flwr-nightly 1.13.0.dev20241030__py3-none-any.whl → 1.13.0.dev20241101__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of flwr-nightly might be problematic. Click here for more details.

@@ -71,7 +71,7 @@ def load_data(partition_id: int, num_partitions: int, dataset_name: str):
71
71
  partitioners={"train": partitioner},
72
72
  )
73
73
  client_trainset = FDS.load_partition(partition_id, "train")
74
- client_trainset = reformat(client_trainset, llm_task="generalnlp")
74
+ client_trainset = reformat(client_trainset, llm_task="$llm_challenge_str")
75
75
  return client_trainset
76
76
 
77
77
 
@@ -10,6 +10,7 @@ license = "Apache-2.0"
10
10
  dependencies = [
11
11
  "flwr[simulation]>=1.12.0",
12
12
  "flwr-datasets>=0.3.0",
13
+ "torch==2.3.1",
13
14
  "trl==0.8.1",
14
15
  "bitsandbytes==0.43.0",
15
16
  "scipy==1.13.0",
flwr/server/app.py CHANGED
@@ -397,11 +397,9 @@ def _flwr_serverapp_scheduler(
397
397
  else:
398
398
  command.append("--insecure")
399
399
 
400
- subprocess.run(
400
+ subprocess.Popen( # pylint: disable=consider-using-with
401
401
  command,
402
- stdout=None,
403
- stderr=None,
404
- check=True,
402
+ text=True,
405
403
  )
406
404
 
407
405
 
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.1
2
2
  Name: flwr-nightly
3
- Version: 1.13.0.dev20241030
3
+ Version: 1.13.0.dev20241101
4
4
  Summary: Flower: A Friendly Federated Learning Framework
5
5
  Home-page: https://flower.ai
6
6
  License: Apache-2.0
@@ -29,7 +29,7 @@ flwr/cli/new/templates/app/code/client.tensorflow.py.tpl,sha256=yBiiU7B9Kf70U52c
29
29
  flwr/cli/new/templates/app/code/dataset.baseline.py.tpl,sha256=jbd_exHAk2-Blu_kVutjPO6a_dkJQWb232zxSeXIZ1k,1453
30
30
  flwr/cli/new/templates/app/code/flwr_tune/__init__.py,sha256=JgNgBtKdm1jKM9625WxappCAVUGtYAmcjKSsXJ1u3ZQ,748
31
31
  flwr/cli/new/templates/app/code/flwr_tune/client_app.py.tpl,sha256=Zgr_DwzP518E0lcGjs_togOeksdTVjwGU8sK6g8Wd0U,3765
32
- flwr/cli/new/templates/app/code/flwr_tune/dataset.py.tpl,sha256=iAujo8WubDGrz0gg_6zl-TUvkIbNRJM-VJmwKJ9tGY8,3051
32
+ flwr/cli/new/templates/app/code/flwr_tune/dataset.py.tpl,sha256=1NA2Sf-EviNtOaYN4dnFk6v2tcZVsY3-eXY84wOXVng,3059
33
33
  flwr/cli/new/templates/app/code/flwr_tune/models.py.tpl,sha256=ONJw_BgBWEofVNGRDu8KAIThb8saRQlUEK4uS2u_6To,2449
34
34
  flwr/cli/new/templates/app/code/flwr_tune/server_app.py.tpl,sha256=xkmmBKr0oGmewP56SP3s_6FG6JOVlGlquhg3a9nYMis,3270
35
35
  flwr/cli/new/templates/app/code/flwr_tune/strategy.py.tpl,sha256=BhiqRg9w1MGuU5h2_vrLhRc0oHItYzE69qX_JI411k8,2754
@@ -52,7 +52,7 @@ flwr/cli/new/templates/app/code/task.sklearn.py.tpl,sha256=SeIIo0rr_6ffn4Qx2xELD
52
52
  flwr/cli/new/templates/app/code/task.tensorflow.py.tpl,sha256=SKXAZdgBnPpbAbJ90Rb7oQ5ilnopBx_j_JNFoUDeEAI,1732
53
53
  flwr/cli/new/templates/app/code/utils.baseline.py.tpl,sha256=YkHAgppUeD2BnBoGfVB6dEvBfjuIPGsU1gw4CiUi3qA,40
54
54
  flwr/cli/new/templates/app/pyproject.baseline.toml.tpl,sha256=8zSefvfRhuVo_ZLEDbIlLMQJa-dr2iIRhAgqwaaKMYk,2666
55
- flwr/cli/new/templates/app/pyproject.flowertune.toml.tpl,sha256=-oYa_Zgf9LEnyrxzSI6pL78rn2iWzYd6iJCtACU25CE,1853
55
+ flwr/cli/new/templates/app/pyproject.flowertune.toml.tpl,sha256=erfZhYcdU1KAXG4AVXCMP2pUMdZI8mcgijArJDrpwIs,1873
56
56
  flwr/cli/new/templates/app/pyproject.huggingface.toml.tpl,sha256=foFjtZ8lI67RLAMxShdoph29i9IAT4jS0lW1wH3sWFQ,1143
57
57
  flwr/cli/new/templates/app/pyproject.jax.toml.tpl,sha256=hna-BiIVZvUtTb8-ptaGAHBXJrvVPqnh44NYt4dA_hk,673
58
58
  flwr/cli/new/templates/app/pyproject.mlx.toml.tpl,sha256=GiRhllAQnMfH3mP4Cr9qpa1qvGwzbcULCa-QDVEbLOY,765
@@ -203,7 +203,7 @@ flwr/proto/transport_pb2_grpc.py,sha256=vLN3EHtx2aEEMCO4f1Upu-l27BPzd3-5pV-u8wPc
203
203
  flwr/proto/transport_pb2_grpc.pyi,sha256=AGXf8RiIiW2J5IKMlm_3qT3AzcDa4F3P5IqUjve_esA,766
204
204
  flwr/py.typed,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
205
205
  flwr/server/__init__.py,sha256=cEg1oecBu4cKB69iJCqWEylC8b5XW47bl7rQiJsdTvM,1528
206
- flwr/server/app.py,sha256=xt4o1Ls7BYEZ-R2Ro6_-zaBmv5yn2PtMH6p66mfZSmU,28222
206
+ flwr/server/app.py,sha256=2kuS4TsM0RmfnrST209BkKs7dkI9W3jyP9AMulIeNNE,28204
207
207
  flwr/server/client_manager.py,sha256=7Ese0tgrH-i-ms363feYZJKwB8gWnXSmg_hYF2Bju4U,6227
208
208
  flwr/server/client_proxy.py,sha256=4G-oTwhb45sfWLx2uZdcXD98IZwdTS6F88xe3akCdUg,2399
209
209
  flwr/server/compat/__init__.py,sha256=VxnJtJyOjNFQXMNi9hIuzNlZM5n0Hj1p3aq_Pm2udw4,892
@@ -306,8 +306,8 @@ flwr/superexec/exec_grpc.py,sha256=OuhBAk7hiky9rjGceinLGIXqchtzGPQThZnwyYv6Ei0,2
306
306
  flwr/superexec/exec_servicer.py,sha256=6dUCijBYhrntZeQj82q2kVOUNFu_tsFOwT5HkkLYn9Q,3927
307
307
  flwr/superexec/executor.py,sha256=QA2_hQJxmN3zc75oEkDs-zkWAHesz59jE0P5lem-5VU,3073
308
308
  flwr/superexec/simulation.py,sha256=Ny3MJnNlgzW4K3NbgsgDM0LKKcoCd_q3LqNqb0GhWLI,7640
309
- flwr_nightly-1.13.0.dev20241030.dist-info/LICENSE,sha256=z8d0m5b2O9McPEK1xHG_dWgUBT6EfBDz6wA0F7xSPTA,11358
310
- flwr_nightly-1.13.0.dev20241030.dist-info/METADATA,sha256=Uz_4aLDl_yW5l5At_04N_oqhAid1FC9yx7sxME_0uLY,15618
311
- flwr_nightly-1.13.0.dev20241030.dist-info/WHEEL,sha256=FMvqSimYX_P7y0a7UY-_Mc83r5zkBZsCYPm7Lr0Bsq4,88
312
- flwr_nightly-1.13.0.dev20241030.dist-info/entry_points.txt,sha256=FxJQ96pmcNF2OvkTH6XF-Ip2PNrHvykjArkvkjQC7Mk,486
313
- flwr_nightly-1.13.0.dev20241030.dist-info/RECORD,,
309
+ flwr_nightly-1.13.0.dev20241101.dist-info/LICENSE,sha256=z8d0m5b2O9McPEK1xHG_dWgUBT6EfBDz6wA0F7xSPTA,11358
310
+ flwr_nightly-1.13.0.dev20241101.dist-info/METADATA,sha256=ZsqZgD10M-xdg-cc345KkaFBpVz94-4hyFIGdit8g7w,15618
311
+ flwr_nightly-1.13.0.dev20241101.dist-info/WHEEL,sha256=FMvqSimYX_P7y0a7UY-_Mc83r5zkBZsCYPm7Lr0Bsq4,88
312
+ flwr_nightly-1.13.0.dev20241101.dist-info/entry_points.txt,sha256=FxJQ96pmcNF2OvkTH6XF-Ip2PNrHvykjArkvkjQC7Mk,486
313
+ flwr_nightly-1.13.0.dev20241101.dist-info/RECORD,,