flwr-nightly 1.21.0.dev20250901__py3-none-any.whl → 1.21.0.dev20250903__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (33) hide show
  1. flwr/cli/constant.py +25 -8
  2. flwr/cli/new/templates/app/code/server.pytorch_msg_api.py.tpl +0 -8
  3. flwr/cli/run/run.py +2 -6
  4. flwr/clientapp/__init__.py +4 -0
  5. flwr/clientapp/centraldp_mods.py +132 -0
  6. flwr/common/exception.py +31 -0
  7. flwr/common/exit/__init__.py +4 -0
  8. flwr/common/exit/exit.py +4 -0
  9. flwr/common/exit/exit_code.py +7 -0
  10. flwr/common/exit/exit_handler.py +62 -0
  11. flwr/common/{exit_handlers.py → exit/signal_handler.py} +20 -37
  12. flwr/common/grpc.py +0 -11
  13. flwr/common/inflatable_utils.py +1 -1
  14. flwr/compat/server/app.py +2 -2
  15. flwr/server/app.py +12 -3
  16. flwr/server/serverapp/app.py +41 -28
  17. flwr/serverapp/dp_fixed_clipping.py +352 -0
  18. flwr/serverapp/strategy/__init__.py +6 -0
  19. flwr/serverapp/strategy/dp_fixed_clipping.py +352 -0
  20. flwr/serverapp/strategy/result.py +76 -2
  21. flwr/serverapp/strategy/strategy.py +15 -20
  22. flwr/serverapp/strategy/strategy_utils.py +5 -1
  23. flwr/supercore/cli/flower_superexec.py +3 -0
  24. flwr/supercore/grpc_health/__init__.py +3 -0
  25. flwr/supercore/grpc_health/health_server.py +53 -0
  26. flwr/supercore/grpc_health/simple_health_servicer.py +2 -2
  27. flwr/supercore/superexec/run_superexec.py +15 -3
  28. flwr/supernode/cli/flower_supernode.py +3 -0
  29. flwr/supernode/start_client_internal.py +15 -4
  30. {flwr_nightly-1.21.0.dev20250901.dist-info → flwr_nightly-1.21.0.dev20250903.dist-info}/METADATA +1 -1
  31. {flwr_nightly-1.21.0.dev20250901.dist-info → flwr_nightly-1.21.0.dev20250903.dist-info}/RECORD +33 -27
  32. {flwr_nightly-1.21.0.dev20250901.dist-info → flwr_nightly-1.21.0.dev20250903.dist-info}/WHEEL +0 -0
  33. {flwr_nightly-1.21.0.dev20250901.dist-info → flwr_nightly-1.21.0.dev20250903.dist-info}/entry_points.txt +0 -0
@@ -0,0 +1,352 @@
1
+ # Copyright 2025 Flower Labs GmbH. All Rights Reserved.
2
+ #
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License at
6
+ #
7
+ # http://www.apache.org/licenses/LICENSE-2.0
8
+ #
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License.
14
+ # ==============================================================================
15
+ """Message-based Central differential privacy with fixed clipping.
16
+
17
+ Papers: https://arxiv.org/abs/1712.07557, https://arxiv.org/abs/1710.06963
18
+ """
19
+
20
+ from abc import ABC
21
+ from collections import OrderedDict
22
+ from collections.abc import Iterable
23
+ from logging import INFO, WARNING
24
+ from typing import Optional
25
+
26
+ from flwr.common import Array, ArrayRecord, ConfigRecord, Message, MetricRecord, log
27
+ from flwr.common.differential_privacy import (
28
+ add_gaussian_noise_inplace,
29
+ compute_clip_model_update,
30
+ compute_stdv,
31
+ )
32
+ from flwr.common.differential_privacy_constants import (
33
+ CLIENTS_DISCREPANCY_WARNING,
34
+ KEY_CLIPPING_NORM,
35
+ )
36
+ from flwr.server import Grid
37
+
38
+ from .strategy import Strategy
39
+
40
+
41
+ class DifferentialPrivacyFixedClippingBase(Strategy, ABC):
42
+ """Base class for DP strategies with fixed clipping.
43
+
44
+ This class contains common functionality shared between server-side and
45
+ client-side fixed clipping implementations.
46
+
47
+ Parameters
48
+ ----------
49
+ strategy : Strategy
50
+ The strategy to which DP functionalities will be added by this wrapper.
51
+ noise_multiplier : float
52
+ The noise multiplier for the Gaussian mechanism for model updates.
53
+ A value of 1.0 or higher is recommended for strong privacy.
54
+ clipping_norm : float
55
+ The value of the clipping norm.
56
+ num_sampled_clients : int
57
+ The number of clients that are sampled on each round.
58
+ """
59
+
60
+ # pylint: disable=too-many-arguments,too-many-instance-attributes
61
+ def __init__(
62
+ self,
63
+ strategy: Strategy,
64
+ noise_multiplier: float,
65
+ clipping_norm: float,
66
+ num_sampled_clients: int,
67
+ ) -> None:
68
+ super().__init__()
69
+
70
+ self.strategy = strategy
71
+
72
+ if noise_multiplier < 0:
73
+ raise ValueError("The noise multiplier should be a non-negative value.")
74
+
75
+ if clipping_norm <= 0:
76
+ raise ValueError("The clipping norm should be a positive value.")
77
+
78
+ if num_sampled_clients <= 0:
79
+ raise ValueError(
80
+ "The number of sampled clients should be a positive value."
81
+ )
82
+
83
+ self.noise_multiplier = noise_multiplier
84
+ self.clipping_norm = clipping_norm
85
+ self.num_sampled_clients = num_sampled_clients
86
+
87
+ def _validate_replies(self, replies: Iterable[Message]) -> bool:
88
+ """Validate replies and log errors/warnings.
89
+
90
+ Returns
91
+ -------
92
+ bool
93
+ True if replies are valid for aggregation, False otherwise.
94
+ """
95
+ num_errors = 0
96
+ num_replies_with_content = 0
97
+ for msg in replies:
98
+ if msg.has_error():
99
+ log(
100
+ INFO,
101
+ "Received error in reply from node %d: %s",
102
+ msg.metadata.src_node_id,
103
+ msg.error,
104
+ )
105
+ num_errors += 1
106
+ else:
107
+ num_replies_with_content += 1
108
+
109
+ # Errors are not allowed
110
+ if num_errors:
111
+ log(
112
+ INFO,
113
+ "aggregate_train: Some clients reported errors. Skipping aggregation.",
114
+ )
115
+ return False
116
+
117
+ log(
118
+ INFO,
119
+ "aggregate_train: Received %s results and %s failures",
120
+ num_replies_with_content,
121
+ num_errors,
122
+ )
123
+
124
+ if num_replies_with_content != self.num_sampled_clients:
125
+ log(
126
+ WARNING,
127
+ CLIENTS_DISCREPANCY_WARNING,
128
+ num_replies_with_content,
129
+ self.num_sampled_clients,
130
+ )
131
+
132
+ return True
133
+
134
+ def _add_noise_to_aggregated_arrays(
135
+ self, aggregated_arrays: ArrayRecord
136
+ ) -> ArrayRecord:
137
+ """Add Gaussian noise to aggregated arrays.
138
+
139
+ Parameters
140
+ ----------
141
+ aggregated_arrays : ArrayRecord
142
+ The aggregated arrays to add noise to.
143
+
144
+ Returns
145
+ -------
146
+ ArrayRecord
147
+ The aggregated arrays with noise added.
148
+ """
149
+ aggregated_ndarrays = aggregated_arrays.to_numpy_ndarrays()
150
+ stdv = compute_stdv(
151
+ self.noise_multiplier, self.clipping_norm, self.num_sampled_clients
152
+ )
153
+ add_gaussian_noise_inplace(aggregated_ndarrays, stdv)
154
+
155
+ log(
156
+ INFO,
157
+ "aggregate_fit: central DP noise with %.4f stdev added",
158
+ stdv,
159
+ )
160
+
161
+ return ArrayRecord(
162
+ OrderedDict(
163
+ {
164
+ k: Array(v)
165
+ for k, v in zip(aggregated_arrays.keys(), aggregated_ndarrays)
166
+ }
167
+ )
168
+ )
169
+
170
+ def configure_evaluate(
171
+ self, server_round: int, arrays: ArrayRecord, config: ConfigRecord, grid: Grid
172
+ ) -> Iterable[Message]:
173
+ """Configure the next round of federated evaluation."""
174
+ return self.strategy.configure_evaluate(server_round, arrays, config, grid)
175
+
176
+ def aggregate_evaluate(
177
+ self,
178
+ server_round: int,
179
+ replies: Iterable[Message],
180
+ ) -> Optional[MetricRecord]:
181
+ """Aggregate MetricRecords in the received Messages."""
182
+ return self.strategy.aggregate_evaluate(server_round, replies)
183
+
184
+ def summary(self) -> None:
185
+ """Log summary configuration of the strategy."""
186
+ self.strategy.summary()
187
+
188
+
189
+ class DifferentialPrivacyServerSideFixedClipping(DifferentialPrivacyFixedClippingBase):
190
+ """Strategy wrapper for central DP with server-side fixed clipping.
191
+
192
+ Parameters
193
+ ----------
194
+ strategy : Strategy
195
+ The strategy to which DP functionalities will be added by this wrapper.
196
+ noise_multiplier : float
197
+ The noise multiplier for the Gaussian mechanism for model updates.
198
+ A value of 1.0 or higher is recommended for strong privacy.
199
+ clipping_norm : float
200
+ The value of the clipping norm.
201
+ num_sampled_clients : int
202
+ The number of clients that are sampled on each round.
203
+
204
+ Examples
205
+ --------
206
+ Create a strategy::
207
+
208
+ strategy = fl.serverapp.FedAvg( ... )
209
+
210
+ Wrap the strategy with the `DifferentialPrivacyServerSideFixedClipping` wrapper::
211
+
212
+ dp_strategy = DifferentialPrivacyServerSideFixedClipping(
213
+ strategy, cfg.noise_multiplier, cfg.clipping_norm, cfg.num_sampled_clients
214
+ )
215
+ """
216
+
217
+ def __init__(
218
+ self,
219
+ strategy: Strategy,
220
+ noise_multiplier: float,
221
+ clipping_norm: float,
222
+ num_sampled_clients: int,
223
+ ) -> None:
224
+ super().__init__(strategy, noise_multiplier, clipping_norm, num_sampled_clients)
225
+ self.current_arrays: ArrayRecord = ArrayRecord()
226
+
227
+ def __repr__(self) -> str:
228
+ """Compute a string representation of the strategy."""
229
+ return "Differential Privacy Strategy Wrapper (Server-Side Fixed Clipping)"
230
+
231
+ def configure_train(
232
+ self, server_round: int, arrays: ArrayRecord, config: ConfigRecord, grid: Grid
233
+ ) -> Iterable[Message]:
234
+ """Configure the next round of training."""
235
+ self.current_arrays = arrays
236
+ return self.strategy.configure_train(server_round, arrays, config, grid)
237
+
238
+ def aggregate_train(
239
+ self,
240
+ server_round: int,
241
+ replies: Iterable[Message],
242
+ ) -> tuple[Optional[ArrayRecord], Optional[MetricRecord]]:
243
+ """Aggregate ArrayRecords and MetricRecords in the received Messages."""
244
+ if not self._validate_replies(replies):
245
+ return None, None
246
+
247
+ # Clip arrays in replies
248
+ current_ndarrays = self.current_arrays.to_numpy_ndarrays()
249
+ for reply in replies:
250
+ for arr_name, record in reply.content.array_records.items():
251
+ # Clip
252
+ reply_ndarrays = record.to_numpy_ndarrays()
253
+ compute_clip_model_update(
254
+ param1=reply_ndarrays,
255
+ param2=current_ndarrays,
256
+ clipping_norm=self.clipping_norm,
257
+ )
258
+ # Replace content while preserving keys
259
+ reply.content[arr_name] = ArrayRecord(
260
+ OrderedDict(
261
+ {k: Array(v) for k, v in zip(record.keys(), reply_ndarrays)}
262
+ )
263
+ )
264
+ log(
265
+ INFO,
266
+ "aggregate_fit: parameters are clipped by value: %.4f.",
267
+ self.clipping_norm,
268
+ )
269
+
270
+ # Pass the new parameters for aggregation
271
+ aggregated_arrays, aggregated_metrics = self.strategy.aggregate_train(
272
+ server_round, replies
273
+ )
274
+
275
+ # Add Gaussian noise to the aggregated arrays
276
+ if aggregated_arrays:
277
+ aggregated_arrays = self._add_noise_to_aggregated_arrays(aggregated_arrays)
278
+
279
+ return aggregated_arrays, aggregated_metrics
280
+
281
+
282
+ class DifferentialPrivacyClientSideFixedClipping(DifferentialPrivacyFixedClippingBase):
283
+ """Strategy wrapper for central DP with client-side fixed clipping.
284
+
285
+ Use `fixedclipping_mod` modifier at the client side.
286
+
287
+ In comparison to `DifferentialPrivacyServerSideFixedClipping`,
288
+ which performs clipping on the server-side,
289
+ `DifferentialPrivacyClientSideFixedClipping` expects clipping to happen
290
+ on the client-side, usually by using the built-in `fixedclipping_mod`.
291
+
292
+ Parameters
293
+ ----------
294
+ strategy : Strategy
295
+ The strategy to which DP functionalities will be added by this wrapper.
296
+ noise_multiplier : float
297
+ The noise multiplier for the Gaussian mechanism for model updates.
298
+ A value of 1.0 or higher is recommended for strong privacy.
299
+ clipping_norm : float
300
+ The value of the clipping norm.
301
+ num_sampled_clients : int
302
+ The number of clients that are sampled on each round.
303
+
304
+ Examples
305
+ --------
306
+ Create a strategy::
307
+
308
+ strategy = fl.serverapp.FedAvg(...)
309
+
310
+ Wrap the strategy with the `DifferentialPrivacyClientSideFixedClipping` wrapper::
311
+
312
+ dp_strategy = DifferentialPrivacyClientSideFixedClipping(
313
+ strategy, cfg.noise_multiplier, cfg.clipping_norm, cfg.num_sampled_clients
314
+ )
315
+
316
+ On the client, add the `fixedclipping_mod` to the client-side mods::
317
+
318
+ app = fl.client.ClientApp(mods=[fixedclipping_mod])
319
+ """
320
+
321
+ def __repr__(self) -> str:
322
+ """Compute a string representation of the strategy."""
323
+ return "Differential Privacy Strategy Wrapper (Client-Side Fixed Clipping)"
324
+
325
+ def configure_train(
326
+ self, server_round: int, arrays: ArrayRecord, config: ConfigRecord, grid: Grid
327
+ ) -> Iterable[Message]:
328
+ """Configure the next round of training."""
329
+ # Inject clipping norm in config
330
+ config[KEY_CLIPPING_NORM] = self.clipping_norm
331
+ # Call parent method
332
+ return self.strategy.configure_train(server_round, arrays, config, grid)
333
+
334
+ def aggregate_train(
335
+ self,
336
+ server_round: int,
337
+ replies: Iterable[Message],
338
+ ) -> tuple[Optional[ArrayRecord], Optional[MetricRecord]]:
339
+ """Aggregate ArrayRecords and MetricRecords in the received Messages."""
340
+ if not self._validate_replies(replies):
341
+ return None, None
342
+
343
+ # Aggregate
344
+ aggregated_arrays, aggregated_metrics = self.strategy.aggregate_train(
345
+ server_round, replies
346
+ )
347
+
348
+ # Add Gaussian noise to the aggregated arrays
349
+ if aggregated_arrays:
350
+ aggregated_arrays = self._add_noise_to_aggregated_arrays(aggregated_arrays)
351
+
352
+ return aggregated_arrays, aggregated_metrics
@@ -14,17 +14,91 @@
14
14
  # ==============================================================================
15
15
  """Strategy results."""
16
16
 
17
-
17
+ import pprint
18
18
  from dataclasses import dataclass, field
19
19
 
20
20
  from flwr.common import ArrayRecord, MetricRecord
21
+ from flwr.common.typing import MetricRecordValues
21
22
 
22
23
 
23
24
  @dataclass
24
25
  class Result:
25
- """Data class carrying records generated during the execution of a strategy."""
26
+ """Data class carrying records generated during the execution of a strategy.
27
+
28
+ This class encapsulates the results of a federated learning strategy execution,
29
+ including the final global model parameters and metrics collected throughout
30
+ the federated training and evaluation (both federated and centralized) stages.
31
+
32
+ Attributes
33
+ ----------
34
+ arrays : ArrayRecord
35
+ The final global model parameters. Contains the
36
+ aggregated model weights/parameters that resulted from the federated
37
+ learning process.
38
+ train_metrics_clientapp : dict[int, MetricRecord]
39
+ Training metrics collected from ClientApps, indexed by round number.
40
+ Contains aggregated metrics (e.g., loss, accuracy) from the training
41
+ phase of each federated learning round.
42
+ evaluate_metrics_clientapp : dict[int, MetricRecord]
43
+ Evaluation metrics collected from ClientApps, indexed by round number.
44
+ Contains aggregated metrics (e.g. validation loss) from the evaluation
45
+ phase where ClientApps evaluate the global model on their local
46
+ validation/test data.
47
+ evaluate_metrics_serverapp : dict[int, MetricRecord]
48
+ Evaluation metrics generated at the ServerApp, indexed by round number.
49
+ Contains metrics from centralized evaluation performed by the ServerApp
50
+ (e.g., when the server evaluates the global model on a held-out dataset).
51
+ """
26
52
 
27
53
  arrays: ArrayRecord = field(default_factory=ArrayRecord)
28
54
  train_metrics_clientapp: dict[int, MetricRecord] = field(default_factory=dict)
29
55
  evaluate_metrics_clientapp: dict[int, MetricRecord] = field(default_factory=dict)
30
56
  evaluate_metrics_serverapp: dict[int, MetricRecord] = field(default_factory=dict)
57
+
58
+ def __repr__(self) -> str:
59
+ """Create a representation of the Result instance."""
60
+ rep = ""
61
+ arr_size = sum(len(array.data) for array in self.arrays.values()) / (1024**2)
62
+ rep += "Global Arrays:\n" + f"\tArrayRecord ({arr_size:.3f} MB)\n" + "\n"
63
+ rep += (
64
+ "Aggregated Client-side Train Metrics:\n"
65
+ + pprint.pformat(stringify_dict(self.train_metrics_clientapp), indent=2)
66
+ + "\n\n"
67
+ )
68
+
69
+ rep += (
70
+ "Aggregated Client-side Evaluate Metrics:\n"
71
+ + pprint.pformat(stringify_dict(self.evaluate_metrics_clientapp), indent=2)
72
+ + "\n\n"
73
+ )
74
+
75
+ rep += (
76
+ "Server-side Evaluate Metrics:\n"
77
+ + pprint.pformat(stringify_dict(self.evaluate_metrics_serverapp), indent=2)
78
+ + "\n"
79
+ )
80
+
81
+ return rep
82
+
83
+
84
+ def format_value(val: MetricRecordValues) -> str:
85
+ """Format a value as string, applying scientific notation for floats."""
86
+ if isinstance(val, float):
87
+ return f"{val:.4e}"
88
+ if isinstance(val, int):
89
+ return str(val)
90
+ if isinstance(val, list):
91
+ return str([f"{x:.4e}" if isinstance(x, float) else str(x) for x in val])
92
+ return str(val)
93
+
94
+
95
+ def stringify_dict(d: dict[int, MetricRecord]) -> dict[int, dict[str, str]]:
96
+ """Return a copy results metrics but with values converted to string and formatted
97
+ accordingtly."""
98
+ new_metrics_dict = {}
99
+ for k, inner in d.items():
100
+ new_inner = {}
101
+ for ik, iv in inner.items():
102
+ new_inner[ik] = format_value(iv)
103
+ new_metrics_dict[k] = new_inner
104
+ return new_metrics_dict
@@ -15,6 +15,7 @@
15
15
  """Flower message-based strategy."""
16
16
 
17
17
 
18
+ import io
18
19
  import time
19
20
  from abc import ABC, abstractmethod
20
21
  from collections.abc import Iterable
@@ -22,11 +23,10 @@ from logging import INFO
22
23
  from typing import Callable, Optional
23
24
 
24
25
  from flwr.common import ArrayRecord, ConfigRecord, Message, MetricRecord, log
25
- from flwr.common.exit import ExitCode, flwr_exit
26
26
  from flwr.server import Grid
27
27
 
28
28
  from .result import Result
29
- from .strategy_utils import InconsistentMessageReplies, log_strategy_start_info
29
+ from .strategy_utils import log_strategy_start_info
30
30
 
31
31
 
32
32
  class Strategy(ABC):
@@ -218,15 +218,10 @@ class Strategy(ABC):
218
218
  )
219
219
 
220
220
  # Aggregate train
221
- try:
222
- agg_arrays, agg_train_metrics = self.aggregate_train(
223
- current_round,
224
- train_replies,
225
- )
226
- except InconsistentMessageReplies as e:
227
- flwr_exit(
228
- ExitCode.SERVERAPP_STRATEGY_PRECONDITION_UNMET, message=str(e)
229
- )
221
+ agg_arrays, agg_train_metrics = self.aggregate_train(
222
+ current_round,
223
+ train_replies,
224
+ )
230
225
 
231
226
  # Log training metrics and append to history
232
227
  if agg_arrays is not None:
@@ -253,15 +248,10 @@ class Strategy(ABC):
253
248
  )
254
249
 
255
250
  # Aggregate evaluate
256
- try:
257
- agg_evaluate_metrics = self.aggregate_evaluate(
258
- current_round,
259
- evaluate_replies,
260
- )
261
- except InconsistentMessageReplies as e:
262
- flwr_exit(
263
- ExitCode.SERVERAPP_STRATEGY_PRECONDITION_UNMET, message=str(e)
264
- )
251
+ agg_evaluate_metrics = self.aggregate_evaluate(
252
+ current_round,
253
+ evaluate_replies,
254
+ )
265
255
 
266
256
  # Log training metrics and append to history
267
257
  if agg_evaluate_metrics is not None:
@@ -282,5 +272,10 @@ class Strategy(ABC):
282
272
  log(INFO, "")
283
273
  log(INFO, "Strategy execution finished in %.2fs", time.time() - t_start)
284
274
  log(INFO, "")
275
+ log(INFO, "Final results:")
276
+ log(INFO, "")
277
+ for line in io.StringIO(str(result)):
278
+ log(INFO, "\t%s", line.strip("\n"))
279
+ log(INFO, "")
285
280
 
286
281
  return result
@@ -30,13 +30,17 @@ from flwr.common import (
30
30
  RecordDict,
31
31
  log,
32
32
  )
33
+ from flwr.common.exception import AppExitException
34
+ from flwr.common.exit import ExitCode
33
35
  from flwr.server import Grid
34
36
 
35
37
 
36
- class InconsistentMessageReplies(Exception):
38
+ class InconsistentMessageReplies(AppExitException):
37
39
  """Exception triggered when replies are inconsistent and therefore aggregation must
38
40
  be skipped."""
39
41
 
42
+ exit_code = ExitCode.SERVERAPP_STRATEGY_PRECONDITION_UNMET
43
+
40
44
  def __init__(self, reason: str):
41
45
  super().__init__(reason)
42
46
 
@@ -25,6 +25,7 @@ from flwr.common.logger import log
25
25
  from flwr.proto.clientappio_pb2_grpc import ClientAppIoStub
26
26
  from flwr.proto.serverappio_pb2_grpc import ServerAppIoStub
27
27
  from flwr.proto.simulationio_pb2_grpc import SimulationIoStub
28
+ from flwr.supercore.grpc_health import add_args_health
28
29
  from flwr.supercore.superexec.plugin import (
29
30
  ClientAppExecPlugin,
30
31
  ExecPlugin,
@@ -57,6 +58,7 @@ def flower_superexec() -> None:
57
58
  appio_api_address=args.appio_api_address,
58
59
  flwr_dir=args.flwr_dir,
59
60
  parent_pid=args.parent_pid,
61
+ health_server_address=args.health_server_address,
60
62
  )
61
63
 
62
64
 
@@ -100,6 +102,7 @@ def _parse_args() -> argparse.ArgumentParser:
100
102
  help="The PID of the parent process. When set, the process will terminate "
101
103
  "when the parent process exits.",
102
104
  )
105
+ add_args_health(parser)
103
106
  return parser
104
107
 
105
108
 
@@ -15,8 +15,11 @@
15
15
  """GRPC health servicers."""
16
16
 
17
17
 
18
+ from .health_server import add_args_health, run_health_server_grpc_no_tls
18
19
  from .simple_health_servicer import SimpleHealthServicer
19
20
 
20
21
  __all__ = [
21
22
  "SimpleHealthServicer",
23
+ "add_args_health",
24
+ "run_health_server_grpc_no_tls",
22
25
  ]
@@ -0,0 +1,53 @@
1
+ # Copyright 2025 Flower Labs GmbH. All Rights Reserved.
2
+ #
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License at
6
+ #
7
+ # http://www.apache.org/licenses/LICENSE-2.0
8
+ #
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License.
14
+ # ==============================================================================
15
+ """Health servers."""
16
+
17
+
18
+ import argparse
19
+ from logging import INFO
20
+
21
+ import grpc
22
+ from grpc_health.v1.health_pb2_grpc import add_HealthServicer_to_server
23
+
24
+ from flwr.common.grpc import generic_create_grpc_server
25
+ from flwr.common.logger import log
26
+
27
+ from .simple_health_servicer import SimpleHealthServicer
28
+
29
+
30
+ def run_health_server_grpc_no_tls(address: str) -> grpc.Server:
31
+ """Run gRPC health server with no TLS."""
32
+ health_server = generic_create_grpc_server(
33
+ servicer_and_add_fn=(
34
+ SimpleHealthServicer(),
35
+ add_HealthServicer_to_server,
36
+ ),
37
+ server_address=address,
38
+ certificates=None,
39
+ )
40
+ log(INFO, "Starting gRPC health server on %s", address)
41
+ health_server.start()
42
+ return health_server
43
+
44
+
45
+ def add_args_health(parser: argparse.ArgumentParser) -> None:
46
+ """Add arguments for health server."""
47
+ parser.add_argument(
48
+ "--health-server-address",
49
+ type=str,
50
+ default=None,
51
+ help="Health service gRPC server address (IPv4, IPv6, or a domain name) "
52
+ "with no TLS. If not set, the health server will not be started.",
53
+ )
@@ -28,11 +28,11 @@ class SimpleHealthServicer(HealthServicer): # type: ignore
28
28
  """A simple gRPC health servicer that always returns SERVING."""
29
29
 
30
30
  def Check(
31
- self, request: HealthCheckRequest, context: grpc.RpcContext
31
+ self, request: HealthCheckRequest, context: grpc.ServicerContext
32
32
  ) -> HealthCheckResponse:
33
33
  """Return a HealthCheckResponse with SERVING status."""
34
34
  return HealthCheckResponse(status=HealthCheckResponse.SERVING)
35
35
 
36
- def Watch(self, request: HealthCheckRequest, context: grpc.RpcContext) -> None:
36
+ def Watch(self, request: HealthCheckRequest, context: grpc.ServicerContext) -> None:
37
37
  """Watch the health status (not implemented)."""
38
38
  context.abort(grpc.StatusCode.UNIMPLEMENTED, "Watch is not implemented")