flowllm 0.1.3__py3-none-any.whl → 0.1.5__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (81) hide show
  1. flowllm/__init__.py +4 -3
  2. flowllm/app.py +1 -1
  3. flowllm/config/base.yaml +75 -0
  4. flowllm/config/fin_supply.yaml +39 -0
  5. flowllm/config/pydantic_config_parser.py +16 -1
  6. flowllm/context/__init__.py +2 -0
  7. flowllm/context/base_context.py +10 -20
  8. flowllm/context/flow_context.py +45 -2
  9. flowllm/context/service_context.py +69 -10
  10. flowllm/embedding_model/openai_compatible_embedding_model.py +1 -2
  11. flowllm/enumeration/chunk_enum.py +1 -0
  12. flowllm/flow/__init__.py +9 -0
  13. flowllm/flow/base_flow.py +44 -13
  14. flowllm/flow/expression/__init__.py +1 -0
  15. flowllm/flow/{parser → expression}/expression_parser.py +5 -2
  16. flowllm/flow/expression/expression_tool_flow.py +25 -0
  17. flowllm/flow/gallery/__init__.py +1 -8
  18. flowllm/flow/gallery/mock_tool_flow.py +46 -28
  19. flowllm/flow/tool_op_flow.py +97 -0
  20. flowllm/llm/base_llm.py +0 -2
  21. flowllm/op/__init__.py +3 -4
  22. flowllm/op/akshare/get_ak_a_code_op.py +1 -1
  23. flowllm/op/akshare/get_ak_a_info_op.py +1 -1
  24. flowllm/op/base_op.py +232 -16
  25. flowllm/op/base_tool_op.py +47 -0
  26. flowllm/op/gallery/__init__.py +0 -1
  27. flowllm/op/gallery/mock_op.py +13 -7
  28. flowllm/op/llm/__init__.py +3 -0
  29. flowllm/op/{agent/react_v2_op.py → llm/react_llm_op.py} +43 -24
  30. flowllm/op/llm/simple_llm_op.py +48 -0
  31. flowllm/op/llm/stream_llm_op.py +61 -0
  32. flowllm/op/mcp/__init__.py +2 -0
  33. flowllm/op/mcp/ant_op.py +42 -0
  34. flowllm/op/mcp/base_sse_mcp_op.py +28 -0
  35. flowllm/op/parallel_op.py +5 -1
  36. flowllm/op/search/__init__.py +1 -2
  37. flowllm/op/search/dashscope_search_op.py +73 -128
  38. flowllm/op/search/tavily_search_op.py +64 -82
  39. flowllm/op/sequential_op.py +4 -0
  40. flowllm/schema/flow_stream_chunk.py +11 -0
  41. flowllm/schema/service_config.py +8 -3
  42. flowllm/schema/tool_call.py +46 -1
  43. flowllm/service/__init__.py +0 -1
  44. flowllm/service/base_service.py +31 -14
  45. flowllm/service/http_service.py +45 -36
  46. flowllm/service/mcp_service.py +17 -23
  47. flowllm/storage/vector_store/__init__.py +1 -0
  48. flowllm/storage/vector_store/base_vector_store.py +99 -15
  49. flowllm/storage/vector_store/chroma_vector_store.py +250 -8
  50. flowllm/storage/vector_store/es_vector_store.py +288 -32
  51. flowllm/storage/vector_store/local_vector_store.py +206 -9
  52. flowllm/storage/vector_store/memory_vector_store.py +509 -0
  53. flowllm/utils/common_utils.py +54 -0
  54. flowllm/utils/miner_u_pdf_processor.py +726 -0
  55. {flowllm-0.1.3.dist-info → flowllm-0.1.5.dist-info}/METADATA +7 -6
  56. flowllm-0.1.5.dist-info/RECORD +98 -0
  57. flowllm/config/default.yaml +0 -77
  58. flowllm/config/empty.yaml +0 -37
  59. flowllm/flow/gallery/cmd_flow.py +0 -11
  60. flowllm/flow/gallery/code_tool_flow.py +0 -30
  61. flowllm/flow/gallery/dashscope_search_tool_flow.py +0 -34
  62. flowllm/flow/gallery/deepsearch_tool_flow.py +0 -39
  63. flowllm/flow/gallery/expression_tool_flow.py +0 -18
  64. flowllm/flow/gallery/tavily_search_tool_flow.py +0 -30
  65. flowllm/flow/gallery/terminate_tool_flow.py +0 -30
  66. flowllm/flow/parser/__init__.py +0 -0
  67. flowllm/op/agent/__init__.py +0 -1
  68. flowllm/op/agent/react_v1_op.py +0 -109
  69. flowllm/op/agent/react_v1_prompt.yaml +0 -54
  70. flowllm/op/base_ray_op.py +0 -313
  71. flowllm/op/code/__init__.py +0 -1
  72. flowllm/op/code/execute_code_op.py +0 -42
  73. flowllm/op/gallery/terminate_op.py +0 -29
  74. flowllm/op/search/dashscope_deep_research_op.py +0 -267
  75. flowllm/service/cmd_service.py +0 -15
  76. flowllm-0.1.3.dist-info/RECORD +0 -102
  77. /flowllm/op/{agent/react_v2_prompt.yaml → llm/react_llm_prompt.yaml} +0 -0
  78. {flowllm-0.1.3.dist-info → flowllm-0.1.5.dist-info}/WHEEL +0 -0
  79. {flowllm-0.1.3.dist-info → flowllm-0.1.5.dist-info}/entry_points.txt +0 -0
  80. {flowllm-0.1.3.dist-info → flowllm-0.1.5.dist-info}/licenses/LICENSE +0 -0
  81. {flowllm-0.1.3.dist-info → flowllm-0.1.5.dist-info}/top_level.txt +0 -0
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.4
2
2
  Name: flowllm
3
- Version: 0.1.3
3
+ Version: 0.1.5
4
4
  Summary: A flexible framework for building LLM-powered flows and mcp services
5
5
  Author-email: FlowLLM Team <flowllm@example.com>
6
6
  Maintainer-email: FlowLLM Team <flowllm@example.com>
@@ -219,7 +219,7 @@ Classifier: Topic :: Scientific/Engineering :: Artificial Intelligence
219
219
  Classifier: Topic :: Software Development :: Libraries :: Python Modules
220
220
  Classifier: Topic :: Software Development :: Libraries :: Application Frameworks
221
221
  Classifier: Typing :: Typed
222
- Requires-Python: >=3.12
222
+ Requires-Python: >=3.11
223
223
  Description-Content-Type: text/markdown
224
224
  License-File: LICENSE
225
225
  Requires-Dist: akshare
@@ -246,9 +246,10 @@ Requires-Dist: urllib3
246
246
  Requires-Dist: uvicorn[standard]
247
247
  Requires-Dist: chromadb
248
248
  Requires-Dist: elasticsearch
249
- Requires-Dist: ray
250
- Provides-Extra: distributed
251
- Requires-Dist: ray; extra == "distributed"
249
+ Requires-Dist: pyfiglet
250
+ Requires-Dist: rich
251
+ Provides-Extra: dist
252
+ Requires-Dist: ray; extra == "dist"
252
253
  Provides-Extra: all
253
- Requires-Dist: flowllm[distributed]; extra == "all"
254
+ Requires-Dist: flowllm[dist]; extra == "all"
254
255
  Dynamic: license-file
@@ -0,0 +1,98 @@
1
+ flowllm/__init__.py,sha256=pZ88ULKiYoL0K634bdCPZwXzM4qWtaLp0w6CH9QqxCo,489
2
+ flowllm/app.py,sha256=dLeIbsXRztVNG-Upd2F61xSuOJsh8jy8TDhTv7jROv4,252
3
+ flowllm/client/__init__.py,sha256=ruBU6hBC7LWoVg5oNdZBTqi3MhNUhkCYAHhPj-UJKEA,815
4
+ flowllm/client/async_http_client.py,sha256=w3YUsCTlART3HvAIpf30ZIX4m7L7k9f9iZejkNBq_h8,3026
5
+ flowllm/client/http_client.py,sha256=rk6-hF3lqwn8a2igQjBuRz7JOV9lJJrNYlC7Xk18Zwo,2930
6
+ flowllm/client/mcp_client.py,sha256=dFJvHqqVpUv7icIUNKdJpfQI1FXx3zF76Lgnbyyp8Go,4867
7
+ flowllm/client/sync_mcp_client.py,sha256=Csv5hwlPDDCktM9qqLqdQkSG039ooiSurN5DMcJfrq8,4305
8
+ flowllm/config/__init__.py,sha256=fUjhShdU7qN6hfj7blDt7nHBQGlWwbhaa_p9_6vDpg8,57
9
+ flowllm/config/base.yaml,sha256=Zc9jkE-2lrDMg2qS-Cu-Nj1vtxlp5SHVHmWMD2ZuuxM,1379
10
+ flowllm/config/fin_supply.yaml,sha256=QRxw-9COoZFzTwV4bx8Y0h7cUOae6vjmaT7OSeTyTzU,1318
11
+ flowllm/config/pydantic_config_parser.py,sha256=cRfhw5fk5p1ZKx9ijMsMkmmvEu-M15xqFj8pnvTFtvs,7584
12
+ flowllm/context/__init__.py,sha256=dM7ttmA_QuLddTz1JU8QgHtnaL9K3SgQ8OwTkqXEj6Q,69
13
+ flowllm/context/base_context.py,sha256=jm4JBCl8IPUboP4hPnO1llFtJyU3jVg-rtGiHUNXXyA,1742
14
+ flowllm/context/flow_context.py,sha256=NGfB6oFVx0MNClHjhA_mrv66wHee5jvUjz_eSfEYRfo,2244
15
+ flowllm/context/prompt_handler.py,sha256=LbMJDwrzz8HF7HVDyphVSWI1X4QHMebJqLP4XeXkXOE,2667
16
+ flowllm/context/registry.py,sha256=zJf8SYi8ziFTdf2EG9Ut2_3sxEffchrl81W-VbcoEns,1110
17
+ flowllm/context/service_context.py,sha256=VsF5Dsh_L4vdEZKcDLqNV1JvhfivrI_7Env0YCOBoC8,8043
18
+ flowllm/embedding_model/__init__.py,sha256=jHxnI2xySqYcu7Y2wxmlmpIyYeKH_4PuNCBNvouXhEE,78
19
+ flowllm/embedding_model/base_embedding_model.py,sha256=oIySUu6_ROEXw13jtKYUtnL0bgBQdHtNZqnPPxatG9I,8021
20
+ flowllm/embedding_model/openai_compatible_embedding_model.py,sha256=tzjGkHfV9qOlkWZfYyg8SKHdj3GPs1cuYr1f7_SIEZE,5481
21
+ flowllm/enumeration/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
22
+ flowllm/enumeration/chunk_enum.py,sha256=pGh5ppp9UHCuQYxiNfPcsh9X7tI2Dt6D8HMSLiYi2Io,170
23
+ flowllm/enumeration/http_enum.py,sha256=ddIYeVz2J8CInzEkhWbz1rPe0qh2FVfryNNE1uc1ioM,141
24
+ flowllm/enumeration/role.py,sha256=SFMGXmwYFndGIwbr9GxS3OIoHIZ_nO23DeRnqpV4U3g,133
25
+ flowllm/flow/__init__.py,sha256=Nnwgz85jYpTQWYSTOpvY8tppuovpzFHGtROefiBUeDY,264
26
+ flowllm/flow/base_flow.py,sha256=xIR5nVdxveW_57jz2ZpWr6nQcUgp59uizPlI_salInY,3606
27
+ flowllm/flow/base_tool_flow.py,sha256=eC-V9kafecsXJixqXGfmD1DF70tA8ClM2f4rnW2K1vU,368
28
+ flowllm/flow/tool_op_flow.py,sha256=Uhlgezk8LP0y0tOIdPnHTCbjr_SN0nCmaonXzVTQ1Ww,2996
29
+ flowllm/flow/expression/__init__.py,sha256=WTCjGmimDp86DBmOgOW5CcPd1-iKHwlD2GUbfkG-74w,53
30
+ flowllm/flow/expression/expression_parser.py,sha256=ioYcC3VEpWwUkQZmDvGQCh1SqUp9SBloRxh7rqAuQP0,6109
31
+ flowllm/flow/expression/expression_tool_flow.py,sha256=-5oKEfgCmJ8lMwdWaT79HbF4M9q74lBU4RdS7JbXtD0,990
32
+ flowllm/flow/gallery/__init__.py,sha256=debywmZxht5JlZYn15ZQ40t-z2FWuDe-RtALMNiR-Us,60
33
+ flowllm/flow/gallery/mock_tool_flow.py,sha256=0-lV7bGw0ChCYXCoMZ-CCyl1DWpRu31L7pIxBMvQocw,2759
34
+ flowllm/llm/__init__.py,sha256=c2akU1k4IVT6PoW3FdKlFmQNZj7MVCzV_VTUw5VpDrc,99
35
+ flowllm/llm/base_llm.py,sha256=80YvTLZQtEwCwtwgkb-r56CzmxMlO5BAiH_wZ9rl-zg,9439
36
+ flowllm/llm/litellm_llm.py,sha256=fZpbThfRRyOBPASdZfGHUr_twwzgombbEEhWDQtuzus,19422
37
+ flowllm/llm/openai_compatible_llm.py,sha256=MKbe4-p4NkCBCCkrty0mFsBTRpXctI-7rz0-2kzvNQo,18534
38
+ flowllm/op/__init__.py,sha256=quaB1nSOt-dz7WMryBhmcJDIcbv4AqxvgAmoKvjJucg,210
39
+ flowllm/op/base_llm_op.py,sha256=mzRKgROambE1xI4JSwNrCLdkN6y-PemCGzZERqVpJr8,2682
40
+ flowllm/op/base_op.py,sha256=Gg5k64YftGI3UP5jc7gn44QQ2x83E--yh0mDml3JMUo,12059
41
+ flowllm/op/base_tool_op.py,sha256=5ULOE_-23RnYy6-PWLfxrAHpP5d2KoG3qPiIgWC9pP4,1482
42
+ flowllm/op/parallel_op.py,sha256=wea_zrzZXG22du9U8S5Ka4Weo7AxMR1AiRkmZER_yzQ,730
43
+ flowllm/op/sequential_op.py,sha256=vgsWcsQm6VoLFRgzFvy6SSz-4nBHMAnQFkj4_bqpBuY,587
44
+ flowllm/op/akshare/__init__.py,sha256=PaCPzBv-csRgmtmBjoYqxvOgAB3Vp8EeSGP3rGw6rc8,178
45
+ flowllm/op/akshare/get_ak_a_code_op.py,sha256=_WQWqGZV9c2pWO9SqDNTcVtMeVUJwRkXJoFAPPtxy7U,3847
46
+ flowllm/op/akshare/get_ak_a_code_prompt.yaml,sha256=NwGJygecUwspQvrg98GdMpcmQESpZ2Kf5YprhM2PyZU,608
47
+ flowllm/op/akshare/get_ak_a_info_op.py,sha256=yaFjy6sZuVJvELWHnv0EwyAeKUp6Y1ThXoUn3adicUg,4489
48
+ flowllm/op/gallery/__init__.py,sha256=0FDEv_jNUsg1E9GDMTb6jjUdYCEVKjHPjTGR3CwMHF8,74
49
+ flowllm/op/gallery/mock_op.py,sha256=uDj0CJS9Yy0g3ICCJHItDzUc7Q0dY_ZuUm5RmHloHFA,950
50
+ flowllm/op/llm/__init__.py,sha256=Rb-LfmQwMsQMVn8wa1BOythYMvL4F4-2ypEmVeshFL0,115
51
+ flowllm/op/llm/react_llm_op.py,sha256=Ckdp7P6FEyi3blECwupjzTgoStx3FDl32lRAMjhYQW4,4123
52
+ flowllm/op/llm/react_llm_prompt.yaml,sha256=UnBvR_2ph7AG-HNDkn-SJvZiym-UcbcizKdc9w9NImg,2344
53
+ flowllm/op/llm/simple_llm_op.py,sha256=YQrZwCQfAG9F6b9Onr90mM8wR-h5Tpj0E1__g3q9RJo,1373
54
+ flowllm/op/llm/stream_llm_op.py,sha256=QCWb0KoRfFATa0IgUI8JEpOnioqn-IVALcLFk8cEt-g,1766
55
+ flowllm/op/mcp/__init__.py,sha256=UkJR7eKHsUGwaD8_tbx0hrsxBTbPX63VSwFI4gHytl8,91
56
+ flowllm/op/mcp/ant_op.py,sha256=atUhYFwbd7IH_7qgJV2AZJSzrFwRXbFw_JWDkzhZpOs,1253
57
+ flowllm/op/mcp/base_sse_mcp_op.py,sha256=MwHI5dJjntCFdXt8XvszW8eX1m-pbSeaYtwEg2s5obg,1087
58
+ flowllm/op/search/__init__.py,sha256=rmfkzcizghmRQmfsX0UD1eoLZLC2xRDjjdkmbdkaMXw,95
59
+ flowllm/op/search/dashscope_search_op.py,sha256=0AAdhGqvbHP0ibeLPvQFqzlV9nI6eg5G-zyJpPvZZEA,4694
60
+ flowllm/op/search/dashscope_search_prompt.yaml,sha256=NPsS3QCo8xlRpWw7fyMpuYBeOXSAtXscwGO-cVgUNFw,355
61
+ flowllm/op/search/tavily_search_op.py,sha256=iJNQuG7PQNFLUoW_ksPbdN_WDia19cMcd-I_zcgOkjM,3287
62
+ flowllm/schema/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
63
+ flowllm/schema/flow_request.py,sha256=jaOgEJ7XRWNgS_QTCBOOsa6hKtdgqnXVC7S4Vi6lMBg,338
64
+ flowllm/schema/flow_response.py,sha256=BusrfkJ8OCGk9Tp1KCWVSt33L2t_pYpn9QRqS0bjDcw,323
65
+ flowllm/schema/flow_stream_chunk.py,sha256=6NZDfbTt-zdh1Jh4x5sos2EnzZhBYW2J2fBEcgo9m4I,355
66
+ flowllm/schema/message.py,sha256=MvTKhUX5yUY9mcP9vEFRZ4RJMObhUPQ3iQjOC_OpTvU,1345
67
+ flowllm/schema/service_config.py,sha256=YOmOoTaljsaAnfr9JULmDQ92JA6U0MIpD7dkF0Fs3T0,2614
68
+ flowllm/schema/tool_call.py,sha256=pmglMr-iE36if2Zc-mX8oU4AepgBqbBfHHdrvK1IoG8,5460
69
+ flowllm/schema/vector_node.py,sha256=Urs9EyzzjuQVYPCB_Pfp0iK2npWWCJSXdT6uDLdT05w,362
70
+ flowllm/service/__init__.py,sha256=wUV5Q_cCP1PaBJy1EZYz6YqfUOE8qWM7ZqMGKY3d1sg,74
71
+ flowllm/service/base_service.py,sha256=JW29_guk47-oISz-ROGShO7o4VVYY8iFxOqlDQFd4h4,2969
72
+ flowllm/service/http_service.py,sha256=QQDQKtYrCfJgpr_zxP4HowgFHa4poqgcWhxl_dbF2Ns,3430
73
+ flowllm/service/mcp_service.py,sha256=ss0NWP_UDPqkPPzsVK-kfvBZf7wNuzDdZ8VvQIecTVA,1662
74
+ flowllm/storage/__init__.py,sha256=wlGDDqp6nM4TLoEAXtSglgB0-K2YHAq_DNnsHTBQj8s,41
75
+ flowllm/storage/cache/__init__.py,sha256=KyLfUg3gJ4SvHMRagtZDL8cp5s5SRsN9H-_y4uRf2II,34
76
+ flowllm/storage/cache/cache_data_handler.py,sha256=fNnVwKOTOL3fZfukIN2gy3txlxiwr3CR9t3tVnIusvw,2700
77
+ flowllm/storage/cache/data_cache.py,sha256=cVz20JUkGgXzB5YgZiyeiBYpA0nRFyBtxhgVVQkFeA4,12144
78
+ flowllm/storage/vector_store/__init__.py,sha256=ZRv-O-uhpb8hUOmsxKk5VqlSY15d27VqvJP3pqUgUWw,194
79
+ flowllm/storage/vector_store/base_vector_store.py,sha256=ISntxjjXGv4gnOSzZ7mF3sLvhokJsd7ATcDcpD295a4,6321
80
+ flowllm/storage/vector_store/chroma_vector_store.py,sha256=gRsgzblSI8-_Mnq6Kq1PUrOxTk1XxqDNwRcTwBbuN_U,16641
81
+ flowllm/storage/vector_store/es_vector_store.py,sha256=FTeXRGdSDosnmDEpNHTfs4kY0Az22mWBql037BWkYDc,18664
82
+ flowllm/storage/vector_store/local_vector_store.py,sha256=wsngpKlbfosMTDhiJlGSv5MP47y1XSU3nJJPWefxx1E,17835
83
+ flowllm/storage/vector_store/memory_vector_store.py,sha256=ALyU_q_ufrObCZDT4F3s4PLFfXQ7QYnWuRFYvXYLY4M,21081
84
+ flowllm/utils/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
85
+ flowllm/utils/common_utils.py,sha256=-3WxJV7SgfI5vtw9Uj2BupUBzdB5vwsqCysErF-QC-E,3209
86
+ flowllm/utils/fetch_url.py,sha256=pOYiliL4kTGQKERCHrFhammBsbv9XzSvVyBQDMgXKEY,4404
87
+ flowllm/utils/llm_utils.py,sha256=ywhf1LGe2aKEaL5PyOpoOAbiekrQVOcpxUJ4ARPioQQ,1121
88
+ flowllm/utils/logger_utils.py,sha256=cBgBKO_oQlN0O19AR0tMxmMo1TTaDdjPI3_g2Xy8Csw,703
89
+ flowllm/utils/miner_u_pdf_processor.py,sha256=wYcKmNxFNwOMmDyO790G3uqBsFtZgHy65VZE2pM9A10,28956
90
+ flowllm/utils/ridge_v2.py,sha256=XIn6nu4jUV7_QUCeyhSEhm-4ltueaS7JdbDQmSQFnRE,1802
91
+ flowllm/utils/singleton.py,sha256=No3otyPDRHu6wQuFRC-w28MkbommVFTLd7H4mT6-Zos,213
92
+ flowllm/utils/timer.py,sha256=8aj3dIYOyxNDNdlcitezdepxEptqkx69aw6JNFWsr30,1492
93
+ flowllm-0.1.5.dist-info/licenses/LICENSE,sha256=kFfPsL7YvEW4jPATpyvUPdtEgftLK53zQrVYJ0eBASY,11337
94
+ flowllm-0.1.5.dist-info/METADATA,sha256=omJ1490ENhn4C8yavYbTvHVC7tMN530pmRaxY9Otyu0,14760
95
+ flowllm-0.1.5.dist-info/WHEEL,sha256=_zCd3N1l69ArxyTb8rzEoP9TpbYXkqRFSNOD5OuxnTs,91
96
+ flowllm-0.1.5.dist-info/entry_points.txt,sha256=PcKC61HCKtF4ONb4HnrIY6J2JeV1bsi_l0O2m99A2Wg,45
97
+ flowllm-0.1.5.dist-info/top_level.txt,sha256=a2tZBwbrnw4uiydMI5kAEGz-cxG25rf6v0QM1sYIrjs,8
98
+ flowllm-0.1.5.dist-info/RECORD,,
@@ -1,77 +0,0 @@
1
- # default config.yaml
2
- backend: mcp
3
- language: ""
4
- thread_pool_max_workers: 32
5
- ray_max_workers: 1
6
-
7
- mcp:
8
- transport: sse
9
- host: "0.0.0.0"
10
- port: 8001
11
-
12
- http:
13
- host: "0.0.0.0"
14
- port: 8001
15
- timeout_keep_alive: 600
16
- limit_concurrency: 64
17
-
18
- flow:
19
- get_a_stock_infos:
20
- flow_content: get_ak_a_code_op >> get_ak_a_info_op >> get_ak_a_spot_op >> get_ak_a_money_flow_op >> get_ak_a_financial_info_op >> merge_ak_a_info_op
21
- description: "Retrieve the A-share stock codes from the query, and fetch information about these stocks, including company basic information, current stock price and its change percentage, capital inflow and outflow data for the most recent day, and financial information from the latest quarter."
22
- input_schema:
23
- query:
24
- type: "str"
25
- description: "user question"
26
-
27
- get_a_stock_news:
28
- flow_content: get_ak_a_code_op >> get_ak_a_news_op >> merge_ak_a_info_op
29
- description: "Retrieve the A-share stock codes from the query, and obtain the latest news information about these stocks."
30
- input_schema:
31
- query:
32
- type: "str"
33
- description: "user question"
34
-
35
- mock_expression_flow:
36
- flow_content: mock1_op>>((mock4_op>>mock2_op)|mock5_op)>>(mock3_op|mock6_op)
37
- description: "mock flow"
38
- input_schema:
39
- a:
40
- type: "str"
41
- description: "mock attr a"
42
- required: true
43
- b:
44
- type: "str"
45
- description: "mock attr b"
46
- required: true
47
-
48
- op:
49
- mock1_op:
50
- backend: mock1_op
51
- llm: default
52
- vector_store: default
53
-
54
- llm:
55
- default:
56
- backend: openai_compatible
57
- model_name: qwen3-30b-a3b-thinking-2507
58
- params:
59
- temperature: 0.6
60
-
61
- qwen3_30b_instruct:
62
- backend: openai_compatible
63
- model_name: qwen3-30b-a3b-instruct-2507
64
-
65
- embedding_model:
66
- default:
67
- backend: openai_compatible
68
- model_name: text-embedding-v4
69
- params:
70
- dimensions: 1024
71
-
72
- vector_store:
73
- default:
74
- backend: elasticsearch
75
- embedding_model: default
76
- params:
77
- hosts: "http://localhost:9200"
flowllm/config/empty.yaml DELETED
@@ -1,37 +0,0 @@
1
- # default config.yaml
2
- backend: http
3
- language: ""
4
- thread_pool_max_workers: 32
5
- ray_max_workers: 1
6
-
7
- mcp:
8
- transport: sse
9
- host: "0.0.0.0"
10
- port: 8001
11
-
12
- http:
13
- host: "0.0.0.0"
14
- port: 8001
15
- timeout_keep_alive: 600
16
- limit_concurrency: 64
17
-
18
- llm:
19
- default:
20
- backend: openai_compatible
21
- model_name: qwen3-30b-a3b-thinking-2507
22
- params:
23
- temperature: 0.6
24
-
25
- embedding_model:
26
- default:
27
- backend: openai_compatible
28
- model_name: text-embedding-v4
29
- params:
30
- dimensions: 1024
31
-
32
- vector_store:
33
- default:
34
- backend: elasticsearch
35
- embedding_model: default
36
- params:
37
- hosts: "http://localhost:9200"
@@ -1,11 +0,0 @@
1
- from flowllm.flow.base_flow import BaseFlow
2
- from flowllm.flow.parser.expression_parser import ExpressionParser
3
-
4
-
5
- class CmdFlow(BaseFlow):
6
-
7
- def build_flow(self):
8
- flow: str = self.flow_params["flow"]
9
- assert flow, "add `flow=<op_flow>` in cmd!"
10
- parser = ExpressionParser(flow)
11
- return parser.parse_flow()
@@ -1,30 +0,0 @@
1
- from flowllm.context.flow_context import FlowContext
2
- from flowllm.context.service_context import C
3
- from flowllm.flow.base_tool_flow import BaseToolFlow
4
- from flowllm.op.code.execute_code_op import ExecuteCodeOp
5
- from flowllm.schema.tool_call import ToolCall
6
-
7
-
8
- @C.register_tool_flow()
9
- class CodeToolFlow(BaseToolFlow):
10
-
11
- def build_flow(self):
12
- return ExecuteCodeOp()
13
-
14
- def build_tool_call(self) -> ToolCall:
15
- return ToolCall(**{
16
- "name": "python_execute",
17
- "description": "Execute python code can be used in scenarios such as analysis or calculation, and the final result can be printed using the `print` function.",
18
- "input_schema": {
19
- "code": {
20
- "type": "str",
21
- "description": "code to be executed. Please do not execute any matplotlib code here.",
22
- "required": True
23
- }
24
- }
25
- })
26
-
27
- def return_callback(self, context: FlowContext):
28
- context.response.answer = context.code_result
29
- return context.response
30
-
@@ -1,34 +0,0 @@
1
- from flowllm.context.flow_context import FlowContext
2
- from flowllm.context.service_context import C
3
- from flowllm.flow.base_tool_flow import BaseToolFlow
4
- from flowllm.op.search import DashscopeSearchOp
5
- from flowllm.schema.tool_call import ToolCall
6
-
7
-
8
- @C.register_tool_flow()
9
- class DashscopeSearchToolFlow(BaseToolFlow):
10
-
11
- def build_flow(self):
12
- return DashscopeSearchOp()
13
-
14
- def build_tool_call(self) -> ToolCall:
15
- return ToolCall(**{
16
- "name": "web_search",
17
- "description": "Use search keywords to retrieve relevant information from the internet. If there are multiple search keywords, please use each keyword separately to call this tool.",
18
- "input_schema": {
19
- "query": {
20
- "type": "str",
21
- "description": "search keyword",
22
- "required": True
23
- }
24
- }
25
- })
26
-
27
- def return_callback(self, context: FlowContext):
28
- context.response.answer = context.dashscope_search_result
29
- return context.response
30
-
31
-
32
- if __name__ == "__main__":
33
- flow = DashscopeSearchToolFlow()
34
- flow(query="what is AI?")
@@ -1,39 +0,0 @@
1
- from flowllm.context.flow_context import FlowContext
2
- from flowllm.context.service_context import C
3
- from flowllm.flow.base_tool_flow import BaseToolFlow
4
- from flowllm.op.search.dashscope_deep_research_op import DashscopeDeepResearchOp
5
- from flowllm.schema.tool_call import ToolCall
6
-
7
-
8
- @C.register_tool_flow()
9
- class DeepSearchToolFlow(BaseToolFlow):
10
-
11
- def build_flow(self):
12
- return DashscopeDeepResearchOp()
13
-
14
- def build_tool_call(self) -> ToolCall:
15
- return ToolCall(**{
16
- "name": "deep_search",
17
- "description": "Perform deep research on a topic using Dashscope's qwen-deep-research model. This tool will conduct multi-phase research including model questioning, web research, and result generation.",
18
- "input_schema": {
19
- "query": {
20
- "type": "str",
21
- "description": "Research topic or question",
22
- "required": True
23
- }
24
- }
25
- })
26
-
27
- def return_callback(self, context: FlowContext):
28
- context.response.answer = context.dashscope_deep_research_result
29
- return context.response
30
-
31
-
32
- if __name__ == "__main__":
33
- from flowllm.utils.common_utils import load_env
34
-
35
- load_env()
36
-
37
- flow = DeepSearchToolFlow()
38
- result = flow(query="中国电解铝行业值得投资吗,有哪些值得投资的标的,各个标的之间需要对比优劣势")
39
- print(result.answer)
@@ -1,18 +0,0 @@
1
- from flowllm.flow.base_tool_flow import BaseToolFlow
2
- from flowllm.flow.parser.expression_parser import ExpressionParser
3
- from flowllm.schema.service_config import FlowConfig
4
- from flowllm.schema.tool_call import ToolCall
5
-
6
-
7
- class ExpressionToolFlow(BaseToolFlow):
8
-
9
- def __init__(self, flow_config: FlowConfig = None, **kwargs):
10
- self.flow_config: FlowConfig = flow_config
11
- super().__init__(name=flow_config.name, **kwargs)
12
-
13
- def build_flow(self):
14
- parser = ExpressionParser(self.flow_config.flow_content)
15
- return parser.parse_flow()
16
-
17
- def build_tool_call(self) -> ToolCall:
18
- return ToolCall(**self.flow_config.model_dump())
@@ -1,30 +0,0 @@
1
- from flowllm.context.flow_context import FlowContext
2
- from flowllm.context.service_context import C
3
- from flowllm.flow.base_tool_flow import BaseToolFlow
4
- from flowllm.op.search import TavilySearchOp
5
- from flowllm.schema.tool_call import ToolCall
6
-
7
-
8
- @C.register_tool_flow()
9
- class TavilySearchToolFlow(BaseToolFlow):
10
-
11
- def build_flow(self):
12
- return TavilySearchOp()
13
-
14
- def build_tool_call(self) -> ToolCall:
15
- return ToolCall(**{
16
- "name": "web_search",
17
- "description": "Use search keywords to retrieve relevant information from the internet. If there are multiple search keywords, please use each keyword separately to call this tool.",
18
- "input_schema": {
19
- "query": {
20
- "type": "str",
21
- "description": "search keyword",
22
- "required": True
23
- }
24
- }
25
- })
26
-
27
- def return_callback(self, context: FlowContext):
28
- context.response.answer = context.tavily_search_result
29
- return context.response
30
-
@@ -1,30 +0,0 @@
1
- from flowllm.context.flow_context import FlowContext
2
- from flowllm.context.service_context import C
3
- from flowllm.flow.base_tool_flow import BaseToolFlow
4
- from flowllm.op.gallery.terminate_op import TerminateOp
5
- from flowllm.schema.tool_call import ToolCall
6
-
7
-
8
- @C.register_tool_flow()
9
- class TerminateToolFlow(BaseToolFlow):
10
-
11
- def build_flow(self):
12
- return TerminateOp()
13
-
14
- def build_tool_call(self) -> ToolCall:
15
- return ToolCall(**{
16
- "name": "terminate",
17
- "description": "If you can answer the user's question based on the context, be sure to use the **terminate** tool.",
18
- "input_schema": {
19
- "status": {
20
- "type": "str",
21
- "description": "If the user's question can be answered, return success, otherwise return failure.",
22
- "required": True,
23
- "enum": ["success", "failure"],
24
- }
25
- }
26
- })
27
-
28
- def return_callback(self, context: FlowContext):
29
- context.response.answer = context.terminate_answer
30
- return context.response
File without changes
@@ -1 +0,0 @@
1
- from .react_v1_op import ReactV1Op
@@ -1,109 +0,0 @@
1
- import datetime
2
- import json
3
- import time
4
- from typing import List, Dict
5
-
6
- from loguru import logger
7
-
8
- from flowllm.context.flow_context import FlowContext
9
- from flowllm.context.service_context import C
10
- from flowllm.op.base_llm_op import BaseLLMOp
11
- from flowllm.schema.flow_response import FlowResponse
12
- from flowllm.schema.message import Message, Role
13
-
14
-
15
- @C.register_op()
16
- class ReactV1Op(BaseLLMOp):
17
- file_path: str = __file__
18
-
19
- def execute(self):
20
- query: str = self.context.query
21
-
22
- max_steps: int = int(self.op_params.get("max_steps", 10))
23
- from flowllm.flow.base_tool_flow import BaseToolFlow
24
- from flowllm.flow.gallery import DashscopeSearchToolFlow, CodeToolFlow, TerminateToolFlow
25
-
26
- tools: List[BaseToolFlow] = [DashscopeSearchToolFlow(), CodeToolFlow(), TerminateToolFlow()]
27
-
28
- """
29
- NOTE : x.tool_call.name != x.name
30
- `x.tool_call.name` is tool's namex.name is flow's name(unique service name)
31
- """
32
- tool_dict: Dict[str, BaseToolFlow] = {x.tool_call.name: x for x in tools}
33
- for name, tool_call in tool_dict.items():
34
- logger.info(f"name={name} "
35
- f"tool_call={json.dumps(tool_call.tool_call.simple_input_dump(), ensure_ascii=False)}")
36
-
37
- now_time = datetime.datetime.now().strftime('%Y-%m-%d %H:%M:%S')
38
- has_terminate_tool = False
39
-
40
- user_prompt = self.prompt_format(prompt_name="role_prompt",
41
- time=now_time,
42
- tools=",".join(list(tool_dict.keys())),
43
- query=query)
44
- messages: List[Message] = [Message(role=Role.USER, content=user_prompt)]
45
- logger.info(f"step.0 user_prompt={user_prompt}")
46
-
47
- for i in range(max_steps):
48
- if has_terminate_tool:
49
- assistant_message: Message = self.llm.chat(messages)
50
- else:
51
- assistant_message: Message = self.llm.chat(messages, tools=[x.tool_call for x in tools])
52
-
53
- messages.append(assistant_message)
54
- logger.info(f"assistant.{i}.reasoning_content={assistant_message.reasoning_content}\n"
55
- f"content={assistant_message.content}\n"
56
- f"tool.size={len(assistant_message.tool_calls)}")
57
-
58
- if has_terminate_tool:
59
- break
60
-
61
- for tool in assistant_message.tool_calls:
62
- if tool.name == "terminate":
63
- has_terminate_tool = True
64
- logger.info(f"step={i} find terminate tool, break.")
65
- break
66
-
67
- if not has_terminate_tool and not assistant_message.tool_calls:
68
- logger.warning(f"【bugfix】step={i} no tools, break.")
69
- has_terminate_tool = True
70
-
71
- for j, tool_call in enumerate(assistant_message.tool_calls):
72
- logger.info(f"submit step={i} tool_calls.name={tool_call.name} argument_dict={tool_call.argument_dict}")
73
-
74
- if tool_call.name not in tool_dict:
75
- logger.warning(f"step={i} no tool_call.name={tool_call.name}")
76
- continue
77
-
78
- self.submit_task(tool_dict[tool_call.name].__call__, **tool_call.argument_dict)
79
- time.sleep(1)
80
-
81
- if not has_terminate_tool:
82
- user_content_list = []
83
- for tool_result, tool_call in zip(self.join_task(), assistant_message.tool_calls):
84
- logger.info(f"submit step={i} tool_calls.name={tool_call.name} tool_result={tool_result}")
85
- if isinstance(tool_result, FlowResponse):
86
- tool_result = tool_result.answer
87
- else:
88
- tool_result = str(tool_result)
89
- user_content_list.append(f"<tool_response>\n{tool_result}\n</tool_response>")
90
- user_content_list.append(self.prompt_format(prompt_name="next_prompt"))
91
- assistant_message.tool_calls.clear()
92
- messages.append(Message(role=Role.USER, content="\n".join(user_content_list)))
93
-
94
- else:
95
- assistant_message.tool_calls.clear()
96
- query = self.prompt_format(prompt_name="final_prompt", query=query)
97
- messages.append(Message(role=Role.USER, content=query))
98
-
99
- # Store results in context instead of response
100
- self.context.response.messages = messages
101
- self.context.response.answer = messages[-1].content
102
-
103
-
104
- if __name__ == "__main__":
105
- C.set_default_service_config().init_by_service_config()
106
- context = FlowContext(query="茅台和五粮现在股价多少?")
107
-
108
- op = ReactV1Op()
109
- op(context=context)
@@ -1,54 +0,0 @@
1
- role_prompt: |
2
- You are a helpful assistant.
3
- The current time is {time}.
4
- Please proactively choose the most suitable tool or combination of tools based on the user's question, including {tools} etc.
5
- Please first think about how to break down the problem into subtasks, what tools and parameters should be used for each subtask, and finally provide the tool call name and parameters.
6
- Try calling the same tool multiple times with different parameters to obtain information from various perspectives.
7
- Please determine the response language based on the language of the user's question.
8
-
9
- {query}
10
-
11
- # write a complete and rigorous report to answer user's questions based on the context.
12
- next_prompt: |
13
- Think based on the current content and the user's question: Is the current context sufficient to answer the user's question?
14
-
15
- - If the current context is not sufficient to answer the user's question, consider what information is missing.
16
- Re-plan and think about how to break down the missing information into subtasks.
17
- For each subtask, determine what tools and parameters should be used for the query.
18
- Please first provide the reasoning process, then give the tool call name and parameters.
19
-
20
- - If the current context is sufficient to answer the user's question, use the **terminate** tool.
21
-
22
- # Please determine the response language based on the language of the user's question.
23
- final_prompt: |
24
- Please integrate the context and provide a complete answer to the user's question.
25
-
26
- # User's Question
27
- {query}
28
-
29
-
30
-
31
-
32
- role_prompt_zh: |
33
- 你是一个有用的助手。
34
- 当前时间是 {time}。
35
- 请根据用户的问题,主动选择最合适的工具或工具组合,包括 {tools} 等。
36
- 请先思考如何将问题分解为子任务,每个子任务应使用哪些工具和参数,最后提供工具调用名称和参数。
37
- 尝试多次使用相同的工具,但使用不同的参数,从多个角度获取信息。
38
- 请根据用户问题的语言来确定回复的语言。
39
-
40
- {query}
41
-
42
- next_prompt_zh: |
43
- 根据当前内容和用户的问题进行思考:当前上下文是否足以回答用户的问题?
44
- - 如果当前上下文不足以回答用户的问题,请考虑缺少哪些信息。
45
- 重新规划并思考如何将缺失的信息分解为子任务。
46
- 对于每个子任务,确定应使用哪些工具和参数进行查询。
47
- 请先提供推理过程,然后给出工具调用名称和参数。
48
- - 如果当前上下文足以回答用户的问题,请使用 **terminate** 工具。
49
-
50
- final_prompt_zh: |
51
- 请整合上下文,为用户的问题提供一个完整的答案。
52
-
53
- # 用户的问题
54
- {query}