flwr-nightly 1.16.0.dev20250206__py3-none-any.whl → 1.16.0.dev20250211__py3-none-any.whl

Sign up to get free protection for your applications and to get access to all the features.
@@ -13,7 +13,7 @@ dataset: [dataset1, dataset2] # TODO: list of datasets you include in your basel
13
13
 
14
14
  > [!IMPORTANT]
15
15
  > To help having all baselines similarly formatted and structured, we have included two scripts in `baselines/dev` that when run will format your code and run some tests checking if it's formatted.
16
- > These checks use standard packages such as `isort`, `black`, `pylint` and others. You as a baseline creator will need to install additional pacakges. These are already specified in the `pyproject.toml` of
16
+ > These checks use standard packages such as `isort`, `black`, `pylint` and others. You as a baseline creator will need to install additional packages. These are already specified in the `pyproject.toml` of
17
17
  > your baseline. Follow these steps:
18
18
 
19
19
  ```bash
@@ -66,9 +66,9 @@ cd .. # so you are in the `flower/baselines` directory
66
66
 
67
67
  ## About this baseline
68
68
 
69
- **What’s implemented:** :warning: *_Concisely describe what experiment(s) (e.g. Figure 1, Table 2, etc) in the publication can be replicated by running the code. Please only use a few sentences. ”_*
69
+ **What’s implemented:** :warning: *_Concisely describe what experiment(s) (e.g. Figure 1, Table 2, etc.) in the publication can be replicated by running the code. Please only use a few sentences. ”_*
70
70
 
71
- **Datasets:** :warning: *_List the datasets you used (if you used a medium to large dataset, >10GB please also include the sizes of the dataset). We highly recommend using [FlowerDatasets](https://flower.ai/docs/datasets/index.html) to download and partition your dataset. If you have other ways to download the data, you can also use `FlowerDatasets` to partiion it._*
71
+ **Datasets:** :warning: *_List the datasets you used (if you used a medium to large dataset, >10GB please also include the sizes of the dataset). We highly recommend using [FlowerDatasets](https://flower.ai/docs/datasets/index.html) to download and partition your dataset. If you have other ways to download the data, you can also use `FlowerDatasets` to partition it._*
72
72
 
73
73
  **Hardware Setup:** :warning: *_Give some details about the hardware (e.g. a server with 8x V100 32GB and 256GB of RAM) you used to run the experiments for this baseline. Indicate how long it took to run the experiments. Someone out there might not have access to the same resources you have so, could you list the absolute minimum hardware needed to run the experiment in a reasonable amount of time ? (e.g. minimum is 1x 16GB GPU otherwise a client model can’t be trained with a sufficiently large batch size). Could you test this works too?_*
74
74
 
@@ -122,6 +122,6 @@ flwr run . --run-config learning-rate=0.1,coefficient=0.123
122
122
  flwr run . --run-config <my-big-experiment-config>.toml
123
123
  ```
124
124
 
125
- :warning: _It is preferable to show a single commmand (or multilple commands if they belong to the same experiment) and then a table/plot with the expected results, instead of showing all the commands first and then all the results/plots._
125
+ :warning: _It is preferable to show a single command (or multiple commands if they belong to the same experiment) and then a table/plot with the expected results, instead of showing all the commands first and then all the results/plots._
126
126
  :warning: _If you present plots or other figures, please include either a Jupyter notebook showing how to create them or include a utility function that can be called after the experiments finish running._
127
127
  :warning: If you include plots or figures, save them in `.png` format and place them in a new directory named `_static` at the same level as your `README.md`.
@@ -18,7 +18,7 @@ Refer to the [How to Run Simulations](https://flower.ai/docs/framework/how-to-ru
18
18
 
19
19
  ## Run with the Deployment Engine
20
20
 
21
- Follow this [how-to guide](https://flower.ai/docs/framework/how-to-run-flower-with-deployment-engine.html) to run the same app in this example but with Flower's Deployment Engine. After that, you might be intersted in setting up [secure TLS-enabled communications](https://flower.ai/docs/framework/how-to-enable-tls-connections.html) and [SuperNode authentication](https://flower.ai/docs/framework/how-to-authenticate-supernodes.html) in your federation.
21
+ Follow this [how-to guide](https://flower.ai/docs/framework/how-to-run-flower-with-deployment-engine.html) to run the same app in this example but with Flower's Deployment Engine. After that, you might be interested in setting up [secure TLS-enabled communications](https://flower.ai/docs/framework/how-to-enable-tls-connections.html) and [SuperNode authentication](https://flower.ai/docs/framework/how-to-authenticate-supernodes.html) in your federation.
22
22
 
23
23
  You can run Flower on Docker too! Check out the [Flower with Docker](https://flower.ai/docs/framework/docker/index.html) documentation.
24
24
 
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.1
2
2
  Name: flwr-nightly
3
- Version: 1.16.0.dev20250206
3
+ Version: 1.16.0.dev20250211
4
4
  Summary: Flower: A Friendly Federated AI Framework
5
5
  Home-page: https://flower.ai
6
6
  License: Apache-2.0
@@ -18,9 +18,9 @@ flwr/cli/new/new.py,sha256=scyyKt8mzkc3El1bypgkHjKwVQEc2-q4I50PxriPFdI,9922
18
18
  flwr/cli/new/templates/__init__.py,sha256=4luU8RL-CK8JJCstQ_ON809W9bNTkY1l9zSaPKBkgwY,725
19
19
  flwr/cli/new/templates/app/.gitignore.tpl,sha256=HZJcGQoxp7aUzaPg8Uqch3kNrIESwr9yjimDxJYgXVY,3104
20
20
  flwr/cli/new/templates/app/LICENSE.tpl,sha256=WNHhf_5RCaeuKWyq_K39vmp9F28LxKsB4SpomwSZ2L0,11357
21
- flwr/cli/new/templates/app/README.baseline.md.tpl,sha256=4dg2aBS-NIleVyDlxsG8m65Af6LIJ-pZA5ICjGFU5XA,9641
21
+ flwr/cli/new/templates/app/README.baseline.md.tpl,sha256=oClo5eR0iLuPzBT7uS3ikhNRAnySz_lhkHFElixKyJM,9640
22
22
  flwr/cli/new/templates/app/README.flowertune.md.tpl,sha256=QSG51uifue2KVZz2ZNw8kmOStS7svC2AQ2gTa5E7Bhs,3326
23
- flwr/cli/new/templates/app/README.md.tpl,sha256=XOtDKeo3sVapPtuUAnlQwr6Fj1lA9y1fJCpS8xnaPfw,1392
23
+ flwr/cli/new/templates/app/README.md.tpl,sha256=qZ6XHeCdSoDwtJqgcyi-ChgOCLMwQ3E42rcY-9qhlUY,1392
24
24
  flwr/cli/new/templates/app/__init__.py,sha256=DU7QMY7IhMQyuwm_tja66xU0KXTWQFqzfTqwg-_NJdE,729
25
25
  flwr/cli/new/templates/app/code/__init__.baseline.py.tpl,sha256=YkHAgppUeD2BnBoGfVB6dEvBfjuIPGsU1gw4CiUi3qA,40
26
26
  flwr/cli/new/templates/app/code/__init__.py,sha256=EM6vfvgAILKPaPn7H1wMV1Wi01WyZCP_Eg6NxD6oWg8,736
@@ -327,8 +327,8 @@ flwr/superexec/exec_servicer.py,sha256=X10ILT-AoGMrB3IgI2mBe9i-QcIVUAl9bucuqVOPY
327
327
  flwr/superexec/exec_user_auth_interceptor.py,sha256=K06OU-l4LnYhTDg071hGJuOaQWEJbZsYi5qxUmmtiG0,3704
328
328
  flwr/superexec/executor.py,sha256=_B55WW2TD1fBINpabSSDRenVHXYmvlfhv-k8hJKU4lQ,3115
329
329
  flwr/superexec/simulation.py,sha256=WQDon15oqpMopAZnwRZoTICYCfHqtkvFSqiTQ2hLD_g,4088
330
- flwr_nightly-1.16.0.dev20250206.dist-info/LICENSE,sha256=z8d0m5b2O9McPEK1xHG_dWgUBT6EfBDz6wA0F7xSPTA,11358
331
- flwr_nightly-1.16.0.dev20250206.dist-info/METADATA,sha256=j8tcyoSHcqT8I9q1Lv5hOHVZwkNE1ZTx9gwKCpTZsU0,15873
332
- flwr_nightly-1.16.0.dev20250206.dist-info/WHEEL,sha256=FMvqSimYX_P7y0a7UY-_Mc83r5zkBZsCYPm7Lr0Bsq4,88
333
- flwr_nightly-1.16.0.dev20250206.dist-info/entry_points.txt,sha256=JlNxX3qhaV18_2yj5a3kJW1ESxm31cal9iS_N_pf1Rk,538
334
- flwr_nightly-1.16.0.dev20250206.dist-info/RECORD,,
330
+ flwr_nightly-1.16.0.dev20250211.dist-info/LICENSE,sha256=z8d0m5b2O9McPEK1xHG_dWgUBT6EfBDz6wA0F7xSPTA,11358
331
+ flwr_nightly-1.16.0.dev20250211.dist-info/METADATA,sha256=OXmCNwrVFZa1psnMAh9no5fMXkFRXhl1eXd_2BZT-4U,15873
332
+ flwr_nightly-1.16.0.dev20250211.dist-info/WHEEL,sha256=FMvqSimYX_P7y0a7UY-_Mc83r5zkBZsCYPm7Lr0Bsq4,88
333
+ flwr_nightly-1.16.0.dev20250211.dist-info/entry_points.txt,sha256=JlNxX3qhaV18_2yj5a3kJW1ESxm31cal9iS_N_pf1Rk,538
334
+ flwr_nightly-1.16.0.dev20250211.dist-info/RECORD,,