floydnet 0.1.0__py3-none-any.whl → 0.1.1__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
|
@@ -1,6 +1,6 @@
|
|
|
1
1
|
Metadata-Version: 2.4
|
|
2
2
|
Name: floydnet
|
|
3
|
-
Version: 0.1.
|
|
3
|
+
Version: 0.1.1
|
|
4
4
|
Summary: Floyd Multi-Head Attention: a drop-in variant of PyTorch MHA with module and function APIs
|
|
5
5
|
Project-URL: Homepage, https://github.com/ocx-lab/FloydNet
|
|
6
6
|
Project-URL: Repository, https://github.com/ocx-lab/FloydNet
|
|
@@ -230,49 +230,162 @@ Requires-Dist: pytest>=7.4; extra == 'dev'
|
|
|
230
230
|
Requires-Dist: ruff>=0.5; extra == 'dev'
|
|
231
231
|
Description-Content-Type: text/markdown
|
|
232
232
|
|
|
233
|
-
#
|
|
233
|
+
# FloydNet
|
|
234
234
|
|
|
235
|
-
|
|
235
|
+
Official implementation of an ICLR paper (TODO: add paper title, authors, and links/arXiv).
|
|
236
236
|
|
|
237
|
-
|
|
238
|
-
- Functional API: `floyd_scaled_dot_product_attention` mirroring `torch.nn.functional.scaled_dot_product_attention`
|
|
237
|
+

|
|
239
238
|
|
|
240
|
-
|
|
239
|
+
This repository serves two audiences:
|
|
241
240
|
|
|
242
|
-
|
|
241
|
+
- **Engineering users**: reusable PyTorch components (functional attention APIs and Transformer-style blocks) under `src/`.
|
|
242
|
+
- **Research users**: scripts/configs to reproduce paper experiments under `example/`.
|
|
243
243
|
|
|
244
|
+
---
|
|
245
|
+
|
|
246
|
+
## Introduction
|
|
247
|
+
|
|
248
|
+
FloydNet is the official PyTorch implementation accompanying an ICLR paper (TODO).
|
|
249
|
+
The repository provides:
|
|
250
|
+
|
|
251
|
+
1. **Reusable components**: a drop-in attention/Transformer-block interface intended for integration into existing projects.
|
|
252
|
+
2. **Reproduction code**: end-to-end training/evaluation pipelines to reproduce the benchmarks reported in the paper.
|
|
253
|
+
|
|
254
|
+
For algorithmic details, hyperparameter choices, and analysis, please refer to the paper (TODO: link).
|
|
255
|
+
|
|
256
|
+
---
|
|
257
|
+
|
|
258
|
+
## Repository Structure
|
|
259
|
+
|
|
260
|
+
- `src/floydnet/`
|
|
261
|
+
**Library code for reuse**
|
|
262
|
+
Contains the functional attention API and module/block implementations.
|
|
263
|
+
|
|
264
|
+
- `example/`
|
|
265
|
+
**Experiment reproduction code**
|
|
266
|
+
Includes benchmark-specific scripts, configs, and data preparation utilities.
|
|
267
|
+
|
|
268
|
+
---
|
|
269
|
+
|
|
270
|
+
## Using the Attention / Transformer Block
|
|
271
|
+
|
|
272
|
+
This section targets **engineering users** who want to import FloydNet as a dependency.
|
|
273
|
+
|
|
274
|
+
### Installation
|
|
275
|
+
|
|
276
|
+
#### Option A: Install from PyPI
|
|
244
277
|
```bash
|
|
245
|
-
|
|
246
|
-
uv venv --python 3.10
|
|
247
|
-
source .venv/bin/activate
|
|
248
|
-
uv pip install -e .[dev]
|
|
278
|
+
pip install floydnet
|
|
249
279
|
```
|
|
250
280
|
|
|
251
|
-
|
|
252
|
-
|
|
253
|
-
|
|
281
|
+
#### Option B: Install from source
|
|
282
|
+
```bash
|
|
283
|
+
git clone git@github.com:ocx-lab/FloydNet.git
|
|
284
|
+
cd FloydNet
|
|
285
|
+
pip install -e .
|
|
286
|
+
```
|
|
254
287
|
|
|
255
|
-
|
|
256
|
-
|
|
257
|
-
|
|
258
|
-
|
|
288
|
+
> Requirements: Python `>= 3.9`, PyTorch `>= 2.1` (see `pyproject.toml`).
|
|
289
|
+
|
|
290
|
+
### Public API
|
|
291
|
+
|
|
292
|
+
FloydNet re-exports the public API from `src/floydnet/__init__.py`, so you can import from the top-level package:
|
|
293
|
+
|
|
294
|
+
- **Functional API**:
|
|
295
|
+
- `pivotal_attention` (see `src/floydnet/functional.py`)
|
|
296
|
+
- **Module / block API**:
|
|
297
|
+
- `PivotalAttentionBlock` (see `src/floydnet/transformer.py`)
|
|
298
|
+
|
|
299
|
+
```python
|
|
300
|
+
from floydnet import pivotal_attention, PivotalAttentionBlock
|
|
259
301
|
```
|
|
260
302
|
|
|
261
|
-
###
|
|
303
|
+
### Minimal usage example
|
|
304
|
+
|
|
262
305
|
```python
|
|
263
306
|
import torch
|
|
264
|
-
import
|
|
265
|
-
|
|
307
|
+
from floydnet import pivotal_attention, PivotalAttentionBlock
|
|
308
|
+
|
|
309
|
+
# -------------------------
|
|
310
|
+
# Module API (Transformer-style block)
|
|
311
|
+
# Input is a 2D grid: (B, N, N, C)
|
|
312
|
+
# -------------------------
|
|
313
|
+
B, N, C = 2, 16, 64
|
|
314
|
+
x = torch.randn(B, N, N, C)
|
|
266
315
|
|
|
267
|
-
|
|
268
|
-
|
|
269
|
-
v = torch.randn(2, 8, 16, 64)
|
|
270
|
-
out = floyd_scaled_dot_product_attention(q, k, v)
|
|
316
|
+
m = PivotalAttentionBlock(embed_dim=C, num_heads=8, dropout=0.0)
|
|
317
|
+
out = m(x) # (B, N, N, C)
|
|
271
318
|
print(out.shape)
|
|
319
|
+
|
|
320
|
+
# -------------------------
|
|
321
|
+
# Functional API
|
|
322
|
+
# All inputs are 5D: (B, H, N, N, D)
|
|
323
|
+
# -------------------------
|
|
324
|
+
B, H, N, D = 2, 8, 16, 64
|
|
325
|
+
q_ik = torch.randn(B, H, N, N, D)
|
|
326
|
+
k_ij = torch.randn(B, H, N, N, D)
|
|
327
|
+
k_jk = torch.randn(B, H, N, N, D)
|
|
328
|
+
v_ij = torch.randn(B, H, N, N, D)
|
|
329
|
+
v_jk = torch.randn(B, H, N, N, D)
|
|
330
|
+
|
|
331
|
+
y = pivotal_attention(q_ik, k_ij, k_jk, v_ij, v_jk) # (B, H, N, N, D)
|
|
332
|
+
print(y.shape)
|
|
272
333
|
```
|
|
273
334
|
|
|
274
|
-
|
|
275
|
-
|
|
335
|
+
---
|
|
336
|
+
|
|
337
|
+
## Reproducing Paper Results
|
|
338
|
+
|
|
339
|
+
This section targets **research users** who want to reproduce the experiments in the paper.
|
|
340
|
+
|
|
341
|
+
See `example/README.md` For detailed description.
|
|
342
|
+
|
|
343
|
+
### Environment setup
|
|
344
|
+
|
|
345
|
+
We recommend using `uv` to create an isolated environment for the reproduction code under `example/`.
|
|
346
|
+
|
|
347
|
+
```bash
|
|
348
|
+
cd /path/to/FloydNet
|
|
349
|
+
|
|
350
|
+
# 1) Create a uv virtual environment with Python 3.12
|
|
351
|
+
uv venv --python 3.12
|
|
352
|
+
|
|
353
|
+
# 2) Activate it
|
|
354
|
+
source .venv/bin/activate
|
|
355
|
+
|
|
356
|
+
# 3) Install extra dependencies for reproducing paper experiments
|
|
357
|
+
uv pip install -r example/requirements.txt
|
|
358
|
+
|
|
359
|
+
# 4) Install FloydNet (editable) for local development / imports
|
|
360
|
+
uv pip install -e .
|
|
361
|
+
```
|
|
362
|
+
|
|
363
|
+
## Changelog (latest)
|
|
364
|
+
|
|
365
|
+
- Full release with training and evaluation scripts for Graph Count, BREC, and TSP.
|
|
366
|
+
- Added `pivotal_attention3` functional API for 3-Floyd attention.
|
|
367
|
+
- Added additional configuration options in `PivotalAttentionBlock`.
|
|
368
|
+
|
|
369
|
+
The full changelog is in [CHANGELOG.md](CHANGELOG.md).
|
|
370
|
+
|
|
371
|
+
## Citation
|
|
372
|
+
|
|
373
|
+
If you use this code in your research, please cite the paper:
|
|
374
|
+
|
|
375
|
+
```bibtex
|
|
376
|
+
@inproceedings{TODO,
|
|
377
|
+
title = {TODO},
|
|
378
|
+
author = {TODO},
|
|
379
|
+
booktitle = {International Conference on Learning Representations (ICLR)},
|
|
380
|
+
year = {TODO},
|
|
381
|
+
url = {TODO}
|
|
382
|
+
}
|
|
383
|
+
```
|
|
384
|
+
|
|
385
|
+
(Alternatively, see [CITATION.cff](CITATION.cff).)
|
|
386
|
+
|
|
387
|
+
---
|
|
276
388
|
|
|
277
389
|
## License
|
|
278
|
-
|
|
390
|
+
|
|
391
|
+
This project is licensed under the **Apache License 2.0**. See [LICENSE](LICENSE).
|
|
@@ -0,0 +1,4 @@
|
|
|
1
|
+
floydnet-0.1.1.dist-info/METADATA,sha256=NRDtZp6xWpO3XK2Sm4ZUUZ1XzaWlic7Q936GizgI12s,18525
|
|
2
|
+
floydnet-0.1.1.dist-info/WHEEL,sha256=WLgqFyCfm_KASv4WHyYy0P3pM_m7J5L9k2skdKLirC8,87
|
|
3
|
+
floydnet-0.1.1.dist-info/licenses/LICENSE,sha256=xx0jnfkXJvxRnG63LTGOxlggYnIysveWIZ6H3PNdCrQ,11357
|
|
4
|
+
floydnet-0.1.1.dist-info/RECORD,,
|
floydnet-0.1.0.dist-info/RECORD
DELETED
|
@@ -1,4 +0,0 @@
|
|
|
1
|
-
floydnet-0.1.0.dist-info/METADATA,sha256=CEiEOoK6xaTHx3JaiDTML-D28Fu4f1lqcKykJyRjAhs,15507
|
|
2
|
-
floydnet-0.1.0.dist-info/WHEEL,sha256=WLgqFyCfm_KASv4WHyYy0P3pM_m7J5L9k2skdKLirC8,87
|
|
3
|
-
floydnet-0.1.0.dist-info/licenses/LICENSE,sha256=xx0jnfkXJvxRnG63LTGOxlggYnIysveWIZ6H3PNdCrQ,11357
|
|
4
|
-
floydnet-0.1.0.dist-info/RECORD,,
|
|
File without changes
|
|
File without changes
|