flwr-nightly 1.16.0.dev20250224__py3-none-any.whl → 1.16.0.dev20250226__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
flwr/client/client_app.py CHANGED
@@ -159,11 +159,15 @@ class ClientApp:
159
159
  # Message type did not match one of the known message types abvoe
160
160
  raise ValueError(f"Unknown message_type: {message.metadata.message_type}")
161
161
 
162
- def train(self) -> Callable[[ClientAppCallable], ClientAppCallable]:
162
+ def train(
163
+ self, mods: Optional[list[Mod]] = None
164
+ ) -> Callable[[ClientAppCallable], ClientAppCallable]:
163
165
  """Return a decorator that registers the train fn with the client app.
164
166
 
165
167
  Examples
166
168
  --------
169
+ Registering a train function:
170
+
167
171
  >>> app = ClientApp()
168
172
  >>>
169
173
  >>> @app.train()
@@ -171,6 +175,17 @@ class ClientApp:
171
175
  >>> print("ClientApp training running")
172
176
  >>> # Create and return an echo reply message
173
177
  >>> return message.create_reply(content=message.content())
178
+
179
+ Registering a train function with a function-specific modifier:
180
+
181
+ >>> from flwr.client.mod import message_size_mod
182
+ >>>
183
+ >>> app = ClientApp()
184
+ >>>
185
+ >>> @app.train(mods=[message_size_mod])
186
+ >>> def train(message: Message, context: Context) -> Message:
187
+ >>> print("ClientApp training running with message size mod")
188
+ >>> return message.create_reply(content=message.content())
174
189
  """
175
190
 
176
191
  def train_decorator(train_fn: ClientAppCallable) -> ClientAppCallable:
@@ -182,18 +197,22 @@ class ClientApp:
182
197
 
183
198
  # Register provided function with the ClientApp object
184
199
  # Wrap mods around the wrapped step function
185
- self._train = make_ffn(train_fn, self._mods)
200
+ self._train = make_ffn(train_fn, self._mods + (mods or []))
186
201
 
187
202
  # Return provided function unmodified
188
203
  return train_fn
189
204
 
190
205
  return train_decorator
191
206
 
192
- def evaluate(self) -> Callable[[ClientAppCallable], ClientAppCallable]:
207
+ def evaluate(
208
+ self, mods: Optional[list[Mod]] = None
209
+ ) -> Callable[[ClientAppCallable], ClientAppCallable]:
193
210
  """Return a decorator that registers the evaluate fn with the client app.
194
211
 
195
212
  Examples
196
213
  --------
214
+ Registering an evaluate function:
215
+
197
216
  >>> app = ClientApp()
198
217
  >>>
199
218
  >>> @app.evaluate()
@@ -201,6 +220,18 @@ class ClientApp:
201
220
  >>> print("ClientApp evaluation running")
202
221
  >>> # Create and return an echo reply message
203
222
  >>> return message.create_reply(content=message.content())
223
+
224
+ Registering an evaluate function with a function-specific modifier:
225
+
226
+ >>> from flwr.client.mod import message_size_mod
227
+ >>>
228
+ >>> app = ClientApp()
229
+ >>>
230
+ >>> @app.evaluate(mods=[message_size_mod])
231
+ >>> def evaluate(message: Message, context: Context) -> Message:
232
+ >>> print("ClientApp evaluation running with message size mod")
233
+ >>> # Create and return an echo reply message
234
+ >>> return message.create_reply(content=message.content())
204
235
  """
205
236
 
206
237
  def evaluate_decorator(evaluate_fn: ClientAppCallable) -> ClientAppCallable:
@@ -212,18 +243,22 @@ class ClientApp:
212
243
 
213
244
  # Register provided function with the ClientApp object
214
245
  # Wrap mods around the wrapped step function
215
- self._evaluate = make_ffn(evaluate_fn, self._mods)
246
+ self._evaluate = make_ffn(evaluate_fn, self._mods + (mods or []))
216
247
 
217
248
  # Return provided function unmodified
218
249
  return evaluate_fn
219
250
 
220
251
  return evaluate_decorator
221
252
 
222
- def query(self) -> Callable[[ClientAppCallable], ClientAppCallable]:
253
+ def query(
254
+ self, mods: Optional[list[Mod]] = None
255
+ ) -> Callable[[ClientAppCallable], ClientAppCallable]:
223
256
  """Return a decorator that registers the query fn with the client app.
224
257
 
225
258
  Examples
226
259
  --------
260
+ Registering a query function:
261
+
227
262
  >>> app = ClientApp()
228
263
  >>>
229
264
  >>> @app.query()
@@ -231,6 +266,18 @@ class ClientApp:
231
266
  >>> print("ClientApp query running")
232
267
  >>> # Create and return an echo reply message
233
268
  >>> return message.create_reply(content=message.content())
269
+
270
+ Registering a query function with a function-specific modifier:
271
+
272
+ >>> from flwr.client.mod import message_size_mod
273
+ >>>
274
+ >>> app = ClientApp()
275
+ >>>
276
+ >>> @app.query(mods=[message_size_mod])
277
+ >>> def query(message: Message, context: Context) -> Message:
278
+ >>> print("ClientApp query running with message size mod")
279
+ >>> # Create and return an echo reply message
280
+ >>> return message.create_reply(content=message.content())
234
281
  """
235
282
 
236
283
  def query_decorator(query_fn: ClientAppCallable) -> ClientAppCallable:
@@ -242,7 +289,7 @@ class ClientApp:
242
289
 
243
290
  # Register provided function with the ClientApp object
244
291
  # Wrap mods around the wrapped step function
245
- self._query = make_ffn(query_fn, self._mods)
292
+ self._query = make_ffn(query_fn, self._mods + (mods or []))
246
293
 
247
294
  # Return provided function unmodified
248
295
  return query_fn
flwr/common/address.py CHANGED
@@ -15,10 +15,13 @@
15
15
  """Flower IP address utils."""
16
16
 
17
17
 
18
+ import re
18
19
  import socket
19
20
  from ipaddress import ip_address
20
21
  from typing import Optional
21
22
 
23
+ import grpc
24
+
22
25
  IPV6: int = 6
23
26
 
24
27
 
@@ -101,3 +104,35 @@ def is_port_in_use(address: str) -> bool:
101
104
  return True
102
105
 
103
106
  return False
107
+
108
+
109
+ def get_ip_address_from_servicer_context(context: grpc.ServicerContext) -> str:
110
+ """Extract the client's IPv4 or IPv6 address from the gRPC ServicerContext.
111
+
112
+ Parameters
113
+ ----------
114
+ context : grpc.ServicerContext
115
+ The gRPC ServicerContext object. The context.peer() returns a string like
116
+ "ipv4:127.0.0.1:56789" for IPv4 and "ipv6:[2001:db8::1]:54321" for IPv6.
117
+
118
+ Returns
119
+ -------
120
+ str
121
+ If one of the format matches, the function will return the client's IP address,
122
+ otherwise, it will raise a ValueError.
123
+ """
124
+ peer: str = context.peer()
125
+ # Match IPv4: "ipv4:IP:port"
126
+ ipv4_match = re.match(r"^ipv4:(?P<ip>[^:]+):", peer)
127
+ if ipv4_match:
128
+ return ipv4_match.group("ip")
129
+
130
+ # Match IPv6: "ipv6:[IP]:port"
131
+ ipv6_match = re.match(r"^ipv6:\[(?P<ip>[^\]]+)\]:", peer)
132
+ if ipv6_match:
133
+ return ipv6_match.group("ip")
134
+
135
+ raise ValueError(
136
+ f"Unsupported peer address format: {peer} for the transport protocol. "
137
+ "The supported formats are ipv4:IP:port and ipv6:[IP]:port."
138
+ )
@@ -15,26 +15,17 @@
15
15
  """Conversion utility functions for Records."""
16
16
 
17
17
 
18
- from io import BytesIO
19
-
20
- import numpy as np
21
-
22
- from ..constant import SType
18
+ from ..logger import warn_deprecated_feature
23
19
  from ..typing import NDArray
24
20
  from .parametersrecord import Array
25
21
 
22
+ WARN_DEPRECATED_MESSAGE = (
23
+ "`array_from_numpy` is deprecated. Instead, use the `Array(ndarray)` class "
24
+ "directly or `Array.from_numpy_ndarray(ndarray)`."
25
+ )
26
+
26
27
 
27
28
  def array_from_numpy(ndarray: NDArray) -> Array:
28
29
  """Create Array from NumPy ndarray."""
29
- buffer = BytesIO()
30
- # WARNING: NEVER set allow_pickle to true.
31
- # Reason: loading pickled data can execute arbitrary code
32
- # Source: https://numpy.org/doc/stable/reference/generated/numpy.save.html
33
- np.save(buffer, ndarray, allow_pickle=False)
34
- data = buffer.getvalue()
35
- return Array(
36
- dtype=str(ndarray.dtype),
37
- shape=list(ndarray.shape),
38
- stype=SType.NUMPY,
39
- data=data,
40
- )
30
+ warn_deprecated_feature(WARN_DEPRECATED_MESSAGE)
31
+ return Array.from_numpy_ndarray(ndarray)
@@ -15,10 +15,12 @@
15
15
  """ParametersRecord and Array."""
16
16
 
17
17
 
18
+ from __future__ import annotations
19
+
18
20
  from collections import OrderedDict
19
21
  from dataclasses import dataclass
20
22
  from io import BytesIO
21
- from typing import Optional, cast
23
+ from typing import Any, cast, overload
22
24
 
23
25
  import numpy as np
24
26
 
@@ -27,29 +29,64 @@ from ..typing import NDArray
27
29
  from .typeddict import TypedDict
28
30
 
29
31
 
32
+ def _raise_array_init_error() -> None:
33
+ raise TypeError(
34
+ f"Invalid arguments for {Array.__qualname__}. Expected either a "
35
+ "NumPy ndarray, or explicit dtype/shape/stype/data values."
36
+ )
37
+
38
+
30
39
  @dataclass
31
40
  class Array:
32
41
  """Array type.
33
42
 
34
43
  A dataclass containing serialized data from an array-like or tensor-like object
35
- along with some metadata about it.
44
+ along with metadata about it. The class can be initialized in one of two ways:
45
+
46
+ 1. By specifying explicit values for `dtype`, `shape`, `stype`, and `data`.
47
+ 2. By providing a NumPy ndarray (via the `ndarray` argument).
48
+
49
+ In scenario (2), the `dtype`, `shape`, `stype`, and `data` are automatically
50
+ derived from the input. In scenario (1), these fields must be specified manually.
36
51
 
37
52
  Parameters
38
53
  ----------
39
- dtype : str
40
- A string representing the data type of the serialised object (e.g. `np.float32`)
54
+ dtype : Optional[str] (default: None)
55
+ A string representing the data type of the serialized object (e.g. `"float32"`).
56
+ Only required if you are not passing in a ndarray.
41
57
 
42
- shape : List[int]
43
- A list representing the shape of the unserialized array-like object. This is
44
- used to deserialize the data (depending on the serialization method) or simply
45
- as a metadata field.
58
+ shape : Optional[list[int]] (default: None)
59
+ A list representing the shape of the unserialized array-like object. Only
60
+ required if you are not passing in a ndarray.
46
61
 
47
- stype : str
48
- A string indicating the type of serialisation mechanism used to generate the
49
- bytes in `data` from an array-like or tensor-like object.
62
+ stype : Optional[str] (default: None)
63
+ A string indicating the serialization mechanism used to generate the bytes in
64
+ `data` from an array-like or tensor-like object. Only required if you are not
65
+ passing in a ndarray.
50
66
 
51
- data: bytes
52
- A buffer of bytes containing the data.
67
+ data : Optional[bytes] (default: None)
68
+ A buffer of bytes containing the data. Only required if you are not passing in
69
+ a ndarray.
70
+
71
+ ndarray : Optional[NDArray] (default: None)
72
+ A NumPy ndarray. If provided, the `dtype`, `shape`, `stype`, and `data`
73
+ fields are derived automatically from it.
74
+
75
+ Examples
76
+ --------
77
+ Initializing by specifying all fields directly:
78
+
79
+ >>> arr1 = Array(
80
+ >>> dtype="float32",
81
+ >>> shape=[3, 3],
82
+ >>> stype="numpy.ndarray",
83
+ >>> data=b"serialized_data...",
84
+ >>> )
85
+
86
+ Initializing with a NumPy ndarray:
87
+
88
+ >>> import numpy as np
89
+ >>> arr2 = Array(np.random.randn(3, 3))
53
90
  """
54
91
 
55
92
  dtype: str
@@ -57,6 +94,105 @@ class Array:
57
94
  stype: str
58
95
  data: bytes
59
96
 
97
+ @overload
98
+ def __init__( # noqa: E704
99
+ self, dtype: str, shape: list[int], stype: str, data: bytes
100
+ ) -> None: ...
101
+
102
+ @overload
103
+ def __init__(self, ndarray: NDArray) -> None: ... # noqa: E704
104
+
105
+ def __init__( # pylint: disable=too-many-arguments, too-many-locals
106
+ self,
107
+ *args: Any,
108
+ dtype: str | None = None,
109
+ shape: list[int] | None = None,
110
+ stype: str | None = None,
111
+ data: bytes | None = None,
112
+ ndarray: NDArray | None = None,
113
+ ) -> None:
114
+ # Determine the initialization method and validate input arguments.
115
+ # Support two initialization formats:
116
+ # 1. Array(dtype: str, shape: list[int], stype: str, data: bytes)
117
+ # 2. Array(ndarray: NDArray)
118
+
119
+ # Initialize all arguments
120
+ # If more than 4 positional arguments are provided, raise an error.
121
+ if len(args) > 4:
122
+ _raise_array_init_error()
123
+ all_args = [None] * 4
124
+ for i, arg in enumerate(args):
125
+ all_args[i] = arg
126
+ init_method: str | None = None # Track which init method is being used
127
+
128
+ # Try to assign a value to all_args[index] if it's not already set.
129
+ # If an initialization method is provided, update init_method.
130
+ def _try_set_arg(index: int, arg: Any, method: str) -> None:
131
+ # Skip if arg is None
132
+ if arg is None:
133
+ return
134
+ # Raise an error if all_args[index] is already set
135
+ if all_args[index] is not None:
136
+ _raise_array_init_error()
137
+ # Raise an error if a different initialization method is already set
138
+ nonlocal init_method
139
+ if init_method is not None and init_method != method:
140
+ _raise_array_init_error()
141
+ # Set init_method and all_args[index]
142
+ if init_method is None:
143
+ init_method = method
144
+ all_args[index] = arg
145
+
146
+ # Try to set keyword arguments in all_args
147
+ _try_set_arg(0, dtype, "direct")
148
+ _try_set_arg(1, shape, "direct")
149
+ _try_set_arg(2, stype, "direct")
150
+ _try_set_arg(3, data, "direct")
151
+ _try_set_arg(0, ndarray, "ndarray")
152
+
153
+ # Check if all arguments are correctly set
154
+ all_args = [arg for arg in all_args if arg is not None]
155
+
156
+ # Handle direct field initialization
157
+ if not init_method or init_method == "direct":
158
+ if (
159
+ len(all_args) == 4 # pylint: disable=too-many-boolean-expressions
160
+ and isinstance(all_args[0], str)
161
+ and isinstance(all_args[1], list)
162
+ and all(isinstance(i, int) for i in all_args[1])
163
+ and isinstance(all_args[2], str)
164
+ and isinstance(all_args[3], bytes)
165
+ ):
166
+ self.dtype, self.shape, self.stype, self.data = all_args
167
+ return
168
+
169
+ # Handle NumPy array
170
+ if not init_method or init_method == "ndarray":
171
+ if len(all_args) == 1 and isinstance(all_args[0], np.ndarray):
172
+ self.__dict__.update(self.from_numpy_ndarray(all_args[0]).__dict__)
173
+ return
174
+
175
+ _raise_array_init_error()
176
+
177
+ @classmethod
178
+ def from_numpy_ndarray(cls, ndarray: NDArray) -> Array:
179
+ """Create Array from NumPy ndarray."""
180
+ assert isinstance(
181
+ ndarray, np.ndarray
182
+ ), f"Expected NumPy ndarray, got {type(ndarray)}"
183
+ buffer = BytesIO()
184
+ # WARNING: NEVER set allow_pickle to true.
185
+ # Reason: loading pickled data can execute arbitrary code
186
+ # Source: https://numpy.org/doc/stable/reference/generated/numpy.save.html
187
+ np.save(buffer, ndarray, allow_pickle=False)
188
+ data = buffer.getvalue()
189
+ return Array(
190
+ dtype=str(ndarray.dtype),
191
+ shape=list(ndarray.shape),
192
+ stype=SType.NUMPY,
193
+ data=data,
194
+ )
195
+
60
196
  def numpy(self) -> NDArray:
61
197
  """Return the array as a NumPy array."""
62
198
  if self.stype != SType.NUMPY:
@@ -117,7 +253,6 @@ class ParametersRecord(TypedDict[str, Array]):
117
253
 
118
254
  >>> import numpy as np
119
255
  >>> from flwr.common import ParametersRecord
120
- >>> from flwr.common import array_from_numpy
121
256
  >>>
122
257
  >>> # Let's create a simple NumPy array
123
258
  >>> arr_np = np.random.randn(3, 3)
@@ -128,7 +263,7 @@ class ParametersRecord(TypedDict[str, Array]):
128
263
  >>> [-0.10758364, 1.97619858, -0.37120501]])
129
264
  >>>
130
265
  >>> # Let's create an Array out of it
131
- >>> arr = array_from_numpy(arr_np)
266
+ >>> arr = Array(arr_np)
132
267
  >>>
133
268
  >>> # If we print it you'll see (note the binary data)
134
269
  >>> Array(dtype='float64', shape=[3,3], stype='numpy.ndarray', data=b'@\x99\x18...')
@@ -176,7 +311,7 @@ class ParametersRecord(TypedDict[str, Array]):
176
311
 
177
312
  def __init__(
178
313
  self,
179
- array_dict: Optional[OrderedDict[str, Array]] = None,
314
+ array_dict: OrderedDict[str, Array] | None = None,
180
315
  keep_input: bool = False,
181
316
  ) -> None:
182
317
  super().__init__(_check_key, _check_value)
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.1
2
2
  Name: flwr-nightly
3
- Version: 1.16.0.dev20250224
3
+ Version: 1.16.0.dev20250226
4
4
  Summary: Flower: A Friendly Federated AI Framework
5
5
  Home-page: https://flower.ai
6
6
  License: Apache-2.0
@@ -74,7 +74,7 @@ flwr/cli/utils.py,sha256=D9XcpxzwkGPNdwX16o0kI-sYnRDMlWYyKNIpz6npRhQ,11236
74
74
  flwr/client/__init__.py,sha256=DGDoO0AEAfz-0CUFmLdyUUweAS64-07AOnmDfWUefK4,1192
75
75
  flwr/client/app.py,sha256=tNnef5wGVfqMiiGiWzAuULyy1QpvCKukiRmNi_a2cQc,34261
76
76
  flwr/client/client.py,sha256=8o58nd9o6ZFcMIaVYPGcV4MSjBG4H0oFgWiv8ZEO3oA,7895
77
- flwr/client/client_app.py,sha256=cTig-N00YzTucbo9zNi6I21J8PlbflU_8J_f5CI-Wpw,10390
77
+ flwr/client/client_app.py,sha256=Vv4rfDcV9ycb9ZuUkhT_8wX7W1GIrALwlvRcUeVel3Y,12161
78
78
  flwr/client/clientapp/__init__.py,sha256=kZqChGnTChQ1WGSUkIlW2S5bc0d0mzDubCAmZUGRpEY,800
79
79
  flwr/client/clientapp/app.py,sha256=Us5Mw3wvGd_6P1zHOf3TNcRGBBulVZDo3LuZOs17WgM,8963
80
80
  flwr/client/clientapp/clientappio_servicer.py,sha256=5L6bjw_j3Mnx9kRFwYwxDNABKurBO5q1jZOWE_X11wQ,8522
@@ -112,7 +112,7 @@ flwr/client/supernode/__init__.py,sha256=SUhWOzcgXRNXk1V9UgB5-FaWukqqrOEajVUHEcP
112
112
  flwr/client/supernode/app.py,sha256=oBbggh56HoieksBkTdDHAJC8VUFbrmGOP0-D9wdcZek,9265
113
113
  flwr/client/typing.py,sha256=dxoTBnTMfqXr5J7G3y-uNjqxYCddvxhu89spfj4Lm2U,1048
114
114
  flwr/common/__init__.py,sha256=TVaoFEJE158aui1TPZQiJCDZX4RNHRyI8I55VC80HhI,3901
115
- flwr/common/address.py,sha256=9KNYE69WW_QVcyumsux3Qn1wmn4J7f13Y9nHASpvzbA,3018
115
+ flwr/common/address.py,sha256=rRaN1JpiCJnit7ImEqZVxURQ69dPihRoyyWn_3I2wh4,4119
116
116
  flwr/common/args.py,sha256=MgkTUXACuySHyNdxrb7-pK0_R-S2Q7W5MnE3onYUf5I,5183
117
117
  flwr/common/auth_plugin/__init__.py,sha256=1Y8Oj3iB49IHDu9tvDih1J74Ygu7k85V9s2A4WORPyA,887
118
118
  flwr/common/auth_plugin/auth_plugin.py,sha256=wgDorBUB4IkK6twQ8vNawRVz7BDPmKdXZBNLqhU9RSs,3871
@@ -135,9 +135,9 @@ flwr/common/parameter.py,sha256=-bFAUayToYDF50FZGrBC1hQYJCQDtB2bbr3ZuVLMtdE,2095
135
135
  flwr/common/pyproject.py,sha256=vEAxl800XiJ1JNJDui8vuVV-08msnB6hLt7o95viZl0,1386
136
136
  flwr/common/record/__init__.py,sha256=LUixpq0Z-lMJwCIu1-4u5HfvRPjRMRgoAc6YJQ6UEOs,1055
137
137
  flwr/common/record/configsrecord.py,sha256=i40jOzBx04ysZKECwaw4FdUXMdY9HgdY8GAqKdTO1Lw,6486
138
- flwr/common/record/conversion_utils.py,sha256=n3I3SI2P6hUjyxbWNc0QAch-SEhfMK6Hm-UUaplAlUc,1393
138
+ flwr/common/record/conversion_utils.py,sha256=ZcsM-vTm_rVtLXLFD2RY3N47V_hUr3ywTdtnpVXnOGU,1202
139
139
  flwr/common/record/metricsrecord.py,sha256=UywkEPbifiu_IyPUFoDJCi8WEVLujlqZERUWAWpc3vs,5752
140
- flwr/common/record/parametersrecord.py,sha256=SasHn35JRHsj8G1UT76FgRjaP4ZJasejvgjBV6HnaTg,7748
140
+ flwr/common/record/parametersrecord.py,sha256=rR0LbeNrKrdK37CiAA56Z5WBq-ZzZ2YNSUkcmr5i2lI,12950
141
141
  flwr/common/record/recordset.py,sha256=qqIFdRZ0ivQhUhztpdxNIvCRDZQXY_zX0kKDEU9mhfM,8319
142
142
  flwr/common/record/typeddict.py,sha256=q5hL2xkXymuiCprHWb69mUmLpWQk_XXQq0hGQ69YPaw,3599
143
143
  flwr/common/recordset_compat.py,sha256=ViSwA26h6Q55ZmV1LLjSJpcKiipV-p_JpCj4wxdE-Ow,14230
@@ -327,8 +327,8 @@ flwr/superexec/exec_servicer.py,sha256=X10ILT-AoGMrB3IgI2mBe9i-QcIVUAl9bucuqVOPY
327
327
  flwr/superexec/exec_user_auth_interceptor.py,sha256=K06OU-l4LnYhTDg071hGJuOaQWEJbZsYi5qxUmmtiG0,3704
328
328
  flwr/superexec/executor.py,sha256=_B55WW2TD1fBINpabSSDRenVHXYmvlfhv-k8hJKU4lQ,3115
329
329
  flwr/superexec/simulation.py,sha256=WQDon15oqpMopAZnwRZoTICYCfHqtkvFSqiTQ2hLD_g,4088
330
- flwr_nightly-1.16.0.dev20250224.dist-info/LICENSE,sha256=z8d0m5b2O9McPEK1xHG_dWgUBT6EfBDz6wA0F7xSPTA,11358
331
- flwr_nightly-1.16.0.dev20250224.dist-info/METADATA,sha256=jmttkR3BVjew5ed7_TGqL_V6lwfQZnZ3kbZEpZXZDrU,15877
332
- flwr_nightly-1.16.0.dev20250224.dist-info/WHEEL,sha256=FMvqSimYX_P7y0a7UY-_Mc83r5zkBZsCYPm7Lr0Bsq4,88
333
- flwr_nightly-1.16.0.dev20250224.dist-info/entry_points.txt,sha256=JlNxX3qhaV18_2yj5a3kJW1ESxm31cal9iS_N_pf1Rk,538
334
- flwr_nightly-1.16.0.dev20250224.dist-info/RECORD,,
330
+ flwr_nightly-1.16.0.dev20250226.dist-info/LICENSE,sha256=z8d0m5b2O9McPEK1xHG_dWgUBT6EfBDz6wA0F7xSPTA,11358
331
+ flwr_nightly-1.16.0.dev20250226.dist-info/METADATA,sha256=9351LF7XOp_SkK7kJWKK2985bCbPYRocxMjwx2UE0bs,15877
332
+ flwr_nightly-1.16.0.dev20250226.dist-info/WHEEL,sha256=FMvqSimYX_P7y0a7UY-_Mc83r5zkBZsCYPm7Lr0Bsq4,88
333
+ flwr_nightly-1.16.0.dev20250226.dist-info/entry_points.txt,sha256=JlNxX3qhaV18_2yj5a3kJW1ESxm31cal9iS_N_pf1Rk,538
334
+ flwr_nightly-1.16.0.dev20250226.dist-info/RECORD,,