flwr-nightly 1.19.0.dev20250509__py3-none-any.whl → 1.19.0.dev20250511__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
flwr/cli/build.py CHANGED
@@ -16,10 +16,8 @@
16
16
 
17
17
 
18
18
  import hashlib
19
- import os
20
- import shutil
21
- import tempfile
22
19
  import zipfile
20
+ from io import BytesIO
23
21
  from pathlib import Path
24
22
  from typing import Annotated, Any, Optional, Union
25
23
 
@@ -29,6 +27,7 @@ import typer
29
27
 
30
28
  from flwr.common.constant import FAB_ALLOWED_EXTENSIONS, FAB_DATE, FAB_HASH_TRUNCATION
31
29
 
30
+ from .config_utils import load as load_toml
32
31
  from .config_utils import load_and_validate
33
32
  from .utils import is_valid_project_name
34
33
 
@@ -43,11 +42,11 @@ def write_to_zip(
43
42
  return zipfile_obj
44
43
 
45
44
 
46
- def get_fab_filename(conf: dict[str, Any], fab_hash: str) -> str:
45
+ def get_fab_filename(config: dict[str, Any], fab_hash: str) -> str:
47
46
  """Get the FAB filename based on the given config and FAB hash."""
48
- publisher = conf["tool"]["flwr"]["app"]["publisher"]
49
- name = conf["project"]["name"]
50
- version = conf["project"]["version"].replace(".", "-")
47
+ publisher = config["tool"]["flwr"]["app"]["publisher"]
48
+ name = config["project"]["name"]
49
+ version = config["project"]["version"].replace(".", "-")
51
50
  fab_hash_truncated = fab_hash[:FAB_HASH_TRUNCATION]
52
51
  return f"{publisher}.{name}.{version}.{fab_hash_truncated}.fab"
53
52
 
@@ -89,8 +88,8 @@ def build(
89
88
  )
90
89
  raise typer.Exit(code=1)
91
90
 
92
- conf, errors, warnings = load_and_validate(app / "pyproject.toml")
93
- if conf is None:
91
+ config, errors, warnings = load_and_validate(app / "pyproject.toml")
92
+ if config is None:
94
93
  typer.secho(
95
94
  "Project configuration could not be loaded.\npyproject.toml is invalid:\n"
96
95
  + "\n".join([f"- {line}" for line in errors]),
@@ -107,70 +106,96 @@ def build(
107
106
  bold=True,
108
107
  )
109
108
 
110
- # Load .gitignore rules if present
111
- ignore_spec = _load_gitignore(app)
109
+ # Build FAB
110
+ fab_bytes, fab_hash, _ = build_fab(app)
112
111
 
113
- list_file_content = ""
112
+ # Get the name of the zip file
113
+ fab_filename = get_fab_filename(config, fab_hash)
114
+
115
+ # Write the FAB
116
+ Path(fab_filename).write_bytes(fab_bytes)
117
+
118
+ typer.secho(
119
+ f"🎊 Successfully built {fab_filename}", fg=typer.colors.GREEN, bold=True
120
+ )
121
+
122
+ return fab_filename, fab_hash
114
123
 
115
- # Remove the 'federations' field from 'tool.flwr' if it exists
116
- if (
117
- "tool" in conf
118
- and "flwr" in conf["tool"]
119
- and "federations" in conf["tool"]["flwr"]
120
- ):
121
- del conf["tool"]["flwr"]["federations"]
122
124
 
123
- toml_contents = tomli_w.dumps(conf)
125
+ def build_fab(app: Path) -> tuple[bytes, str, dict[str, Any]]:
126
+ """Build a FAB in memory and return the bytes, hash, and config.
124
127
 
125
- with tempfile.NamedTemporaryFile(suffix=".zip", delete=False) as temp_file:
126
- temp_filename = temp_file.name
128
+ This function assumes that the provided path points to a valid Flower app and
129
+ bundles it into a FAB without performing additional validation.
127
130
 
128
- with zipfile.ZipFile(temp_filename, "w", zipfile.ZIP_DEFLATED) as fab_file:
129
- write_to_zip(fab_file, "pyproject.toml", toml_contents)
131
+ Parameters
132
+ ----------
133
+ app : Path
134
+ Path to the Flower app to bundle into a FAB.
130
135
 
131
- # Continue with adding other files
132
- all_files = [
133
- f
134
- for f in app.rglob("*")
135
- if not ignore_spec.match_file(f)
136
- and f.name != temp_filename
137
- and f.suffix in FAB_ALLOWED_EXTENSIONS
138
- and f.name != "pyproject.toml" # Exclude the original pyproject.toml
139
- ]
136
+ Returns
137
+ -------
138
+ tuple[bytes, str, dict[str, Any]]
139
+ A tuple containing:
140
+ - the FAB as bytes
141
+ - the SHA256 hash of the FAB
142
+ - the project configuration (with the 'federations' field removed)
143
+ """
144
+ app = app.resolve()
145
+
146
+ # Load the pyproject.toml file
147
+ config = load_toml(app / "pyproject.toml")
148
+ if config is None:
149
+ raise ValueError("Project configuration could not be loaded.")
140
150
 
141
- all_files.sort()
151
+ # Remove the 'federations' field if it exists
152
+ if (
153
+ "tool" in config
154
+ and "flwr" in config["tool"]
155
+ and "federations" in config["tool"]["flwr"]
156
+ ):
157
+ del config["tool"]["flwr"]["federations"]
142
158
 
143
- for file_path in all_files:
144
- # Read the file content manually
145
- with open(file_path, "rb") as f:
146
- file_contents = f.read()
159
+ # Load .gitignore rules if present
160
+ ignore_spec = _load_gitignore(app)
147
161
 
148
- archive_path = file_path.relative_to(app)
149
- write_to_zip(fab_file, str(archive_path), file_contents)
162
+ # Search for all files in the app directory
163
+ all_files = [
164
+ f
165
+ for f in app.rglob("*")
166
+ if not ignore_spec.match_file(f)
167
+ and f.suffix in FAB_ALLOWED_EXTENSIONS
168
+ and f.name != "pyproject.toml" # Exclude the original pyproject.toml
169
+ ]
170
+ all_files.sort()
171
+
172
+ # Create a zip file in memory
173
+ list_file_content = ""
150
174
 
151
- # Calculate file info
152
- sha256_hash = hashlib.sha256(file_contents).hexdigest()
153
- file_size_bits = os.path.getsize(file_path) * 8 # size in bits
154
- list_file_content += f"{archive_path},{sha256_hash},{file_size_bits}\n"
175
+ fab_buffer = BytesIO()
176
+ with zipfile.ZipFile(fab_buffer, "w", zipfile.ZIP_DEFLATED) as fab_file:
177
+ # Add pyproject.toml
178
+ write_to_zip(fab_file, "pyproject.toml", tomli_w.dumps(config))
155
179
 
156
- # Add CONTENT and CONTENT.jwt to the zip file
157
- write_to_zip(fab_file, ".info/CONTENT", list_file_content)
180
+ for file_path in all_files:
181
+ # Read the file content manually
182
+ file_contents = file_path.read_bytes()
158
183
 
159
- # Get hash of FAB file
160
- content = Path(temp_filename).read_bytes()
161
- fab_hash = hashlib.sha256(content).hexdigest()
184
+ archive_path = str(file_path.relative_to(app))
185
+ write_to_zip(fab_file, archive_path, file_contents)
162
186
 
163
- # Set the name of the zip file
164
- fab_filename = get_fab_filename(conf, fab_hash)
187
+ # Calculate file info
188
+ sha256_hash = hashlib.sha256(file_contents).hexdigest()
189
+ file_size_bits = len(file_contents) * 8 # size in bits
190
+ list_file_content += f"{archive_path},{sha256_hash},{file_size_bits}\n"
165
191
 
166
- # Once the temporary zip file is created, rename it to the final filename
167
- shutil.move(temp_filename, fab_filename)
192
+ # Add CONTENT and CONTENT.jwt to the zip file
193
+ write_to_zip(fab_file, ".info/CONTENT", list_file_content)
168
194
 
169
- typer.secho(
170
- f"🎊 Successfully built {fab_filename}", fg=typer.colors.GREEN, bold=True
171
- )
195
+ fab_bytes = fab_buffer.getvalue()
196
+ fab_hash = hashlib.sha256(fab_bytes).hexdigest()
172
197
 
173
- return fab_filename, fab_hash
198
+ return fab_bytes, fab_hash, config
174
199
 
175
200
 
176
201
  def _load_gitignore(app: Path) -> pathspec.PathSpec:
@@ -1,9 +1,9 @@
1
1
  """$project_name: A Flower Baseline."""
2
2
 
3
3
  import torch
4
-
5
4
  from flwr.client import ClientApp, NumPyClient
6
5
  from flwr.common import Context
6
+
7
7
  from $import_name.dataset import load_data
8
8
  from $import_name.model import Net, get_weights, set_weights, test, train
9
9
 
@@ -76,5 +76,5 @@ def get_weights(net):
76
76
  def set_weights(net, parameters):
77
77
  """Apply parameters to an existing model."""
78
78
  params_dict = zip(net.state_dict().keys(), parameters)
79
- state_dict = OrderedDict({k: torch.tensor(v) for k, v in params_dict})
79
+ state_dict = OrderedDict({k: torch.from_numpy(v) for k, v in params_dict})
80
80
  net.load_state_dict(state_dict, strict=True)
@@ -1,15 +1,14 @@
1
1
  """$project_name: A Flower Baseline."""
2
2
 
3
- from typing import List, Tuple
4
-
5
3
  from flwr.common import Context, Metrics, ndarrays_to_parameters
6
4
  from flwr.server import ServerApp, ServerAppComponents, ServerConfig
7
5
  from flwr.server.strategy import FedAvg
6
+
8
7
  from $import_name.model import Net, get_weights
9
8
 
10
9
 
11
10
  # Define metric aggregation function
12
- def weighted_average(metrics: List[Tuple[int, Metrics]]) -> Metrics:
11
+ def weighted_average(metrics: list[tuple[int, Metrics]]) -> Metrics:
13
12
  """Do weighted average of accuracy metric."""
14
13
  # Multiply accuracy of each client by number of examples used
15
14
  accuracies = [num_examples * float(m["accuracy"]) for num_examples, m in metrics]
@@ -10,8 +10,8 @@ license = "Apache-2.0"
10
10
  dependencies = [
11
11
  "flwr[simulation]>=1.19.0",
12
12
  "flwr-datasets[vision]>=0.5.0",
13
- "torch==2.5.1",
14
- "torchvision==0.20.1",
13
+ "torch==2.6.0",
14
+ "torchvision==0.21.0",
15
15
  ]
16
16
 
17
17
  [tool.hatch.metadata]
@@ -23,28 +23,23 @@ dev = [
23
23
  "black==24.2.0",
24
24
  "docformatter==1.7.5",
25
25
  "mypy==1.8.0",
26
- "pylint==3.2.6",
27
- "flake8==5.0.4",
28
- "pytest==6.2.4",
26
+ "pylint==3.3.1",
27
+ "pytest==7.4.4",
29
28
  "pytest-watch==4.2.0",
30
- "ruff==0.1.9",
29
+ "ruff==0.4.5",
31
30
  "types-requests==2.31.0.20240125",
32
31
  ]
33
32
 
34
33
  [tool.isort]
35
34
  profile = "black"
36
- known_first_party = ["flwr"]
37
35
 
38
36
  [tool.black]
39
37
  line-length = 88
40
- target-version = ["py38", "py39", "py310", "py311"]
38
+ target-version = ["py310", "py311", "py312"]
41
39
 
42
40
  [tool.pytest.ini_options]
43
41
  minversion = "6.2"
44
42
  addopts = "-qq"
45
- testpaths = [
46
- "flwr_baselines",
47
- ]
48
43
 
49
44
  [tool.mypy]
50
45
  ignore_missing_imports = true
@@ -82,11 +77,8 @@ wrap-summaries = 88
82
77
  wrap-descriptions = 88
83
78
 
84
79
  [tool.ruff]
85
- target-version = "py38"
80
+ target-version = "py310"
86
81
  line-length = 88
87
- select = ["D", "E", "F", "W", "B", "ISC", "C4"]
88
- fixable = ["D", "E", "F", "W", "B", "ISC", "C4"]
89
- ignore = ["B024", "B027"]
90
82
  exclude = [
91
83
  ".bzr",
92
84
  ".direnv",
@@ -111,7 +103,12 @@ exclude = [
111
103
  "proto",
112
104
  ]
113
105
 
114
- [tool.ruff.pydocstyle]
106
+ [tool.ruff.lint]
107
+ select = ["D", "E", "F", "W", "B", "ISC", "C4", "UP"]
108
+ fixable = ["D", "E", "F", "W", "B", "ISC", "C4", "UP"]
109
+ ignore = ["B024", "B027", "D205", "D209"]
110
+
111
+ [tool.ruff.lint.pydocstyle]
115
112
  convention = "numpy"
116
113
 
117
114
  [tool.hatch.build.targets.wheel]
flwr/cli/run/run.py CHANGED
@@ -24,9 +24,8 @@ from typing import Annotated, Any, Optional
24
24
  import typer
25
25
  from rich.console import Console
26
26
 
27
- from flwr.cli.build import build
27
+ from flwr.cli.build import build_fab, get_fab_filename
28
28
  from flwr.cli.config_utils import (
29
- get_fab_metadata,
30
29
  load_and_validate,
31
30
  process_loaded_project_config,
32
31
  validate_federation_in_project_config,
@@ -34,6 +33,7 @@ from flwr.cli.config_utils import (
34
33
  from flwr.cli.constant import FEDERATION_CONFIG_HELP_MESSAGE
35
34
  from flwr.common.config import (
36
35
  flatten_dict,
36
+ get_metadata_from_config,
37
37
  parse_config_args,
38
38
  user_config_to_configrecord,
39
39
  )
@@ -158,18 +158,14 @@ def _run_with_exec_api(
158
158
  channel = init_channel(app, federation_config, auth_plugin)
159
159
  stub = ExecStub(channel)
160
160
 
161
- fab_path, fab_hash = build(app)
162
- content = Path(fab_path).read_bytes()
163
- fab_id, fab_version = get_fab_metadata(Path(fab_path))
161
+ fab_bytes, fab_hash, config = build_fab(app)
162
+ fab_id, fab_version = get_metadata_from_config(config)
164
163
 
165
- # Delete FAB file once the bytes is computed
166
- Path(fab_path).unlink()
167
-
168
- fab = Fab(fab_hash, content)
164
+ fab = Fab(fab_hash, fab_bytes)
169
165
 
170
166
  # Construct a `ConfigRecord` out of a flattened `UserConfig`
171
- fed_conf = flatten_dict(federation_config.get("options", {}))
172
- c_record = user_config_to_configrecord(fed_conf)
167
+ fed_config = flatten_dict(federation_config.get("options", {}))
168
+ c_record = user_config_to_configrecord(fed_config)
173
169
 
174
170
  req = StartRunRequest(
175
171
  fab=fab_to_proto(fab),
@@ -194,7 +190,7 @@ def _run_with_exec_api(
194
190
  "fab-name": fab_id.rsplit("/", maxsplit=1)[-1],
195
191
  "fab-version": fab_version,
196
192
  "fab-hash": fab_hash[:8],
197
- "fab-filename": fab_path,
193
+ "fab-filename": get_fab_filename(config, fab_hash),
198
194
  }
199
195
  )
200
196
  restore_output()
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.3
2
2
  Name: flwr-nightly
3
- Version: 1.19.0.dev20250509
3
+ Version: 1.19.0.dev20250511
4
4
  Summary: Flower: A Friendly Federated AI Framework
5
5
  License: Apache-2.0
6
6
  Keywords: Artificial Intelligence,Federated AI,Federated Analytics,Federated Evaluation,Federated Learning,Flower,Machine Learning
@@ -31,6 +31,7 @@ Classifier: Topic :: Software Development :: Libraries :: Python Modules
31
31
  Classifier: Typing :: Typed
32
32
  Provides-Extra: rest
33
33
  Provides-Extra: simulation
34
+ Requires-Dist: click (<8.2.0)
34
35
  Requires-Dist: cryptography (>=44.0.1,<45.0.0)
35
36
  Requires-Dist: grpcio (>=1.62.3,<2.0.0,!=1.65.0)
36
37
  Requires-Dist: iterators (>=0.0.2,<0.0.3)
@@ -3,7 +3,7 @@ flwr/cli/__init__.py,sha256=EfMGmHoobET6P2blBt_eOByXL8299MgFfB7XNdaPQ6I,720
3
3
  flwr/cli/app.py,sha256=AKCP45Dkbpvdil_4Ir9S93L3HP3iUOnHmcZjscoM8uU,1856
4
4
  flwr/cli/auth_plugin/__init__.py,sha256=FyaoqPzcxlBTFfJ2sBRC5USwQLmAhFr5KuBwfMO4bmo,1052
5
5
  flwr/cli/auth_plugin/oidc_cli_plugin.py,sha256=gIhW6Jg9QAo-jL43LYPpw_kn7pdUZZae0s0H8dEgjLM,5384
6
- flwr/cli/build.py,sha256=sPzCAZC0gDytpDqMO3aHBcdCzQVXqRhts4TJYSZNu1E,6375
6
+ flwr/cli/build.py,sha256=bzvXbA0MdNMni3uu8KUl32y3VOTJpsUToxNQl_0qE6U,6967
7
7
  flwr/cli/cli_user_auth_interceptor.py,sha256=-JqDXpeZNQVwoSG7hMKsiS5qY5k5oklNSlQOVpM0-aY,3126
8
8
  flwr/cli/config_utils.py,sha256=IAVn2uWTXpN72YYt7raLtwp8ziwZugUKSURpc471VzU,9123
9
9
  flwr/cli/constant.py,sha256=g7Ad7o3DJDkJNrWS0T3SSJETWSTkkVJWGpLM8zlbpcY,1289
@@ -25,7 +25,7 @@ flwr/cli/new/templates/app/__init__.py,sha256=LbR0ksGiF566JcHM_H5m1Tc4-oYUEilWFl
25
25
  flwr/cli/new/templates/app/code/__init__.baseline.py.tpl,sha256=YkHAgppUeD2BnBoGfVB6dEvBfjuIPGsU1gw4CiUi3qA,40
26
26
  flwr/cli/new/templates/app/code/__init__.py,sha256=zXa2YU1swzHxOKDQbwlDMEwVPOUswVeosjkiXNMTgFo,736
27
27
  flwr/cli/new/templates/app/code/__init__.py.tpl,sha256=J0Gn74E7khpLyKJVNqOPu7ev93vkcu1PZugsbxtABMw,52
28
- flwr/cli/new/templates/app/code/client.baseline.py.tpl,sha256=1htktXX3jXX05r0vuG_afjS1sXGtuONW9EpiQ7vSBes,1901
28
+ flwr/cli/new/templates/app/code/client.baseline.py.tpl,sha256=IYlCZqnaxT2ucP1ReffRNohOkYwNrhtrnDoQBBcrThY,1901
29
29
  flwr/cli/new/templates/app/code/client.huggingface.py.tpl,sha256=ifD08KwjdoGieV26hFCgf3PQB6rMhj_NZLo5iUUndm8,1846
30
30
  flwr/cli/new/templates/app/code/client.jax.py.tpl,sha256=4EkcGGmbPAa6dgw8GYII-GfrGsu8VU6amRHpJvF0WuA,1319
31
31
  flwr/cli/new/templates/app/code/client.mlx.py.tpl,sha256=gOxt_QUTfGFpofdNaxdwTSLZlkTWHPYGix2OGHC1hYE,2376
@@ -40,8 +40,8 @@ flwr/cli/new/templates/app/code/flwr_tune/dataset.py.tpl,sha256=1NA2Sf-EviNtOaYN
40
40
  flwr/cli/new/templates/app/code/flwr_tune/models.py.tpl,sha256=ONJw_BgBWEofVNGRDu8KAIThb8saRQlUEK4uS2u_6To,2449
41
41
  flwr/cli/new/templates/app/code/flwr_tune/server_app.py.tpl,sha256=xkmmBKr0oGmewP56SP3s_6FG6JOVlGlquhg3a9nYMis,3270
42
42
  flwr/cli/new/templates/app/code/flwr_tune/strategy.py.tpl,sha256=BhiqRg9w1MGuU5h2_vrLhRc0oHItYzE69qX_JI411k8,2754
43
- flwr/cli/new/templates/app/code/model.baseline.py.tpl,sha256=cSz6-IWsnMl7s04DW4URINiIppCIberrtE8NqK6Qz48,2571
44
- flwr/cli/new/templates/app/code/server.baseline.py.tpl,sha256=outx7lDXsWS8QXKWOGOiDno6eE8WL7LBD51ZkAuC3WU,1570
43
+ flwr/cli/new/templates/app/code/model.baseline.py.tpl,sha256=zJklLwH4vPx7rruzhzbAGdInxjjJw-djHCuCx5wshVA,2575
44
+ flwr/cli/new/templates/app/code/server.baseline.py.tpl,sha256=rBB-DKEuA2SG1DGLW8uSHUg-GydEgb-7NHEclsC2X2g,1539
45
45
  flwr/cli/new/templates/app/code/server.huggingface.py.tpl,sha256=0PJmnZvR9_VPLSak1yVfkOx3dmqo6cynhY1l2s4AZrE,1158
46
46
  flwr/cli/new/templates/app/code/server.jax.py.tpl,sha256=IHk57syZhvO4nWVHGxE9S8f5DTxRKIrTitDufF4RhMY,828
47
47
  flwr/cli/new/templates/app/code/server.mlx.py.tpl,sha256=GAqalaI-U2uRdttNeRn75k1FzdEW3rmgT-ywuKkFdK4,988
@@ -58,7 +58,7 @@ flwr/cli/new/templates/app/code/task.pytorch.py.tpl,sha256=XlJqA4Ix_PloO_zJLhjiN
58
58
  flwr/cli/new/templates/app/code/task.sklearn.py.tpl,sha256=vHdhtMp0FHxbYafXyhDT9aKmmmA0Jvpx5Oum1Yu9lWY,1850
59
59
  flwr/cli/new/templates/app/code/task.tensorflow.py.tpl,sha256=SKXAZdgBnPpbAbJ90Rb7oQ5ilnopBx_j_JNFoUDeEAI,1732
60
60
  flwr/cli/new/templates/app/code/utils.baseline.py.tpl,sha256=YkHAgppUeD2BnBoGfVB6dEvBfjuIPGsU1gw4CiUi3qA,40
61
- flwr/cli/new/templates/app/pyproject.baseline.toml.tpl,sha256=2oESgA-m-fU_i4Tsjq-Sooe9t4BZmU3Jo4WvHbFbWsM,2666
61
+ flwr/cli/new/templates/app/pyproject.baseline.toml.tpl,sha256=_hhn9kMIaiQDKe2qlx3flQVHVvqtckKG3WbuXw-ZUzc,2623
62
62
  flwr/cli/new/templates/app/pyproject.flowertune.toml.tpl,sha256=4WfSNMTbhJ-_CQ71gphHVocGBrPxOe33VThGXKmsiHY,1873
63
63
  flwr/cli/new/templates/app/pyproject.huggingface.toml.tpl,sha256=f7xUVuqemFliGqqmwJ_vDgIlBtJM71yTJsXdSzkPDDA,1143
64
64
  flwr/cli/new/templates/app/pyproject.jax.toml.tpl,sha256=35AUGbM1hMlJ4plYsFkydiYvG3XWIOLNnlcemWtIgn4,673
@@ -68,7 +68,7 @@ flwr/cli/new/templates/app/pyproject.pytorch.toml.tpl,sha256=dckyBDmvBHbPNB5LQhX
68
68
  flwr/cli/new/templates/app/pyproject.sklearn.toml.tpl,sha256=F93FdohqSBzcdFanew33V8bBeC3s9r3IaV8tfd4zw-E,686
69
69
  flwr/cli/new/templates/app/pyproject.tensorflow.toml.tpl,sha256=7aOtbvAAnVXyTEYLsg_LtxDRQD16XUjRmnENgAWyiMs,710
70
70
  flwr/cli/run/__init__.py,sha256=RPyB7KbYTFl6YRiilCch6oezxrLQrl1kijV7BMGkLbA,790
71
- flwr/cli/run/run.py,sha256=t3vgDeSGKgptYbGKLLTVAcGB-ZQqu3Ui0cVloA-eoy8,8277
71
+ flwr/cli/run/run.py,sha256=mbyf46Tm3qrL8NW02JyDjs6BI49m9UMzXsGK8-Af1r4,8232
72
72
  flwr/cli/stop.py,sha256=iLbh1dq8XMdcIlh0Lh8ufG6h0VvrP1kyp_mGO-kimt0,4976
73
73
  flwr/cli/utils.py,sha256=FjRYfzTw75qh5YHmrg9XzBA6o73T6xWt9WQYIxq-iHY,11207
74
74
  flwr/client/__init__.py,sha256=FslaZOoCGPIzlK-NhL7bFMVVnmFDOh_PhW4AfGzno68,1192
@@ -333,7 +333,7 @@ flwr/superexec/exec_servicer.py,sha256=Z0YYfs6eNPhqn8rY0x_R04XgR2mKFpggt07IH0EhU
333
333
  flwr/superexec/exec_user_auth_interceptor.py,sha256=iqygALkOMBUu_s_R9G0mFThZA7HTUzuXCLgxLCefiwI,4440
334
334
  flwr/superexec/executor.py,sha256=M5ucqSE53jfRtuCNf59WFLqQvA1Mln4741TySeZE7qQ,3112
335
335
  flwr/superexec/simulation.py,sha256=j6YwUvBN7EQ09ID7MYOCVZ70PGbuyBy8f9bXU0EszEM,4088
336
- flwr_nightly-1.19.0.dev20250509.dist-info/METADATA,sha256=myNc-raWTpUXv9cnHt3ustV6ebzfD9VlMh_bpGCsJ9c,15880
337
- flwr_nightly-1.19.0.dev20250509.dist-info/WHEEL,sha256=b4K_helf-jlQoXBBETfwnf4B04YC67LOev0jo4fX5m8,88
338
- flwr_nightly-1.19.0.dev20250509.dist-info/entry_points.txt,sha256=2-1L-GNKhwGw2_7_RoH55vHw2SIHjdAQy3HAVAWl9PY,374
339
- flwr_nightly-1.19.0.dev20250509.dist-info/RECORD,,
336
+ flwr_nightly-1.19.0.dev20250511.dist-info/METADATA,sha256=NL5XgF9L-oJRThfCtBe-l84Z_6WJkNNNhPghf3SMFQg,15910
337
+ flwr_nightly-1.19.0.dev20250511.dist-info/WHEEL,sha256=b4K_helf-jlQoXBBETfwnf4B04YC67LOev0jo4fX5m8,88
338
+ flwr_nightly-1.19.0.dev20250511.dist-info/entry_points.txt,sha256=2-1L-GNKhwGw2_7_RoH55vHw2SIHjdAQy3HAVAWl9PY,374
339
+ flwr_nightly-1.19.0.dev20250511.dist-info/RECORD,,