floodmodeller-api 0.4.4.post1__py3-none-any.whl → 0.5.0__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (67) hide show
  1. floodmodeller_api/__init__.py +1 -0
  2. floodmodeller_api/dat.py +117 -96
  3. floodmodeller_api/hydrology_plus/__init__.py +2 -0
  4. floodmodeller_api/hydrology_plus/helper.py +23 -0
  5. floodmodeller_api/hydrology_plus/hydrology_plus_export.py +333 -0
  6. floodmodeller_api/ied.py +93 -90
  7. floodmodeller_api/ief.py +233 -50
  8. floodmodeller_api/ief_flags.py +1 -0
  9. floodmodeller_api/logs/lf.py +5 -1
  10. floodmodeller_api/mapping.py +2 -0
  11. floodmodeller_api/test/test_conveyance.py +23 -32
  12. floodmodeller_api/test/test_data/7082.ief +28 -0
  13. floodmodeller_api/test/test_data/BaseModel_2D_Q100.ief +28 -0
  14. floodmodeller_api/test/test_data/Baseline_unchecked.csv +77 -0
  15. floodmodeller_api/test/test_data/Constant QT.ief +19 -0
  16. floodmodeller_api/test/test_data/Domain1_Q_xml_expected.json +7 -7
  17. floodmodeller_api/test/test_data/EX18_DAT_expected.json +54 -38
  18. floodmodeller_api/test/test_data/EX3_DAT_expected.json +246 -166
  19. floodmodeller_api/test/test_data/EX3_IEF_expected.json +25 -20
  20. floodmodeller_api/test/test_data/EX6_DAT_expected.json +522 -350
  21. floodmodeller_api/test/test_data/FEH boundary.ief +23 -0
  22. floodmodeller_api/test/test_data/Linked1D2D_xml_expected.json +7 -7
  23. floodmodeller_api/test/test_data/P3Panels_UNsteady.ief +25 -0
  24. floodmodeller_api/test/test_data/QT in dat file.ief +20 -0
  25. floodmodeller_api/test/test_data/T10.ief +25 -0
  26. floodmodeller_api/test/test_data/T2.ief +25 -0
  27. floodmodeller_api/test/test_data/T5.ief +25 -0
  28. floodmodeller_api/test/test_data/df_flows_hplus.csv +56 -0
  29. floodmodeller_api/test/test_data/event_hplus.csv +56 -0
  30. floodmodeller_api/test/test_data/ex4.ief +20 -0
  31. floodmodeller_api/test/test_data/ex6.ief +21 -0
  32. floodmodeller_api/test/test_data/example_h+_export.csv +77 -0
  33. floodmodeller_api/test/test_data/hplus_export_example_1.csv +72 -0
  34. floodmodeller_api/test/test_data/hplus_export_example_10.csv +77 -0
  35. floodmodeller_api/test/test_data/hplus_export_example_2.csv +79 -0
  36. floodmodeller_api/test/test_data/hplus_export_example_3.csv +77 -0
  37. floodmodeller_api/test/test_data/hplus_export_example_4.csv +131 -0
  38. floodmodeller_api/test/test_data/hplus_export_example_5.csv +77 -0
  39. floodmodeller_api/test/test_data/hplus_export_example_6.csv +131 -0
  40. floodmodeller_api/test/test_data/hplus_export_example_7.csv +131 -0
  41. floodmodeller_api/test/test_data/hplus_export_example_8.csv +131 -0
  42. floodmodeller_api/test/test_data/hplus_export_example_9.csv +131 -0
  43. floodmodeller_api/test/test_data/network_dat_expected.json +312 -210
  44. floodmodeller_api/test/test_data/network_ied_expected.json +6 -6
  45. floodmodeller_api/test/test_data/network_with_comments.ied +55 -0
  46. floodmodeller_api/test/test_flowtimeprofile.py +133 -0
  47. floodmodeller_api/test/test_hydrology_plus_export.py +210 -0
  48. floodmodeller_api/test/test_ied.py +12 -0
  49. floodmodeller_api/test/test_ief.py +49 -9
  50. floodmodeller_api/test/test_json.py +6 -1
  51. floodmodeller_api/test/test_read_file.py +27 -0
  52. floodmodeller_api/test/test_river.py +169 -0
  53. floodmodeller_api/to_from_json.py +7 -1
  54. floodmodeller_api/tool.py +6 -10
  55. floodmodeller_api/units/__init__.py +11 -1
  56. floodmodeller_api/units/conveyance.py +101 -212
  57. floodmodeller_api/units/sections.py +120 -39
  58. floodmodeller_api/util.py +2 -0
  59. floodmodeller_api/version.py +1 -1
  60. floodmodeller_api/xml2d.py +20 -13
  61. floodmodeller_api/xsd_backup.xml +738 -0
  62. {floodmodeller_api-0.4.4.post1.dist-info → floodmodeller_api-0.5.0.dist-info}/METADATA +2 -1
  63. {floodmodeller_api-0.4.4.post1.dist-info → floodmodeller_api-0.5.0.dist-info}/RECORD +67 -33
  64. {floodmodeller_api-0.4.4.post1.dist-info → floodmodeller_api-0.5.0.dist-info}/WHEEL +1 -1
  65. {floodmodeller_api-0.4.4.post1.dist-info → floodmodeller_api-0.5.0.dist-info}/LICENSE.txt +0 -0
  66. {floodmodeller_api-0.4.4.post1.dist-info → floodmodeller_api-0.5.0.dist-info}/entry_points.txt +0 -0
  67. {floodmodeller_api-0.4.4.post1.dist-info → floodmodeller_api-0.5.0.dist-info}/top_level.txt +0 -0
@@ -0,0 +1,77 @@
1
+ Flood Modeller Hydrology+ hydrograph file,,,,,,,,,,,,,,,,,,,,
2
+ Hydrograph Name=Baseline unchecked,,,,,,,,,,,,,,,,,,,,
3
+ Hydrograph Description=,,,,,,,,,,,,,,,,,,,,
4
+ Calculation Point=CP_003,,,,,,,,,,,,,,,,,,,,
5
+ ReFH2 Name=CP_003_ReFH2_1,,,,,,,,,,,,,,,,,,,,
6
+ Winfap Name=CP_003_WINFAP_1,,,,,,,,,,,,,,,,,,,,
7
+ Urban/Rural=Urban,,,,,,,,,,,,,,,,,,,,
8
+ Urban/Rural Comment=,,,,,,,,,,,,,,,,,,,,
9
+ ReFH2 Comment=,,,,,,,,,,,,,,,,,,,,
10
+ Winfap Comment=,,,,,,,,,,,,,,,,,,,,
11
+ Winfap Distribution=GEV,,,,,,,,,,,,,,,,,,,,
12
+ Winfap Distribution Comment=,,,,,,,,,,,,,,,,,,,,
13
+ Use Climate Change Allowances=True,,,,,,,,,,,,,,,,,,,,
14
+ Use Custom Scale Factors=False,,,,,,,,,,,,,,,,,,,,
15
+ Created By=KA007155,,,,,,,,,,,,,,,,,,,,
16
+ Created Date=30/04/2024 09:42:23,,,,,,,,,,,,,,,,,,,,
17
+ Checksum=ef77d9bd-2eb3-4689-a1e3-665d293db810,,,,,,,,,,,,,,,,,,,,
18
+ Return Period,1,2,5,10,30,50,75,100,200,1000,1,2,5,10,30,50,75,100,200,1000
19
+ Storm Duration,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11
20
+ Epoch/CC Factor/Custom Factor,Reconciled Baseline,Reconciled Baseline,Reconciled Baseline,Reconciled Baseline,Reconciled Baseline,Reconciled Baseline,Reconciled Baseline,Reconciled Baseline,Reconciled Baseline,Reconciled Baseline,2020 Upper,2020 Upper,2020 Upper,2020 Upper,2020 Upper,2020 Upper,2020 Upper,2020 Upper,2020 Upper,2020 Upper
21
+ Hydrograph Flow Data,,,,,,,,,,,,,,,,,,,,
22
+ Time (hours),Reconciled Baseline - 11 - 1 - Flow (m3/s),Reconciled Baseline - 11 - 2 - Flow (m3/s),Reconciled Baseline - 11 - 5 - Flow (m3/s),Reconciled Baseline - 11 - 10 - Flow (m3/s),Reconciled Baseline - 11 - 30 - Flow (m3/s),Reconciled Baseline - 11 - 50 - Flow (m3/s),Reconciled Baseline - 11 - 75 - Flow (m3/s),Reconciled Baseline - 11 - 100 - Flow (m3/s),Reconciled Baseline - 11 - 200 - Flow (m3/s),Reconciled Baseline - 11 - 1000 - Flow (m3/s),2020 Upper - 11 - 1 - Flow (m3/s),2020 Upper - 11 - 2 - Flow (m3/s),2020 Upper - 11 - 5 - Flow (m3/s),2020 Upper - 11 - 10 - Flow (m3/s),2020 Upper - 11 - 30 - Flow (m3/s),2020 Upper - 11 - 50 - Flow (m3/s),2020 Upper - 11 - 75 - Flow (m3/s),2020 Upper - 11 - 100 - Flow (m3/s),2020 Upper - 11 - 200 - Flow (m3/s),2020 Upper - 11 - 1000 - Flow (m3/s)
23
+ 0,1.341,1.239,1.418,1.448,1.395,1.345,1.302,1.272,1.204,1.074,1.77,1.635,1.871,1.911,1.841,1.775,1.719,1.679,1.59,1.417
24
+ 1,1.325,1.225,1.406,1.439,1.393,1.346,1.305,1.277,1.213,1.09,1.749,1.617,1.856,1.9,1.838,1.777,1.723,1.685,1.602,1.439
25
+ 2,1.338,1.242,1.441,1.487,1.46,1.423,1.389,1.366,1.313,1.211,1.766,1.639,1.902,1.963,1.928,1.878,1.834,1.803,1.733,1.599
26
+ 3,1.403,1.311,1.555,1.632,1.65,1.632,1.613,1.599,1.568,1.513,1.852,1.73,2.053,2.154,2.177,2.154,2.129,2.111,2.07,1.997
27
+ 4,1.554,1.467,1.804,1.939,2.044,2.063,2.072,2.077,2.092,2.127,2.051,1.936,2.381,2.56,2.698,2.723,2.735,2.742,2.761,2.808
28
+ 5,1.847,1.771,2.276,2.523,2.786,2.874,2.935,2.977,3.073,3.284,2.438,2.337,3.005,3.33,3.678,3.794,3.875,3.929,4.057,4.335
29
+ 6,2.355,2.295,3.09,3.525,4.064,4.271,4.426,4.53,4.775,5.303,3.109,3.029,4.079,4.653,5.364,5.638,5.842,5.98,6.303,7.0
30
+ 7,3.081,3.045,4.254,4.96,5.898,6.283,6.574,6.774,7.241,8.25,4.067,4.019,5.616,6.547,7.786,8.294,8.677,8.941,9.558,10.891
31
+ 8,3.95,3.941,5.648,6.68,8.102,8.703,9.161,9.478,10.218,11.828,5.214,5.202,7.455,8.818,10.695,11.488,12.093,12.511,13.488,15.614
32
+ 9,4.875,4.895,7.134,8.516,10.461,11.298,11.937,12.382,13.421,15.692,6.435,6.461,9.417,11.241,13.809,14.913,15.757,16.344,17.716,20.714
33
+ 10,5.783,5.833,8.597,10.327,12.794,13.865,14.687,15.261,16.603,19.546,7.634,7.7,11.349,13.631,16.888,18.302,19.387,20.144,21.915,25.8
34
+ 11,6.593,6.67,9.908,11.952,14.893,16.18,17.171,17.862,19.485,23.053,8.703,8.805,13.079,15.777,19.659,21.357,22.666,23.577,25.72,30.43
35
+ 12,7.202,7.3,10.899,13.185,16.496,17.951,19.076,19.86,21.706,25.774,9.507,9.636,14.387,17.404,21.774,23.695,25.18,26.216,28.651,34.022
36
+ 13,7.511,7.624,11.414,13.83,17.343,18.892,20.092,20.929,22.901,27.258,9.915,10.063,15.066,18.255,22.893,24.938,26.521,27.627,30.229,35.981
37
+ 14,7.513,7.627,11.431,13.859,17.394,18.956,20.166,21.01,22.999,27.398,9.917,10.068,15.089,18.294,22.96,25.021,26.619,27.733,30.359,36.166
38
+ 15,7.298,7.408,11.098,13.452,16.876,18.389,19.559,20.376,22.301,26.555,9.633,9.779,14.649,17.756,22.277,24.273,25.817,26.897,29.437,35.053
39
+ 16,6.953,7.054,10.552,12.779,16.011,17.435,18.536,19.304,21.112,25.1,9.178,9.311,13.929,16.868,21.134,23.014,24.468,25.482,27.868,33.132
40
+ 17,6.537,6.626,9.889,11.959,14.953,16.268,17.282,17.989,19.649,23.303,8.629,8.746,13.054,15.786,19.738,21.474,22.812,23.745,25.937,30.76
41
+ 18,6.089,6.166,9.175,11.075,13.809,15.003,15.922,16.562,18.061,21.348,8.037,8.139,12.111,14.619,18.228,19.804,21.017,21.862,23.841,28.179
42
+ 19,5.649,5.712,8.472,10.205,12.682,13.757,14.581,15.154,16.494,19.415,7.457,7.54,11.183,13.47,16.74,18.159,19.247,20.004,21.772,25.628
43
+ 20,5.253,5.306,7.84,9.423,11.67,12.637,13.378,13.891,15.087,17.68,6.934,7.004,10.349,12.438,15.404,16.681,17.659,18.336,19.915,23.338
44
+ 21,4.909,4.952,7.293,8.746,10.794,11.671,12.337,12.799,13.872,16.184,6.48,6.537,9.627,11.544,14.248,15.405,16.285,16.895,18.311,21.363
45
+ 22,4.601,4.635,6.803,8.142,10.016,10.812,11.416,11.832,12.798,14.864,6.073,6.119,8.98,10.748,13.221,14.272,15.069,15.619,16.894,19.621
46
+ 23,4.314,4.342,6.35,7.584,9.297,10.02,10.566,10.943,11.811,13.657,5.694,5.731,8.382,10.011,12.272,13.226,13.948,14.444,15.591,18.027
47
+ 24,4.041,4.061,5.919,7.054,8.617,9.272,9.765,10.103,10.882,12.524,5.334,5.36,7.814,9.311,11.374,12.239,12.89,13.336,14.364,16.532
48
+ 25,3.778,3.792,5.506,6.545,7.967,8.557,8.999,9.302,9.995,11.447,4.987,5.005,7.268,8.639,10.516,11.295,11.879,12.278,13.194,15.109
49
+ 26,3.521,3.529,5.103,6.05,7.335,7.863,8.255,8.524,9.137,10.405,4.648,4.658,6.736,7.987,9.682,10.379,10.897,11.252,12.06,13.734
50
+ 27,3.269,3.27,4.707,5.565,6.714,7.18,7.526,7.76,8.294,9.384,4.315,4.316,6.213,7.345,8.862,9.477,9.935,10.244,10.948,12.387
51
+ 28,3.023,3.018,4.32,5.089,6.107,6.515,6.814,7.017,7.472,8.39,3.99,3.984,5.702,6.718,8.062,8.599,8.995,9.262,9.863,11.074
52
+ 29,2.787,2.777,3.951,4.637,5.53,5.881,6.136,6.307,6.689,7.441,3.679,3.665,5.215,6.121,7.3,7.763,8.099,8.325,8.83,9.822
53
+ 30,2.573,2.558,3.616,4.224,5.004,5.302,5.517,5.66,5.975,6.576,3.396,3.376,4.773,5.576,6.605,6.999,7.283,7.471,7.887,8.68
54
+ 31,2.394,2.375,3.337,3.882,4.567,4.823,5.004,5.123,5.382,5.857,3.16,3.135,4.404,5.124,6.028,6.366,6.606,6.763,7.105,7.732
55
+ 32,2.262,2.24,3.133,3.634,4.251,4.477,4.635,4.736,4.956,5.342,2.986,2.957,4.135,4.797,5.611,5.909,6.118,6.252,6.542,7.051
56
+ 33,2.167,2.144,2.988,3.459,4.03,4.237,4.379,4.471,4.665,4.994,2.86,2.83,3.944,4.566,5.32,5.593,5.781,5.901,6.158,6.592
57
+ 34,2.095,2.072,2.882,3.331,3.874,4.068,4.201,4.286,4.464,4.759,2.765,2.735,3.804,4.397,5.114,5.369,5.545,5.657,5.892,6.282
58
+ 35,2.039,2.016,2.801,3.235,3.758,3.943,4.07,4.151,4.319,4.595,2.691,2.661,3.697,4.271,4.96,5.205,5.373,5.479,5.701,6.065
59
+ 36,1.992,1.968,2.735,3.159,3.667,3.847,3.97,4.048,4.211,4.475,2.629,2.598,3.61,4.169,4.841,5.078,5.241,5.343,5.559,5.908
60
+ 37,1.951,1.928,2.678,3.093,3.591,3.767,3.887,3.963,4.123,4.382,2.575,2.545,3.535,4.082,4.741,4.972,5.131,5.231,5.443,5.784
61
+ 38,1.911,1.888,2.623,3.03,3.518,3.69,3.807,3.883,4.038,4.291,2.523,2.492,3.462,4.0,4.643,4.87,5.026,5.125,5.33,5.665
62
+ 39,1.871,1.849,2.569,2.967,3.445,3.614,3.729,3.803,3.955,4.203,2.47,2.441,3.391,3.917,4.547,4.771,4.922,5.02,5.221,5.548
63
+ 40,1.833,1.811,2.516,2.906,3.374,3.54,3.653,3.724,3.874,4.118,2.42,2.391,3.321,3.836,4.454,4.673,4.822,4.916,5.114,5.435
64
+ 41,1.795,1.775,2.464,2.847,3.305,3.467,3.577,3.648,3.795,4.033,2.369,2.342,3.253,3.757,4.363,4.576,4.722,4.816,5.009,5.323
65
+ 42,1.758,1.738,2.415,2.788,3.237,3.396,3.504,3.573,3.716,3.95,2.321,2.294,3.187,3.68,4.272,4.482,4.626,4.717,4.906,5.214
66
+ 43,1.722,1.702,2.365,2.731,3.171,3.327,3.432,3.499,3.64,3.869,2.273,2.247,3.122,3.605,4.186,4.391,4.531,4.619,4.805,5.107
67
+ 44,1.687,1.667,2.316,2.675,3.106,3.258,3.362,3.428,3.566,3.789,2.227,2.201,3.058,3.531,4.099,4.301,4.437,4.525,4.706,5.002
68
+ 45,1.652,1.633,2.269,2.62,3.042,3.191,3.293,3.357,3.493,3.712,2.181,2.156,2.995,3.458,4.016,4.212,4.346,4.431,4.61,4.899
69
+ 46,1.618,1.599,2.222,2.566,2.98,3.126,3.225,3.289,3.421,3.636,2.136,2.111,2.933,3.387,3.933,4.126,4.257,4.341,4.516,4.799
70
+ 47,1.585,1.567,2.177,2.514,2.918,3.062,3.159,3.221,3.351,3.561,2.092,2.068,2.873,3.318,3.852,4.042,4.169,4.252,4.423,4.701
71
+ 48,1.553,1.534,2.131,2.462,2.858,2.999,3.094,3.155,3.282,3.488,2.05,2.025,2.813,3.25,3.773,3.958,4.084,4.165,4.332,4.604
72
+ 49,1.521,1.503,2.088,2.411,2.8,2.936,3.03,3.09,3.214,3.416,2.008,1.984,2.756,3.183,3.696,3.876,4.0,4.079,4.243,4.509
73
+ 50,1.49,1.472,2.045,2.362,2.742,2.876,2.968,3.027,3.149,3.346,1.967,1.944,2.699,3.117,3.619,3.797,3.918,3.996,4.156,4.416
74
+ 51,1.459,1.442,2.003,2.313,2.685,2.817,2.907,2.964,3.084,3.277,1.926,1.903,2.645,3.053,3.545,3.719,3.837,3.913,4.071,4.326
75
+ 52,1.429,1.412,1.962,2.266,2.63,2.76,2.848,2.904,3.02,3.21,1.886,1.864,2.59,2.991,3.472,3.643,3.759,3.833,3.987,4.237
76
+ 53,1.4,1.383,1.922,2.219,2.576,2.703,2.789,2.844,2.958,3.144,1.848,1.825,2.537,2.929,3.401,3.568,3.681,3.754,3.905,4.15
77
+ 54,1.371,1.355,1.882,2.174,2.524,2.648,2.731,2.786,2.897,3.079,1.81,1.789,2.484,2.869,3.332,3.495,3.605,3.677,3.824,4.065
@@ -0,0 +1,19 @@
1
+ [ISIS Event Header]
2
+ Title=Constant QT
3
+ Datafile=Event Data Example.dat
4
+ [ISIS Event Details]
5
+ RunType=Unsteady
6
+ InitialConditions=Event Data Example.zzs
7
+ Start=0
8
+ Finish=12
9
+ Timestep=20
10
+ SaveInterval=300
11
+ ;
12
+ EventData=Constant QT Event Data.ied
13
+ RefineBridgeSecProps=0
14
+ SolveDHEqualsZeroAtStart=0
15
+ RulesAtTimeZero=0
16
+ RulesOnFirstIteration=1
17
+ ResetTimesAfterPos=0
18
+ UseFPSModularLimit=0
19
+ UseRemoteQ=0
@@ -1,16 +1,16 @@
1
1
  {
2
2
  "API Class": "floodmodeller_api.xml2d.XML2D",
3
- "API Version": "0.4.2.post1",
3
+ "API Version": "0.4.4.post1",
4
4
  "Object Attributes": {
5
- "_filepath": "C:\\Users\\PIERCEJA\\OneDrive - Jacobs\\Documents\\Projects\\Flood Modeller API\\development\\floodmodeller-api\\floodmodeller_api\\test\\test_data\\Domain1_Q.xml",
5
+ "_filepath": "c:\\Users\\PIERCEJA\\OneDrive - Jacobs\\Documents\\Projects\\Flood Modeller API\\development\\floodmodeller-api\\floodmodeller_api\\test\\test_data\\Domain1_Q.xml",
6
6
  "file": {
7
7
  "API Class": "floodmodeller_api.backup.File",
8
8
  "Object Attributes": {
9
- "path": "C:\\Users\\PIERCEJA\\OneDrive - Jacobs\\Documents\\Projects\\Flood Modeller API\\development\\floodmodeller-api\\floodmodeller_api\\test\\test_data\\Domain1_Q.xml",
9
+ "path": "c:\\Users\\PIERCEJA\\OneDrive - Jacobs\\Documents\\Projects\\Flood Modeller API\\development\\floodmodeller-api\\floodmodeller_api\\test\\test_data\\Domain1_Q.xml",
10
10
  "ext": ".xml",
11
- "dttm_str": "2024-04-17-14-09-24",
12
- "file_id": "a213182e3df6175444086915fcc1e069d5acafb0",
13
- "backup_filename": "a213182e3df6175444086915fcc1e069d5acafb0_2024-04-17-14-09-24.xml",
11
+ "dttm_str": "2024-09-10-16-49-49",
12
+ "file_id": "f90a96d5dfc54af573d5eeb8e815efddaa9bbe47",
13
+ "backup_filename": "f90a96d5dfc54af573d5eeb8e815efddaa9bbe47_2024-09-10-16-49-49.xml",
14
14
  "temp_dir": "C:\\Users\\PIERCEJA\\AppData\\Local\\Temp",
15
15
  "backup_dirname": "floodmodeller_api_backup",
16
16
  "backup_dir": "C:\\Users\\PIERCEJA\\AppData\\Local\\Temp\\floodmodeller_api_backup",
@@ -258,6 +258,6 @@
258
258
  "processor": null,
259
259
  "unit_system": null,
260
260
  "description": null,
261
- "_log_path": "C:\\Users\\PIERCEJA\\OneDrive - Jacobs\\Documents\\Projects\\Flood Modeller API\\development\\floodmodeller-api\\floodmodeller_api\\test\\test_data\\Domain1_Q.lf2"
261
+ "_log_path": "c:\\Users\\PIERCEJA\\OneDrive - Jacobs\\Documents\\Projects\\Flood Modeller API\\development\\floodmodeller-api\\floodmodeller_api\\test\\test_data\\Domain1_Q.lf2"
262
262
  }
263
263
  }
@@ -1,16 +1,16 @@
1
1
  {
2
2
  "API Class": "floodmodeller_api.dat.DAT",
3
- "API Version": "0.4.2.post1",
3
+ "API Version": "0.4.4.post1",
4
4
  "Object Attributes": {
5
- "_filepath": "C:\\Users\\PIERCEJA\\OneDrive - Jacobs\\Documents\\Projects\\Flood Modeller API\\development\\floodmodeller-api\\floodmodeller_api\\test\\test_data\\EX18.DAT",
5
+ "_filepath": "c:\\Users\\PIERCEJA\\OneDrive - Jacobs\\Documents\\Projects\\Flood Modeller API\\development\\floodmodeller-api\\floodmodeller_api\\test\\test_data\\EX18.DAT",
6
6
  "file": {
7
7
  "API Class": "floodmodeller_api.backup.File",
8
8
  "Object Attributes": {
9
- "path": "C:\\Users\\PIERCEJA\\OneDrive - Jacobs\\Documents\\Projects\\Flood Modeller API\\development\\floodmodeller-api\\floodmodeller_api\\test\\test_data\\EX18.DAT",
9
+ "path": "c:\\Users\\PIERCEJA\\OneDrive - Jacobs\\Documents\\Projects\\Flood Modeller API\\development\\floodmodeller-api\\floodmodeller_api\\test\\test_data\\EX18.DAT",
10
10
  "ext": ".DAT",
11
- "dttm_str": "2024-04-17-14-09-24",
12
- "file_id": "c0ec56a171ba2e84830901a95ab9052ac87aa017",
13
- "backup_filename": "c0ec56a171ba2e84830901a95ab9052ac87aa017_2024-04-17-14-09-24.DAT",
11
+ "dttm_str": "2024-09-10-16-49-49",
12
+ "file_id": "493aed0ba95d0ed21037494161350bb655fcb378",
13
+ "backup_filename": "493aed0ba95d0ed21037494161350bb655fcb378_2024-09-10-16-49-49.DAT",
14
14
  "temp_dir": "C:\\Users\\PIERCEJA\\AppData\\Local\\Temp",
15
15
  "backup_dirname": "floodmodeller_api_backup",
16
16
  "backup_dir": "C:\\Users\\PIERCEJA\\AppData\\Local\\Temp\\floodmodeller_api_backup",
@@ -649,7 +649,7 @@
649
649
  "slope": 0.0001,
650
650
  "density": 1000.0,
651
651
  "nrows": 5,
652
- "data": {
652
+ "_data": {
653
653
  "class": "pandas.DataFrame",
654
654
  "object": {
655
655
  "X": {
@@ -723,7 +723,8 @@
723
723
  "4": 0
724
724
  }
725
725
  }
726
- }
726
+ },
727
+ "_active_data": null
727
728
  }
728
729
  },
729
730
  "S2": {
@@ -743,7 +744,7 @@
743
744
  "slope": 0.0001,
744
745
  "density": 1000.0,
745
746
  "nrows": 5,
746
- "data": {
747
+ "_data": {
747
748
  "class": "pandas.DataFrame",
748
749
  "object": {
749
750
  "X": {
@@ -817,7 +818,8 @@
817
818
  "4": 0
818
819
  }
819
820
  }
820
- }
821
+ },
822
+ "_active_data": null
821
823
  }
822
824
  },
823
825
  "C2_R1": {
@@ -1017,7 +1019,7 @@
1017
1019
  "slope": 0.0001,
1018
1020
  "density": 1000.0,
1019
1021
  "nrows": 5,
1020
- "data": {
1022
+ "_data": {
1021
1023
  "class": "pandas.DataFrame",
1022
1024
  "object": {
1023
1025
  "X": {
@@ -1091,7 +1093,8 @@
1091
1093
  "4": 0
1092
1094
  }
1093
1095
  }
1094
- }
1096
+ },
1097
+ "_active_data": null
1095
1098
  }
1096
1099
  },
1097
1100
  "S4": {
@@ -1111,7 +1114,7 @@
1111
1114
  "slope": 0.0001,
1112
1115
  "density": 1000.0,
1113
1116
  "nrows": 5,
1114
- "data": {
1117
+ "_data": {
1115
1118
  "class": "pandas.DataFrame",
1116
1119
  "object": {
1117
1120
  "X": {
@@ -1185,7 +1188,8 @@
1185
1188
  "4": 0
1186
1189
  }
1187
1190
  }
1188
- }
1191
+ },
1192
+ "_active_data": null
1189
1193
  }
1190
1194
  },
1191
1195
  "S5": {
@@ -1205,7 +1209,7 @@
1205
1209
  "slope": 0.0001,
1206
1210
  "density": 1000.0,
1207
1211
  "nrows": 5,
1208
- "data": {
1212
+ "_data": {
1209
1213
  "class": "pandas.DataFrame",
1210
1214
  "object": {
1211
1215
  "X": {
@@ -1279,7 +1283,8 @@
1279
1283
  "4": 0
1280
1284
  }
1281
1285
  }
1282
- }
1286
+ },
1287
+ "_active_data": null
1283
1288
  }
1284
1289
  },
1285
1290
  "S6": {
@@ -1299,7 +1304,7 @@
1299
1304
  "slope": 0.0001,
1300
1305
  "density": 1000.0,
1301
1306
  "nrows": 5,
1302
- "data": {
1307
+ "_data": {
1303
1308
  "class": "pandas.DataFrame",
1304
1309
  "object": {
1305
1310
  "X": {
@@ -1373,7 +1378,8 @@
1373
1378
  "4": 0
1374
1379
  }
1375
1380
  }
1376
- }
1381
+ },
1382
+ "_active_data": null
1377
1383
  }
1378
1384
  },
1379
1385
  "S7": {
@@ -1393,7 +1399,7 @@
1393
1399
  "slope": 0.0001,
1394
1400
  "density": 1000.0,
1395
1401
  "nrows": 5,
1396
- "data": {
1402
+ "_data": {
1397
1403
  "class": "pandas.DataFrame",
1398
1404
  "object": {
1399
1405
  "X": {
@@ -1467,7 +1473,8 @@
1467
1473
  "4": 0
1468
1474
  }
1469
1475
  }
1470
- }
1476
+ },
1477
+ "_active_data": null
1471
1478
  }
1472
1479
  },
1473
1480
  "S8": {
@@ -1487,7 +1494,7 @@
1487
1494
  "slope": 0.0001,
1488
1495
  "density": 1000.0,
1489
1496
  "nrows": 5,
1490
- "data": {
1497
+ "_data": {
1491
1498
  "class": "pandas.DataFrame",
1492
1499
  "object": {
1493
1500
  "X": {
@@ -1561,7 +1568,8 @@
1561
1568
  "4": 0
1562
1569
  }
1563
1570
  }
1564
- }
1571
+ },
1572
+ "_active_data": null
1565
1573
  }
1566
1574
  }
1567
1575
  },
@@ -2251,7 +2259,7 @@
2251
2259
  "slope": 0.0001,
2252
2260
  "density": 1000.0,
2253
2261
  "nrows": 5,
2254
- "data": {
2262
+ "_data": {
2255
2263
  "class": "pandas.DataFrame",
2256
2264
  "object": {
2257
2265
  "X": {
@@ -2325,7 +2333,8 @@
2325
2333
  "4": 0
2326
2334
  }
2327
2335
  }
2328
- }
2336
+ },
2337
+ "_active_data": null
2329
2338
  }
2330
2339
  },
2331
2340
  {
@@ -2345,7 +2354,7 @@
2345
2354
  "slope": 0.0001,
2346
2355
  "density": 1000.0,
2347
2356
  "nrows": 5,
2348
- "data": {
2357
+ "_data": {
2349
2358
  "class": "pandas.DataFrame",
2350
2359
  "object": {
2351
2360
  "X": {
@@ -2419,7 +2428,8 @@
2419
2428
  "4": 0
2420
2429
  }
2421
2430
  }
2422
- }
2431
+ },
2432
+ "_active_data": null
2423
2433
  }
2424
2434
  },
2425
2435
  {
@@ -2789,7 +2799,7 @@
2789
2799
  "slope": 0.0001,
2790
2800
  "density": 1000.0,
2791
2801
  "nrows": 5,
2792
- "data": {
2802
+ "_data": {
2793
2803
  "class": "pandas.DataFrame",
2794
2804
  "object": {
2795
2805
  "X": {
@@ -2863,7 +2873,8 @@
2863
2873
  "4": 0
2864
2874
  }
2865
2875
  }
2866
- }
2876
+ },
2877
+ "_active_data": null
2867
2878
  }
2868
2879
  },
2869
2880
  {
@@ -2883,7 +2894,7 @@
2883
2894
  "slope": 0.0001,
2884
2895
  "density": 1000.0,
2885
2896
  "nrows": 5,
2886
- "data": {
2897
+ "_data": {
2887
2898
  "class": "pandas.DataFrame",
2888
2899
  "object": {
2889
2900
  "X": {
@@ -2957,7 +2968,8 @@
2957
2968
  "4": 0
2958
2969
  }
2959
2970
  }
2960
- }
2971
+ },
2972
+ "_active_data": null
2961
2973
  }
2962
2974
  },
2963
2975
  {
@@ -3012,7 +3024,7 @@
3012
3024
  "slope": 0.0001,
3013
3025
  "density": 1000.0,
3014
3026
  "nrows": 5,
3015
- "data": {
3027
+ "_data": {
3016
3028
  "class": "pandas.DataFrame",
3017
3029
  "object": {
3018
3030
  "X": {
@@ -3086,7 +3098,8 @@
3086
3098
  "4": 0
3087
3099
  }
3088
3100
  }
3089
- }
3101
+ },
3102
+ "_active_data": null
3090
3103
  }
3091
3104
  },
3092
3105
  {
@@ -3106,7 +3119,7 @@
3106
3119
  "slope": 0.0001,
3107
3120
  "density": 1000.0,
3108
3121
  "nrows": 5,
3109
- "data": {
3122
+ "_data": {
3110
3123
  "class": "pandas.DataFrame",
3111
3124
  "object": {
3112
3125
  "X": {
@@ -3180,7 +3193,8 @@
3180
3193
  "4": 0
3181
3194
  }
3182
3195
  }
3183
- }
3196
+ },
3197
+ "_active_data": null
3184
3198
  }
3185
3199
  },
3186
3200
  {
@@ -3200,7 +3214,7 @@
3200
3214
  "slope": 0.0001,
3201
3215
  "density": 1000.0,
3202
3216
  "nrows": 5,
3203
- "data": {
3217
+ "_data": {
3204
3218
  "class": "pandas.DataFrame",
3205
3219
  "object": {
3206
3220
  "X": {
@@ -3274,7 +3288,8 @@
3274
3288
  "4": 0
3275
3289
  }
3276
3290
  }
3277
- }
3291
+ },
3292
+ "_active_data": null
3278
3293
  }
3279
3294
  },
3280
3295
  {
@@ -3294,7 +3309,7 @@
3294
3309
  "slope": 0.0001,
3295
3310
  "density": 1000.0,
3296
3311
  "nrows": 5,
3297
- "data": {
3312
+ "_data": {
3298
3313
  "class": "pandas.DataFrame",
3299
3314
  "object": {
3300
3315
  "X": {
@@ -3368,7 +3383,8 @@
3368
3383
  "4": 0
3369
3384
  }
3370
3385
  }
3371
- }
3386
+ },
3387
+ "_active_data": null
3372
3388
  }
3373
3389
  },
3374
3390
  {