+ for line in io.StringIO(str(result)):
278
+ log(INFO, "\t%s", line.strip("\n"))
279
+ log(INFO, "")
285
280
 
286
281
  return result
@@ -30,13 +30,17 @@ from flwr.common import (
30
30
  RecordDict,
31
31
  log,
32
32
  )
33
+ from flwr.common.exception import AppExitException
34
+ from flwr.common.exit import ExitCode
33
35
  from flwr.server import Grid
34
36
 
35
37
 
36
- class InconsistentMessageReplies(Exception):
38
+ class InconsistentMessageReplies(AppExitException):
37
39
  """Exception triggered when replies are inconsistent and therefore aggregation must
38
40
  be skipped."""
39
41
 
42
+ exit_code = ExitCode.SERVERAPP_STRATEGY_PRECONDITION_UNMET
43
+
40
44
  def __init__(self, reason: str):
41
45
  super().__init__(reason)
42
46
 
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.3
2
2
  Name: flwr-nightly
3
- Version: 1.21.0.dev20250902
3
+ Version: 1.21.0.dev20250903
4
4
  Summary: Flower: A Friendly Federated AI Framework
5
5
  License: Apache-2.0
6
6
  Keywords: Artificial Intelligence,Federated AI,Federated Analytics,Federated Evaluation,Federated Learning,Flower,Machine Learning
@@ -9,7 +9,7 @@ flwr/cli/auth_plugin/oidc_cli_plugin.py,sha256=kQteGRB9-DmC7K5F9TBmUc8ndSBR7WyT2
9
9
  flwr/cli/build.py,sha256=hE54Q_eMdWLpVKSVC2aQaUxVaiUlWnAosGNvIPSEg6Y,7284
10
10
  flwr/cli/cli_user_auth_interceptor.py,sha256=O4S8tbA1-rgBNe5YMGACDqmY7v2SJoxyibRhshrzXu4,3129
11
11
  flwr/cli/config_utils.py,sha256=o75PJzgCTl9FdFo_I9OjCB02-ykK0VWZdhIAeR0A8QA,9130
12
- flwr/cli/constant.py,sha256=g7Ad7o3DJDkJNrWS0T3SSJETWSTkkVJWGpLM8zlbpcY,1289
12
+ flwr/cli/constant.py,sha256=LtxufmhkEqNWQ9doWbbbkUKa12vN_RK_Of5u0So-GHA,1729
13
13
  flwr/cli/example.py,sha256=SNTorkKPrx1rOryGREUyZu8TcOc1-vFv1zEddaysdY0,2216
14
14
  flwr/cli/install.py,sha256=Jr883qR7qssVpUr3hEOEcLK-dfW67Rsve3lZchjA9RU,8180
15
15
  flwr/cli/log.py,sha256=n_fcoECKIkY3MTOfXhB8AjOG1LSQW_GSPY-2qc7rW9Q,6553
@@ -52,7 +52,7 @@ flwr/cli/new/templates/app/code/server.jax.py.tpl,sha256=IHk57syZhvO4nWVHGxE9S8f
52
52
  flwr/cli/new/templates/app/code/server.mlx.py.tpl,sha256=GAqalaI-U2uRdttNeRn75k1FzdEW3rmgT-ywuKkFdK4,988
53
53
  flwr/cli/new/templates/app/code/server.numpy.py.tpl,sha256=xbQlLCKutnOqlbLQPZsaL9WM7vnebTceiU8a0HaUcZk,740
54
54
  flwr/cli/new/templates/app/code/server.pytorch.py.tpl,sha256=gvBsGA_Jg9kAH8xTxjzTjMcvBtciuccOwQFbO7ey8tU,916
55
- flwr/cli/new/templates/app/code/server.pytorch_msg_api.py.tpl,sha256=Y_ldLmyMy0yfSogzU6rlc0RhlZiOBYw2aWTv0nFHTdg,1390
55
+ flwr/cli/new/templates/app/code/server.pytorch_msg_api.py.tpl,sha256=268EzqUOM0mdiXsf0WWniNu7DiDHh_JGHLe9o-t6ru4,1158
56
56
  flwr/cli/new/templates/app/code/server.sklearn.py.tpl,sha256=JoDYjPU99aKTTfjKsCtKHzMICiOR9pi8JGVBsxFpWO4,1133
57
57
  flwr/cli/new/templates/app/code/server.tensorflow.py.tpl,sha256=xMhQ7AumowgLkgUilgjVK7IbpRhPjslhVJU-vID6NY8,856
58
58
  flwr/cli/new/templates/app/code/strategy.baseline.py.tpl,sha256=YkHAgppUeD2BnBoGfVB6dEvBfjuIPGsU1gw4CiUi3qA,40
@@ -76,7 +76,7 @@ flwr/cli/new/templates/app/pyproject.pytorch_msg_api.toml.tpl,sha256=fS9Brr-dXYE
76
76
  flwr/cli/new/templates/app/pyproject.sklearn.toml.tpl,sha256=mAEPeBfGyrINgRuP6-nX_KJNTQjC4E5N1Nrcddxiffs,1484
77
77
  flwr/cli/new/templates/app/pyproject.tensorflow.toml.tpl,sha256=mK8wOWqoQOVxZG6-OVwA2ChmKxexC7TfQV0ztPE4BWY,1508
78
78
  flwr/cli/run/__init__.py,sha256=RPyB7KbYTFl6YRiilCch6oezxrLQrl1kijV7BMGkLbA,790
79
- flwr/cli/run/run.py,sha256=A469slN-qunLu1-jCFGSsgJD2SIn0b_0RdRQ5C5MbDU,8502
79
+ flwr/cli/run/run.py,sha256=ECa0kup9dn15O70H74QdgUsEaeErbzDqVX_U0zZO5IM,8173
80
80
  flwr/cli/stop.py,sha256=TR9F61suTxNUzGIktUdoBhXwdRtCdvzGhy3qCuvcfBg,5000
81
81
  flwr/cli/utils.py,sha256=fkyiWXWfXo5fS_sACw8Rg9wweq3RQ7XvEUEAa_caqkE,12349
82
82
  flwr/client/__init__.py,sha256=boIhKaK6I977zrILmoTutNx94x5jB0e6F1gnAjaRJnI,1250
@@ -106,7 +106,8 @@ flwr/client/rest_client/__init__.py,sha256=MBiuK62hj439m9rtwSwI184Hth6Tt5GbmpNMy
106
106
  flwr/client/rest_client/connection.py,sha256=fyiS1aXTv71jWczx7mSco94LYJTBXgTF-p2PnAk3CL8,15784
107
107
  flwr/client/run_info_store.py,sha256=MaJ3UQ-07hWtK67wnWu0zR29jrk0fsfgJX506dvEOfE,4042
108
108
  flwr/client/typing.py,sha256=Jw3rawDzI_-ZDcRmEQcs5gZModY7oeQlEeltYsdOhlU,1048
109
- flwr/clientapp/__init__.py,sha256=zGW4z49Ojzoi1hDiRC7kyhLjijUilc6fqHhtM_ATRVA,719
109
+ flwr/clientapp/__init__.py,sha256=h8RNxAbCbdaLf_htSx-e5UCb2A0mLA-mpEX_6giZuU0,799
110
+ flwr/clientapp/centraldp_mods.py,sha256=M8vvdrjfLVsFLMd9JXqD_-P08q9jsNOgu_4AAs-X9Zk,4626
110
111
  flwr/common/__init__.py,sha256=5GCLVk399Az_rTJHNticRlL0Sl_oPw_j5_LuFKfX7-M,4171
111
112
  flwr/common/address.py,sha256=9JucdTwlc-jpeJkRKeUboZoacUtErwSVtnDR9kAtLqE,4119
112
113
  flwr/common/args.py,sha256=Nq2u4yePbkSY0CWFamn0hZY6Rms8G1xYDeDGIcLIITE,5849
@@ -121,9 +122,10 @@ flwr/common/differential_privacy_constants.py,sha256=ruEjH4qF_S2bgxRI6brWCGWQPxF
121
122
  flwr/common/dp.py,sha256=ftqWheOICK5N_zPaofnbFb474lMb5w9lclwxf5DKY0w,1978
122
123
  flwr/common/event_log_plugin/__init__.py,sha256=ts3VAL3Fk6Grp1EK_1Qg_V-BfOof9F86iBx4rbrEkyo,838
123
124
  flwr/common/event_log_plugin/event_log_plugin.py,sha256=4SkVa1Ic-sPlICJShBuggXmXDcQtWQ1KDby4kthFNF0,2064
125
+ flwr/common/exception.py,sha256=dAKSNrdh9YqKZTdYaN8hts4dAMVZHfNDV-ytzYby0LQ,1246
124
126
  flwr/common/exit/__init__.py,sha256=8W7xaO1iw0vacgmQW7FTFbSh7csNv6XfsgIlnIbNF6U,978
125
127
  flwr/common/exit/exit.py,sha256=DcXJfbpW1g-pQJqSZmps-1MZydd7T7RaarghIf2e4tU,3636
126
- flwr/common/exit/exit_code.py,sha256=m2B3mOKodKenDAG0bV2nWoj5ERlIkZ7UiShJQk1FnF0,5132
128
+ flwr/common/exit/exit_code.py,sha256=e8O71zIqVT1H84mNBeenTz7S39yPZSpZQm-xUenpzN4,5249
127
129
  flwr/common/exit/exit_handler.py,sha256=uzDdWwhKgc1w5csZS52b86kjmEApmDZKwMn_X0zDZZo,2126
128
130
  flwr/common/exit/signal_handler.py,sha256=wqxykrwgmpFzmEMhpnlM7RtO0PnqIvYiSB1qYahZ5Sk,3710
129
131
  flwr/common/grpc.py,sha256=nHnFC7E84pZVTvd6BhcSYWnGd0jf8t5UmGea04qvilM,9806
@@ -256,7 +258,7 @@ flwr/server/server.py,sha256=39m4FSN2T-uVA-no9nstN0eWW0co-IUUAIMmpd3V7Jc,17893
256
258
  flwr/server/server_app.py,sha256=8uagoZX-3CY3tazPqkIV9jY-cN0YrRRrDmVe23o0AV0,9515
257
259
  flwr/server/server_config.py,sha256=e_6ddh0riwOJsdNn2BFev344uMWfDk9n7dyjNpPgm1w,1349
258
260
  flwr/server/serverapp/__init__.py,sha256=xcC0T_MQSMS9cicUzUUpMNCOsF2d8Oh_8jvnoBLuZvo,800
259
- flwr/server/serverapp/app.py,sha256=4wC6vpwSct3NImp4R_K1X7ROEtp8GJzSvIX6kUjmZvU,9372
261
+ flwr/server/serverapp/app.py,sha256=d42XiEwEhee_LttXEMOa9GFP81zvaufzGyt64VlCEo0,9841
260
262
  flwr/server/serverapp_components.py,sha256=dfSqmrsVy3arKXpl3ZIBQWdV8rehfIms8aJooyzdmEM,2118
261
263
  flwr/server/strategy/__init__.py,sha256=HhsSWMWaC7oCb2g7Kqn1MBKdrfvgi8VxACy9ZL706Q0,2836
262
264
  flwr/server/strategy/aggregate.py,sha256=smlKKy-uFUuuFR12vlclucnwSQWRz78R79-Km4RWqbw,13978
@@ -327,11 +329,13 @@ flwr/server/workflow/secure_aggregation/__init__.py,sha256=vGkycLb65CxdaMkKsANxQ
327
329
  flwr/server/workflow/secure_aggregation/secagg_workflow.py,sha256=b_pKk7gmbahwyj0ftOOLXvu-AMtRHEc82N9PJTEO8dc,5839
328
330
  flwr/server/workflow/secure_aggregation/secaggplus_workflow.py,sha256=DkayCsnlAya6Y2PZsueLgoUCMRtV-GbnW08RfWx_SXM,29460
329
331
  flwr/serverapp/__init__.py,sha256=dUGPpyO0YEJRIjwNw2YrUWXgsEj9JOUrP5OGm8bPX9k,774
330
- flwr/serverapp/strategy/__init__.py,sha256=XeBoiPeAIrcWv2Mq6I98Gme-VLTvckgH5wOU5IlGYYY,857
332
+ flwr/serverapp/dp_fixed_clipping.py,sha256=wbP4W7CaUHXdll8ZSVUnTBSEWrnWM00CGk63rOR-Q2s,12133
333
+ flwr/serverapp/strategy/__init__.py,sha256=FpZN4AafpTSxW65dAPJ0zekHo9bU84tV4uhO4XVHJTc,1088
334
+ flwr/serverapp/strategy/dp_fixed_clipping.py,sha256=wbP4W7CaUHXdll8ZSVUnTBSEWrnWM00CGk63rOR-Q2s,12133
331
335
  flwr/serverapp/strategy/fedavg.py,sha256=C8UUvLTjodMpGRb4PNej5gW2cPbXsPKebGX1zPfAMUo,11020
332
- flwr/serverapp/strategy/result.py,sha256=rw1ZoCGBosSVSNrTLLUFMxP1XzDwJWWsn1qdBR7JtlI,1229
333
- flwr/serverapp/strategy/strategy.py,sha256=1mxxtA5Pyg9lZ1d3g4OCL-m8YR_0E3HUGl8Gv5BGOXY,10982
334
- flwr/serverapp/strategy/strategy_utils.py,sha256=aDlDh1TJT7oU29FiJ6tckomRAOzhhMYccrrXbynQh9o,9387
336
+ flwr/serverapp/strategy/result.py,sha256=rcg3NqZyC-A_x-f40fq8fk9ovL1zcSz9Jxpr32MRRIc,4285
337
+ flwr/serverapp/strategy/strategy.py,sha256=9udL2q1zEpVw-rKDMoZG_fwoklF4t1HC9hrnPaYiEhA,10663
338
+ flwr/serverapp/strategy/strategy_utils.py,sha256=rtcBQwFtWAihNdcWEAHdAqScPlRZSwqbkGjGxaWkmLE,9547
335
339
  flwr/serverapp/strategy/strategy_utils_tests.py,sha256=taG6HwApwutkjUuMY3R8Ib48Xepw6g5xl9HEB_-leoY,9232
336
340
  flwr/simulation/__init__.py,sha256=Gg6OsP1Z-ixc3-xxzvl7j7rz2Fijy9rzyEPpxgAQCeM,1556
337
341
  flwr/simulation/app.py,sha256=LbGLMvN9Ap119yBqsUcNNmVLRnCySnr4VechqcQ1hpA,10401
@@ -393,7 +397,7 @@ flwr/supernode/servicer/__init__.py,sha256=lucTzre5WPK7G1YLCfaqg3rbFWdNSb7ZTt-ca
393
397
  flwr/supernode/servicer/clientappio/__init__.py,sha256=7Oy62Y_oijqF7Dxi6tpcUQyOpLc_QpIRZ83NvwmB0Yg,813
394
398
  flwr/supernode/servicer/clientappio/clientappio_servicer.py,sha256=nIHRu38EWK-rpNOkcgBRAAKwYQQWFeCwu0lkO7OPZGQ,10239
395
399
  flwr/supernode/start_client_internal.py,sha256=Y9S1-QlO2WP6eo4JvWzIpfaCoh2aoE7bjEYyxNNnlyg,20777
396
- flwr_nightly-1.21.0.dev20250902.dist-info/METADATA,sha256=9h7kKXkJ1vRQxfB4fvu38Qh4FK-01OrgTn1sRzeqxdo,15967
397
- flwr_nightly-1.21.0.dev20250902.dist-info/WHEEL,sha256=b4K_helf-jlQoXBBETfwnf4B04YC67LOev0jo4fX5m8,88
398
- flwr_nightly-1.21.0.dev20250902.dist-info/entry_points.txt,sha256=hxHD2ixb_vJFDOlZV-zB4Ao32_BQlL34ftsDh1GXv14,420
399
- flwr_nightly-1.21.0.dev20250902.dist-info/RECORD,,
400
+ flwr_nightly-1.21.0.dev20250903.dist-info/METADATA,sha256=x-9LvDwIejGasw9rlnPTi3qrHp3Z2hgABMTMj-_iU3k,15967
401
+ flwr_nightly-1.21.0.dev20250903.dist-info/WHEEL,sha256=b4K_helf-jlQoXBBETfwnf4B04YC67LOev0jo4fX5m8,88
402
+ flwr_nightly-1.21.0.dev20250903.dist-info/entry_points.txt,sha256=hxHD2ixb_vJFDOlZV-zB4Ao32_BQlL34ftsDh1GXv14,420
403
+ flwr_nightly-1.21.0.dev20250903.dist-info/RECORD,,