flock-core 0.5.0b54__py3-none-any.whl → 0.5.0b55__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of flock-core might be problematic. Click here for more details.
- flock/logging/telemetry_exporter/duckdb_exporter.py +4 -4
- flock/store.py +34 -1
- flock_core-0.5.0b55.dist-info/METADATA +681 -0
- {flock_core-0.5.0b54.dist-info → flock_core-0.5.0b55.dist-info}/RECORD +7 -7
- flock_core-0.5.0b54.dist-info/METADATA +0 -916
- {flock_core-0.5.0b54.dist-info → flock_core-0.5.0b55.dist-info}/WHEEL +0 -0
- {flock_core-0.5.0b54.dist-info → flock_core-0.5.0b55.dist-info}/entry_points.txt +0 -0
- {flock_core-0.5.0b54.dist-info → flock_core-0.5.0b55.dist-info}/licenses/LICENSE +0 -0
|
@@ -0,0 +1,681 @@
|
|
|
1
|
+
Metadata-Version: 2.4
|
|
2
|
+
Name: flock-core
|
|
3
|
+
Version: 0.5.0b55
|
|
4
|
+
Summary: Add your description here
|
|
5
|
+
Author-email: Andre Ratzenberger <andre.ratzenberger@whiteduck.de>
|
|
6
|
+
License-File: LICENSE
|
|
7
|
+
Requires-Python: >=3.10
|
|
8
|
+
Requires-Dist: devtools>=0.12.2
|
|
9
|
+
Requires-Dist: dspy==3.0.0
|
|
10
|
+
Requires-Dist: duckdb>=1.1.0
|
|
11
|
+
Requires-Dist: fastapi>=0.117.1
|
|
12
|
+
Requires-Dist: httpx>=0.28.1
|
|
13
|
+
Requires-Dist: litellm==1.75.3
|
|
14
|
+
Requires-Dist: loguru>=0.7.3
|
|
15
|
+
Requires-Dist: mcp>=1.7.1
|
|
16
|
+
Requires-Dist: opentelemetry-api>=1.30.0
|
|
17
|
+
Requires-Dist: opentelemetry-exporter-jaeger-proto-grpc>=1.21.0
|
|
18
|
+
Requires-Dist: opentelemetry-exporter-jaeger>=1.21.0
|
|
19
|
+
Requires-Dist: opentelemetry-exporter-otlp>=1.30.0
|
|
20
|
+
Requires-Dist: opentelemetry-instrumentation-logging>=0.51b0
|
|
21
|
+
Requires-Dist: opentelemetry-sdk>=1.30.0
|
|
22
|
+
Requires-Dist: poethepoet>=0.30.0
|
|
23
|
+
Requires-Dist: pydantic[email]>=2.11.9
|
|
24
|
+
Requires-Dist: rich>=14.1.0
|
|
25
|
+
Requires-Dist: toml>=0.10.2
|
|
26
|
+
Requires-Dist: typer>=0.19.2
|
|
27
|
+
Requires-Dist: uvicorn>=0.37.0
|
|
28
|
+
Requires-Dist: websockets>=15.0.1
|
|
29
|
+
Description-Content-Type: text/markdown
|
|
30
|
+
|
|
31
|
+
<p align="center">
|
|
32
|
+
<img alt="Flock Banner" src="https://raw.githubusercontent.com/whiteducksoftware/flock/master/docs/assets/images/flock.png" width="800">
|
|
33
|
+
</p>
|
|
34
|
+
<p align="center">
|
|
35
|
+
<a href="https://pypi.org/project/flock-core/" target="_blank"><img alt="PyPI Version" src="https://img.shields.io/pypi/v/flock-core?style=for-the-badge&logo=pypi&label=pip%20version"></a>
|
|
36
|
+
<img alt="Python Version" src="https://img.shields.io/badge/python-3.10%2B-blue?style=for-the-badge&logo=python">
|
|
37
|
+
<a href="https://github.com/whiteducksoftware/flock/blob/master/LICENSE" target="_blank"><img alt="License" src="https://img.shields.io/pypi/l/flock-core?style=for-the-badge"></a>
|
|
38
|
+
<a href="https://whiteduck.de" target="_blank"><img alt="Built by white duck" src="https://img.shields.io/badge/Built%20by-white%20duck%20GmbH-white?style=for-the-badge&labelColor=black"></a>
|
|
39
|
+
</p>
|
|
40
|
+
|
|
41
|
+
---
|
|
42
|
+
|
|
43
|
+
# Flock 0.5: Declarative Multi-Agent Orchestration
|
|
44
|
+
|
|
45
|
+
> **Stop engineering prompts. Start declaring contracts.**
|
|
46
|
+
|
|
47
|
+
Flock is a production-focused framework for orchestrating AI agents through **declarative type contracts** and **blackboard architecture**—proven patterns from distributed systems and classical AI, now applied to modern LLMs.
|
|
48
|
+
|
|
49
|
+
**Version 0.5.0** • Production-Ready Core • 743 Tests • 77% Coverage
|
|
50
|
+
|
|
51
|
+
---
|
|
52
|
+
|
|
53
|
+
## The Problem With Current Frameworks
|
|
54
|
+
|
|
55
|
+
Building production multi-agent systems today means dealing with:
|
|
56
|
+
|
|
57
|
+
**🔥 Prompt Engineering Hell**
|
|
58
|
+
```python
|
|
59
|
+
# 500-line prompt that breaks when GPT-4 becomes GPT-5
|
|
60
|
+
prompt = """You are an expert code reviewer. When you receive code, you should...
|
|
61
|
+
[498 more lines of instructions that the LLM ignores half the time]"""
|
|
62
|
+
```
|
|
63
|
+
|
|
64
|
+
**🔥 Testing Nightmares**
|
|
65
|
+
```python
|
|
66
|
+
# How do you unit test this?
|
|
67
|
+
result = llm.invoke(prompt) # Hope for valid JSON
|
|
68
|
+
data = json.loads(result.content) # Crashes in production
|
|
69
|
+
```
|
|
70
|
+
|
|
71
|
+
**🔥 Rigid Workflow Graphs**
|
|
72
|
+
```python
|
|
73
|
+
# Want to add a new agent? Rewrite the entire graph.
|
|
74
|
+
workflow.add_edge("agent_a", "agent_b")
|
|
75
|
+
workflow.add_edge("agent_b", "agent_c")
|
|
76
|
+
# Add agent_d? Start rewiring...
|
|
77
|
+
```
|
|
78
|
+
|
|
79
|
+
**🔥 No Security Model**
|
|
80
|
+
```python
|
|
81
|
+
# Every agent sees everything. Good luck with HIPAA compliance.
|
|
82
|
+
```
|
|
83
|
+
|
|
84
|
+
These aren't framework limitations—they're **architectural choices** that don't scale.
|
|
85
|
+
|
|
86
|
+
---
|
|
87
|
+
|
|
88
|
+
## The Flock Approach
|
|
89
|
+
|
|
90
|
+
Flock takes a different path, combining two proven patterns:
|
|
91
|
+
|
|
92
|
+
### 1. Declarative Type Contracts (Not Prompts)
|
|
93
|
+
|
|
94
|
+
**The old way:**
|
|
95
|
+
```python
|
|
96
|
+
prompt = "Analyze this bug report and return JSON with severity, category, hypothesis..."
|
|
97
|
+
result = llm.invoke(prompt) # Hope it works
|
|
98
|
+
```
|
|
99
|
+
|
|
100
|
+
**The Flock way:**
|
|
101
|
+
```python
|
|
102
|
+
@flock_type
|
|
103
|
+
class BugDiagnosis(BaseModel):
|
|
104
|
+
severity: str = Field(pattern="^(Critical|High|Medium|Low)$")
|
|
105
|
+
category: str = Field(description="Bug category")
|
|
106
|
+
root_cause_hypothesis: str = Field(min_length=50)
|
|
107
|
+
confidence_score: float = Field(ge=0.0, le=1.0)
|
|
108
|
+
|
|
109
|
+
# The schema IS the instruction. No 500-line prompt needed.
|
|
110
|
+
agent.consumes(BugReport).publishes(BugDiagnosis)
|
|
111
|
+
```
|
|
112
|
+
|
|
113
|
+
**Why this matters:**
|
|
114
|
+
- ✅ **Survives model upgrades** - GPT-6 will still understand Pydantic schemas
|
|
115
|
+
- ✅ **Runtime validation** - Errors caught at parse time, not in production
|
|
116
|
+
- ✅ **Testable** - Mock inputs/outputs with concrete types
|
|
117
|
+
- ✅ **Self-documenting** - The code tells you what agents do
|
|
118
|
+
|
|
119
|
+
### 2. Blackboard Architecture (Not Directed Graphs)
|
|
120
|
+
|
|
121
|
+
**The old way (graph-based):**
|
|
122
|
+
```python
|
|
123
|
+
# Explicit workflow with hardcoded edges
|
|
124
|
+
workflow.add_edge("radiologist", "diagnostician")
|
|
125
|
+
workflow.add_edge("lab_tech", "diagnostician")
|
|
126
|
+
# Add performance_analyzer? Rewrite the graph.
|
|
127
|
+
```
|
|
128
|
+
|
|
129
|
+
**The Flock way (blackboard):**
|
|
130
|
+
```python
|
|
131
|
+
# Agents subscribe to types, workflows emerge
|
|
132
|
+
radiologist = flock.agent("radiologist").consumes(Scan).publishes(XRayAnalysis)
|
|
133
|
+
lab_tech = flock.agent("lab_tech").consumes(Scan).publishes(LabResults)
|
|
134
|
+
diagnostician = flock.agent("diagnostician").consumes(XRayAnalysis, LabResults).publishes(Diagnosis)
|
|
135
|
+
|
|
136
|
+
# Add performance_analyzer? Just subscribe it:
|
|
137
|
+
performance = flock.agent("perf").consumes(Scan).publishes(PerfAnalysis)
|
|
138
|
+
# Done. No graph rewiring. Diagnostician can optionally consume it.
|
|
139
|
+
```
|
|
140
|
+
|
|
141
|
+
**What just happened:**
|
|
142
|
+
- ✅ **Parallel execution** - Radiologist and lab_tech run concurrently (automatic)
|
|
143
|
+
- ✅ **Dependency resolution** - Diagnostician waits for both inputs (automatic)
|
|
144
|
+
- ✅ **Loose coupling** - Agents don't know about each other, just data types
|
|
145
|
+
- ✅ **Scalable** - O(n) complexity, not O(n²) edges
|
|
146
|
+
|
|
147
|
+
**This is not a new idea.** Blackboard architecture powered groundbreaking AI systems since the 1970s (Hearsay-II, HASP/SIAP, BB1). We're applying proven patterns to modern LLMs.
|
|
148
|
+
|
|
149
|
+
---
|
|
150
|
+
|
|
151
|
+
## Quick Start (60 Seconds)
|
|
152
|
+
|
|
153
|
+
```bash
|
|
154
|
+
pip install flock-flow
|
|
155
|
+
export OPENAI_API_KEY="sk-..."
|
|
156
|
+
```
|
|
157
|
+
|
|
158
|
+
```python
|
|
159
|
+
import asyncio
|
|
160
|
+
from pydantic import BaseModel, Field
|
|
161
|
+
from flock.orchestrator import Flock
|
|
162
|
+
from flock.registry import flock_type
|
|
163
|
+
|
|
164
|
+
# 1. Define typed artifacts
|
|
165
|
+
@flock_type
|
|
166
|
+
class CodeSubmission(BaseModel):
|
|
167
|
+
code: str
|
|
168
|
+
language: str
|
|
169
|
+
|
|
170
|
+
@flock_type
|
|
171
|
+
class BugAnalysis(BaseModel):
|
|
172
|
+
bugs_found: list[str]
|
|
173
|
+
severity: str = Field(pattern="^(Critical|High|Medium|Low|None)$")
|
|
174
|
+
confidence: float = Field(ge=0.0, le=1.0)
|
|
175
|
+
|
|
176
|
+
@flock_type
|
|
177
|
+
class SecurityAnalysis(BaseModel):
|
|
178
|
+
vulnerabilities: list[str]
|
|
179
|
+
risk_level: str = Field(pattern="^(Critical|High|Medium|Low|None)$")
|
|
180
|
+
|
|
181
|
+
@flock_type
|
|
182
|
+
class FinalReview(BaseModel):
|
|
183
|
+
overall_assessment: str = Field(pattern="^(Approve|Approve with Changes|Reject)$")
|
|
184
|
+
action_items: list[str]
|
|
185
|
+
|
|
186
|
+
# 2. Create the blackboard
|
|
187
|
+
flock = Flock("openai/gpt-4.1")
|
|
188
|
+
|
|
189
|
+
# 3. Agents subscribe to types (NO graph wiring!)
|
|
190
|
+
bug_detector = flock.agent("bug_detector").consumes(CodeSubmission).publishes(BugAnalysis)
|
|
191
|
+
security_auditor = flock.agent("security_auditor").consumes(CodeSubmission).publishes(SecurityAnalysis)
|
|
192
|
+
|
|
193
|
+
# This agent AUTOMATICALLY waits for both analyses
|
|
194
|
+
final_reviewer = flock.agent("final_reviewer").consumes(BugAnalysis, SecurityAnalysis).publishes(FinalReview)
|
|
195
|
+
|
|
196
|
+
# 4. Run with real-time dashboard
|
|
197
|
+
async def main():
|
|
198
|
+
await flock.serve(dashboard=True)
|
|
199
|
+
|
|
200
|
+
asyncio.run(main())
|
|
201
|
+
```
|
|
202
|
+
|
|
203
|
+
**What happened:**
|
|
204
|
+
- Bug detector and security auditor ran **in parallel** (both consume CodeSubmission)
|
|
205
|
+
- Final reviewer **automatically waited** for both
|
|
206
|
+
- **Zero prompts written** - types defined the behavior
|
|
207
|
+
- **Zero graph edges** - subscriptions created the workflow
|
|
208
|
+
- **Full type safety** - Pydantic validates all outputs
|
|
209
|
+
|
|
210
|
+
---
|
|
211
|
+
|
|
212
|
+
## Core Concepts
|
|
213
|
+
|
|
214
|
+
### Typed Artifacts (The Vocabulary)
|
|
215
|
+
|
|
216
|
+
Every piece of data on the blackboard is a validated Pydantic model:
|
|
217
|
+
|
|
218
|
+
```python
|
|
219
|
+
@flock_type
|
|
220
|
+
class PatientDiagnosis(BaseModel):
|
|
221
|
+
condition: str = Field(min_length=10)
|
|
222
|
+
confidence: float = Field(ge=0.0, le=1.0)
|
|
223
|
+
recommended_treatment: list[str] = Field(min_length=1)
|
|
224
|
+
follow_up_required: bool
|
|
225
|
+
```
|
|
226
|
+
|
|
227
|
+
**Benefits:**
|
|
228
|
+
- Runtime validation ensures quality
|
|
229
|
+
- Field constraints prevent bad outputs
|
|
230
|
+
- Self-documenting data structures
|
|
231
|
+
- Version-safe (types survive model updates)
|
|
232
|
+
|
|
233
|
+
### Agent Subscriptions (The Rules)
|
|
234
|
+
|
|
235
|
+
Agents declare what they consume and produce:
|
|
236
|
+
|
|
237
|
+
```python
|
|
238
|
+
analyzer = (
|
|
239
|
+
flock.agent("analyzer")
|
|
240
|
+
.description("Analyzes patient scans") # Optional: improves multi-agent coordination
|
|
241
|
+
.consumes(PatientScan) # What triggers this agent
|
|
242
|
+
.publishes(PatientDiagnosis) # What it produces
|
|
243
|
+
)
|
|
244
|
+
```
|
|
245
|
+
|
|
246
|
+
**Advanced subscriptions:**
|
|
247
|
+
|
|
248
|
+
```python
|
|
249
|
+
# Conditional consumption - only high-severity cases
|
|
250
|
+
urgent_care = flock.agent("urgent").consumes(
|
|
251
|
+
Diagnosis,
|
|
252
|
+
where=lambda d: d.severity in ["Critical", "High"]
|
|
253
|
+
)
|
|
254
|
+
|
|
255
|
+
# Batch processing - wait for 10 items
|
|
256
|
+
batch_processor = flock.agent("batch").consumes(
|
|
257
|
+
Event,
|
|
258
|
+
batch=BatchSpec(size=10, timeout=timedelta(seconds=30))
|
|
259
|
+
)
|
|
260
|
+
|
|
261
|
+
# Join operations - wait for multiple types within time window
|
|
262
|
+
correlator = flock.agent("correlator").consumes(
|
|
263
|
+
SignalA,
|
|
264
|
+
SignalB,
|
|
265
|
+
join=JoinSpec(within=timedelta(minutes=5))
|
|
266
|
+
)
|
|
267
|
+
```
|
|
268
|
+
|
|
269
|
+
### Visibility Controls (The Security)
|
|
270
|
+
|
|
271
|
+
**Unlike other frameworks, Flock has zero-trust security built-in:**
|
|
272
|
+
|
|
273
|
+
```python
|
|
274
|
+
# Multi-tenancy (SaaS isolation)
|
|
275
|
+
agent.publishes(CustomerData, visibility=TenantVisibility(tenant_id="customer_123"))
|
|
276
|
+
|
|
277
|
+
# Explicit allowlist (HIPAA compliance)
|
|
278
|
+
agent.publishes(MedicalRecord, visibility=PrivateVisibility(agents={"physician", "nurse"}))
|
|
279
|
+
|
|
280
|
+
# Role-based access control
|
|
281
|
+
agent.identity(AgentIdentity(name="analyst", labels={"clearance:secret"}))
|
|
282
|
+
agent.publishes(IntelReport, visibility=LabelledVisibility(required_labels={"clearance:secret"}))
|
|
283
|
+
|
|
284
|
+
# Time-delayed release (embargo periods)
|
|
285
|
+
artifact.visibility = AfterVisibility(ttl=timedelta(hours=24), then=PublicVisibility())
|
|
286
|
+
|
|
287
|
+
# Public (default)
|
|
288
|
+
agent.publishes(PublicReport, visibility=PublicVisibility())
|
|
289
|
+
```
|
|
290
|
+
|
|
291
|
+
**Why this matters:** Financial services, healthcare, defense, SaaS platforms all need this for compliance. Other frameworks make you build it yourself.
|
|
292
|
+
|
|
293
|
+
### Production Safety Features
|
|
294
|
+
|
|
295
|
+
**Built-in safeguards prevent common production failures:**
|
|
296
|
+
|
|
297
|
+
```python
|
|
298
|
+
# Circuit breakers prevent runaway costs
|
|
299
|
+
flock = Flock("openai/gpt-4.1", max_agent_iterations=1000)
|
|
300
|
+
|
|
301
|
+
# Feedback loop protection
|
|
302
|
+
critic = (
|
|
303
|
+
flock.agent("critic")
|
|
304
|
+
.consumes(Essay)
|
|
305
|
+
.publishes(Critique)
|
|
306
|
+
.prevent_self_trigger(True) # Won't trigger itself infinitely
|
|
307
|
+
)
|
|
308
|
+
|
|
309
|
+
# Best-of-N execution (run 5x, pick best)
|
|
310
|
+
agent.best_of(5, score=lambda result: result.metrics["confidence"])
|
|
311
|
+
|
|
312
|
+
# Configuration validation
|
|
313
|
+
agent.best_of(150, ...) # ⚠️ Warns: "best_of(150) is very high - high LLM costs"
|
|
314
|
+
```
|
|
315
|
+
|
|
316
|
+
---
|
|
317
|
+
|
|
318
|
+
## Production-Ready Observability
|
|
319
|
+
|
|
320
|
+
### OpenTelemetry + DuckDB Tracing
|
|
321
|
+
|
|
322
|
+
**One environment variable enables comprehensive tracing:**
|
|
323
|
+
|
|
324
|
+
```bash
|
|
325
|
+
export FLOCK_AUTO_TRACE=true
|
|
326
|
+
export FLOCK_TRACE_FILE=true
|
|
327
|
+
|
|
328
|
+
python your_app.py
|
|
329
|
+
# Traces stored in .flock/traces.duckdb
|
|
330
|
+
```
|
|
331
|
+
|
|
332
|
+
**AI-queryable debugging:**
|
|
333
|
+
|
|
334
|
+
```python
|
|
335
|
+
import duckdb
|
|
336
|
+
conn = duckdb.connect('.flock/traces.duckdb', read_only=True)
|
|
337
|
+
|
|
338
|
+
# Find bottlenecks
|
|
339
|
+
slow_ops = conn.execute("""
|
|
340
|
+
SELECT name, AVG(duration_ms) as avg_ms, COUNT(*) as count
|
|
341
|
+
FROM spans
|
|
342
|
+
WHERE duration_ms > 1000
|
|
343
|
+
GROUP BY name
|
|
344
|
+
ORDER BY avg_ms DESC
|
|
345
|
+
""").fetchall()
|
|
346
|
+
|
|
347
|
+
# Find errors with full context
|
|
348
|
+
errors = conn.execute("""
|
|
349
|
+
SELECT name, status_description,
|
|
350
|
+
json_extract(attributes, '$.input') as input,
|
|
351
|
+
json_extract(attributes, '$.output') as output
|
|
352
|
+
FROM spans
|
|
353
|
+
WHERE status_code = 'ERROR'
|
|
354
|
+
""").fetchall()
|
|
355
|
+
```
|
|
356
|
+
|
|
357
|
+
**Real debugging session:**
|
|
358
|
+
```
|
|
359
|
+
You: "My pizza agent is slow"
|
|
360
|
+
AI: [queries DuckDB]
|
|
361
|
+
"DSPyEngine.evaluate takes 23s on average.
|
|
362
|
+
Input size: 50KB of conversation history.
|
|
363
|
+
Recommendation: Limit context to last 5 messages."
|
|
364
|
+
```
|
|
365
|
+
|
|
366
|
+
**Why DuckDB?** 10-100x faster than SQLite for analytical queries. Zero configuration. AI agents can debug your AI agents.
|
|
367
|
+
|
|
368
|
+
### Real-Time Dashboard
|
|
369
|
+
|
|
370
|
+
```python
|
|
371
|
+
await flock.serve(dashboard=True)
|
|
372
|
+
```
|
|
373
|
+
|
|
374
|
+
- **Dual visualization modes:** Agent View vs Blackboard View
|
|
375
|
+
- **WebSocket streaming:** Live updates with 2-minute heartbeat
|
|
376
|
+
- **Control panel:** Publish artifacts and invoke agents from UI
|
|
377
|
+
- **7 trace viewer modes:** Timeline, Statistics, RED metrics, Dependencies, SQL, Config, Guide
|
|
378
|
+
- **Full I/O capture:** Complete input/output data with collapsible JSON viewer
|
|
379
|
+
- **Keyboard shortcuts:** WCAG 2.1 AA compliant accessibility
|
|
380
|
+
|
|
381
|
+
---
|
|
382
|
+
|
|
383
|
+
## Framework Comparison
|
|
384
|
+
|
|
385
|
+
### When Flock Wins
|
|
386
|
+
|
|
387
|
+
**✅ Use Flock when you need:**
|
|
388
|
+
|
|
389
|
+
| Requirement | Why Flock | Alternative Challenge |
|
|
390
|
+
|-------------|-----------|----------------------|
|
|
391
|
+
| **Parallel agent execution** | Automatic - agents consuming same type run concurrently | Graph frameworks require manual coordination; chat frameworks are typically sequential |
|
|
392
|
+
| **Type-safe outputs** | Pydantic validation at runtime | Most use TypedDict (no validation) or text-based outputs |
|
|
393
|
+
| **Zero prompt engineering** | Schemas define behavior | Most require extensive manual prompts |
|
|
394
|
+
| **Adding agents dynamically** | Just subscribe to types | Graph frameworks require rewiring; others need flow updates |
|
|
395
|
+
| **Testing in isolation** | Unit test individual agents | Most require full workflow setup for testing |
|
|
396
|
+
| **Security/access control** | 5 visibility types built-in | DIY implementation in most frameworks |
|
|
397
|
+
| **10+ agents** | O(n) complexity, stays clean | Graph-based approaches have O(n²) edge complexity |
|
|
398
|
+
|
|
399
|
+
### When Alternatives Win
|
|
400
|
+
|
|
401
|
+
**⚠️ Consider LangGraph when:**
|
|
402
|
+
- You need **extensive ecosystem integration** (LangChain tools, LangSmith debugging)
|
|
403
|
+
- Your workflow is **inherently sequential** (no parallelism needed)
|
|
404
|
+
- You want **battle-tested maturity** (LangGraph is 1.0+, Flock is 0.5.0)
|
|
405
|
+
- You need **extensive documentation** and large community
|
|
406
|
+
|
|
407
|
+
**⚠️ Consider AutoGen when:**
|
|
408
|
+
- You need **Microsoft ecosystem** integration (Azure, Office)
|
|
409
|
+
- You prefer **chat-based development patterns** for agent interaction
|
|
410
|
+
- Your team has existing **AutoGen expertise**
|
|
411
|
+
- You need features specific to the AutoGen ecosystem
|
|
412
|
+
|
|
413
|
+
### Honest Architectural Comparison
|
|
414
|
+
|
|
415
|
+
| Dimension | Flock | LangGraph | AutoGen (v0.2) | AutoGen (v0.4) |
|
|
416
|
+
|-----------|-------|-----------|---------------|----------------|
|
|
417
|
+
| **Core Pattern** | Blackboard subscriptions | Directed graph | Round-robin chat | Agent graphs |
|
|
418
|
+
| **Parallelism** | Automatic | Manual (Send API) | No | Manual |
|
|
419
|
+
| **Type Safety** | Pydantic + validation | TypedDict | Text-based | Typed messages |
|
|
420
|
+
| **Coupling** | Loose (types) | Tight (edges) | Medium (conversation) | Medium (graph) |
|
|
421
|
+
| **Prompt Engineering** | Zero (declarative) | Required | Required | Required |
|
|
422
|
+
| **Add Agent** | Subscribe to type | Rewrite graph | Update flow | Update graph |
|
|
423
|
+
| **Maturity** | 0.5.0 (early) | 1.0+ (mature) | 1.0+ (mature) | 0.4+ (evolving) |
|
|
424
|
+
| **Community** | Small | Large | Large | Growing |
|
|
425
|
+
| **Testing** | Isolated agents | Full graph | Full group | Graph/agents |
|
|
426
|
+
| **Security** | Built-in (5 types) | DIY | DIY | DIY |
|
|
427
|
+
|
|
428
|
+
**Bottom line:** Different architectures for different needs. Flock trades ecosystem maturity for better scalability patterns. Choose based on your priorities.
|
|
429
|
+
|
|
430
|
+
---
|
|
431
|
+
|
|
432
|
+
## Production Readiness
|
|
433
|
+
|
|
434
|
+
### What Works Today (v0.5.0)
|
|
435
|
+
|
|
436
|
+
**✅ Production-ready core:**
|
|
437
|
+
- 743 tests, 77% coverage (86-100% on critical paths)
|
|
438
|
+
- Blackboard orchestrator with typed artifacts
|
|
439
|
+
- Parallel + sequential execution (automatic)
|
|
440
|
+
- Zero-trust security (5 visibility types)
|
|
441
|
+
- Circuit breakers and feedback loop prevention
|
|
442
|
+
- OpenTelemetry distributed tracing with DuckDB storage
|
|
443
|
+
- Real-time dashboard with 7-mode trace viewer
|
|
444
|
+
- MCP integration (Model Context Protocol)
|
|
445
|
+
- Best-of-N execution, batch processing, join operations
|
|
446
|
+
|
|
447
|
+
**⚠️ What's missing for large-scale production:**
|
|
448
|
+
- **Persistent blackboard** - Currently in-memory only (Redis/Postgres coming Q1 2025)
|
|
449
|
+
- **Advanced retry logic** - Basic only (exponential backoff + dead letter queue coming Q1 2025)
|
|
450
|
+
- **Event replay** - No Kafka integration yet (coming Q2 2025)
|
|
451
|
+
- **Kubernetes-native deployment** - No Helm chart yet (coming Q2 2025)
|
|
452
|
+
- **OAuth/RBAC** - Dashboard has no auth (coming Q2 2025)
|
|
453
|
+
|
|
454
|
+
### Recommended Use Cases Today
|
|
455
|
+
|
|
456
|
+
**✅ Good fit right now:**
|
|
457
|
+
- **Startups/MVPs** - Fast iteration, type safety, built-in observability
|
|
458
|
+
- **Internal tools** - Where in-memory blackboard is acceptable
|
|
459
|
+
- **Research/prototyping** - Rapid experimentation with clean architecture
|
|
460
|
+
- **Medium-scale systems** (10-50 agents, 1000s of artifacts)
|
|
461
|
+
|
|
462
|
+
**⚠️ Wait for 1.0 if you need:**
|
|
463
|
+
- **Enterprise persistence** (multi-region, high availability)
|
|
464
|
+
- **Compliance auditing** (immutable event logs)
|
|
465
|
+
- **Multi-tenancy SaaS** (with OAuth/SSO)
|
|
466
|
+
- **Mission-critical systems** with 99.99% uptime requirements
|
|
467
|
+
|
|
468
|
+
**Flock 0.5.0 is production-ready for the right use cases. Know your requirements.**
|
|
469
|
+
|
|
470
|
+
---
|
|
471
|
+
|
|
472
|
+
## Roadmap to 1.0
|
|
473
|
+
|
|
474
|
+
See [ROADMAP.md](ROADMAP.md) for detailed timeline. Key milestones:
|
|
475
|
+
|
|
476
|
+
**Q1 2025: Production Hardening**
|
|
477
|
+
- Redis/Postgres persistence
|
|
478
|
+
- Advanced retry & error handling (exponential backoff, circuit breakers per-agent, dead letter queues)
|
|
479
|
+
- Aggregation patterns (map-reduce, voting, consensus)
|
|
480
|
+
|
|
481
|
+
**Q2 2025: Enterprise Infrastructure**
|
|
482
|
+
- Kafka event backbone (replay, time-travel debugging)
|
|
483
|
+
- Kubernetes-native deployment (Helm charts, auto-scaling)
|
|
484
|
+
- OAuth/RBAC (multi-tenant auth)
|
|
485
|
+
|
|
486
|
+
**Q3 2025: Advanced Orchestration**
|
|
487
|
+
- Human-in-the-loop approval patterns
|
|
488
|
+
- Fan-out/fan-in workflows
|
|
489
|
+
- Time-based scheduling (cron triggers, sliding windows)
|
|
490
|
+
|
|
491
|
+
**Target: v1.0 by Q3 2025**
|
|
492
|
+
|
|
493
|
+
---
|
|
494
|
+
|
|
495
|
+
## Example: Multi-Modal Clinical Decision Support
|
|
496
|
+
|
|
497
|
+
```python
|
|
498
|
+
from flock.orchestrator import Flock
|
|
499
|
+
from flock.visibility import PrivateVisibility, TenantVisibility
|
|
500
|
+
from pydantic import BaseModel
|
|
501
|
+
from flock.registry import flock_type
|
|
502
|
+
|
|
503
|
+
@flock_type
|
|
504
|
+
class PatientScan(BaseModel):
|
|
505
|
+
patient_id: str
|
|
506
|
+
scan_type: str
|
|
507
|
+
image_data: bytes
|
|
508
|
+
|
|
509
|
+
@flock_type
|
|
510
|
+
class XRayAnalysis(BaseModel):
|
|
511
|
+
findings: list[str]
|
|
512
|
+
confidence: float
|
|
513
|
+
|
|
514
|
+
@flock_type
|
|
515
|
+
class LabResults(BaseModel):
|
|
516
|
+
markers: dict[str, float]
|
|
517
|
+
|
|
518
|
+
@flock_type
|
|
519
|
+
class Diagnosis(BaseModel):
|
|
520
|
+
condition: str
|
|
521
|
+
reasoning: str
|
|
522
|
+
confidence: float
|
|
523
|
+
|
|
524
|
+
# Create HIPAA-compliant blackboard
|
|
525
|
+
flock = Flock("openai/gpt-4.1")
|
|
526
|
+
|
|
527
|
+
# Radiologist with privacy controls
|
|
528
|
+
radiologist = (
|
|
529
|
+
flock.agent("radiologist")
|
|
530
|
+
.consumes(PatientScan)
|
|
531
|
+
.publishes(
|
|
532
|
+
XRayAnalysis,
|
|
533
|
+
visibility=PrivateVisibility(agents={"diagnostician"}) # HIPAA!
|
|
534
|
+
)
|
|
535
|
+
)
|
|
536
|
+
|
|
537
|
+
# Lab tech with multi-tenancy
|
|
538
|
+
lab_tech = (
|
|
539
|
+
flock.agent("lab_tech")
|
|
540
|
+
.consumes(PatientScan)
|
|
541
|
+
.publishes(
|
|
542
|
+
LabResults,
|
|
543
|
+
visibility=TenantVisibility(tenant_id="patient_123") # Isolation!
|
|
544
|
+
)
|
|
545
|
+
)
|
|
546
|
+
|
|
547
|
+
# Diagnostician with explicit access
|
|
548
|
+
diagnostician = (
|
|
549
|
+
flock.agent("diagnostician")
|
|
550
|
+
.identity(AgentIdentity(name="diagnostician", labels={"role:physician"}))
|
|
551
|
+
.consumes(XRayAnalysis, LabResults) # Waits for BOTH
|
|
552
|
+
.publishes(
|
|
553
|
+
Diagnosis,
|
|
554
|
+
visibility=LabelledVisibility(required_labels={"role:physician"})
|
|
555
|
+
)
|
|
556
|
+
)
|
|
557
|
+
|
|
558
|
+
# Run with tracing
|
|
559
|
+
async with flock.traced_run("patient_123_diagnosis"):
|
|
560
|
+
await flock.publish(PatientScan(patient_id="123", ...))
|
|
561
|
+
await flock.run_until_idle()
|
|
562
|
+
|
|
563
|
+
# Get diagnosis (type-safe retrieval)
|
|
564
|
+
diagnoses = await flock.store.get_by_type(Diagnosis)
|
|
565
|
+
# Returns list[Diagnosis] directly - no .data access, no casting
|
|
566
|
+
```
|
|
567
|
+
|
|
568
|
+
**What this demonstrates:**
|
|
569
|
+
- Multi-modal data fusion (images + labs + history)
|
|
570
|
+
- Built-in access controls (HIPAA compliance)
|
|
571
|
+
- Parallel agent execution (radiology + labs run concurrently)
|
|
572
|
+
- Automatic dependency resolution (diagnostician waits for both)
|
|
573
|
+
- Full audit trail (traced_run + DuckDB storage)
|
|
574
|
+
- Type-safe data retrieval (no Artifact wrappers)
|
|
575
|
+
|
|
576
|
+
---
|
|
577
|
+
|
|
578
|
+
## Getting Started
|
|
579
|
+
|
|
580
|
+
```bash
|
|
581
|
+
# Install
|
|
582
|
+
pip install flock-flow
|
|
583
|
+
|
|
584
|
+
# Set API key
|
|
585
|
+
export OPENAI_API_KEY="sk-..."
|
|
586
|
+
|
|
587
|
+
# Try the workshop
|
|
588
|
+
git clone https://github.com/whiteducksoftware/flock-flow.git
|
|
589
|
+
cd flock-flow
|
|
590
|
+
uv run python examples/05-claudes-workshop/lesson_01_code_detective.py
|
|
591
|
+
```
|
|
592
|
+
|
|
593
|
+
**Learn by doing:**
|
|
594
|
+
- 📚 [7-Lesson Workshop](examples/05-claudes-workshop/) ✅ - Progressive lessons from basics to advanced
|
|
595
|
+
- 🎯 [Declarative Basics](examples/01-the-declarative-way/) ✅ - Understanding declarative programming
|
|
596
|
+
- 🗂️ [Blackboard Workflows](examples/02-the-blackboard/) 🚧 - Parallel and sequential execution patterns *(coming soon)*
|
|
597
|
+
- 📊 [Dashboard UI](examples/03-the-dashboard/) 🚧 - Real-time visualization *(coming soon)*
|
|
598
|
+
- 🔌 [REST API](examples/04-the-api/) 🚧 - API integration examples *(coming soon)*
|
|
599
|
+
- 📖 [Documentation](AGENTS.md) - Complete development guide
|
|
600
|
+
|
|
601
|
+
---
|
|
602
|
+
|
|
603
|
+
## Contributing
|
|
604
|
+
|
|
605
|
+
We're building Flock in the open. See [AGENTS.md](AGENTS.md) for development setup.
|
|
606
|
+
|
|
607
|
+
**We welcome:**
|
|
608
|
+
- Bug reports and feature requests
|
|
609
|
+
- Documentation improvements
|
|
610
|
+
- Example contributions
|
|
611
|
+
- Architecture discussions
|
|
612
|
+
|
|
613
|
+
**Quality standards:**
|
|
614
|
+
- All tests must pass (743 currently)
|
|
615
|
+
- Coverage requirements met (77%+ overall, 86-100% critical paths)
|
|
616
|
+
- Code formatted with Ruff
|
|
617
|
+
- Type checking passes (mypy)
|
|
618
|
+
|
|
619
|
+
---
|
|
620
|
+
|
|
621
|
+
## Why "0.5"?
|
|
622
|
+
|
|
623
|
+
We're calling this 0.5 to signal:
|
|
624
|
+
|
|
625
|
+
1. **Core is production-ready** - 743 tests, real-world deployments, comprehensive features
|
|
626
|
+
2. **Ecosystem is evolving** - Documentation growing, community building, features maturing
|
|
627
|
+
3. **Architecture is proven** - Blackboard pattern is 50+ years old, declarative contracts are sound
|
|
628
|
+
4. **Enterprise features are coming** - Persistence, auth, Kubernetes deployment in roadmap
|
|
629
|
+
|
|
630
|
+
**1.0 will arrive** when we've delivered persistence, advanced error handling, and enterprise deployment patterns (targeting Q3 2025).
|
|
631
|
+
|
|
632
|
+
---
|
|
633
|
+
|
|
634
|
+
## The Bottom Line
|
|
635
|
+
|
|
636
|
+
**Flock is different because it makes different architectural choices:**
|
|
637
|
+
|
|
638
|
+
**Instead of:**
|
|
639
|
+
- ❌ Prompt engineering → ✅ Declarative type contracts
|
|
640
|
+
- ❌ Workflow graphs → ✅ Blackboard subscriptions
|
|
641
|
+
- ❌ Manual parallelization → ✅ Automatic concurrent execution
|
|
642
|
+
- ❌ Bolt-on security → ✅ Zero-trust visibility controls
|
|
643
|
+
- ❌ Hope-based debugging → ✅ AI-queryable distributed traces
|
|
644
|
+
|
|
645
|
+
**These aren't marketing slogans. They're architectural decisions with real tradeoffs.**
|
|
646
|
+
|
|
647
|
+
**You trade:**
|
|
648
|
+
- Ecosystem maturity (established frameworks have larger communities)
|
|
649
|
+
- Extensive documentation (we're catching up)
|
|
650
|
+
- Battle-tested age (newer architecture means less production history)
|
|
651
|
+
|
|
652
|
+
**You gain:**
|
|
653
|
+
- Better scalability (O(n) vs O(n²) complexity)
|
|
654
|
+
- Type safety (runtime validation vs hope)
|
|
655
|
+
- Cleaner architecture (loose coupling vs tight graphs)
|
|
656
|
+
- Production safety (circuit breakers, feedback prevention built-in)
|
|
657
|
+
- Security model (5 visibility types vs DIY)
|
|
658
|
+
|
|
659
|
+
**Different frameworks for different priorities. Choose based on what matters to your team.**
|
|
660
|
+
|
|
661
|
+
---
|
|
662
|
+
|
|
663
|
+
<div align="center">
|
|
664
|
+
|
|
665
|
+
**Built with ❤️ by white duck GmbH**
|
|
666
|
+
|
|
667
|
+
**"Agents are microservices. The blackboard is their API."**
|
|
668
|
+
|
|
669
|
+
[⭐ Star on GitHub](https://github.com/whiteducksoftware/flock-flow) | [📖 Read the Docs](AGENTS.md) | [🚀 Try Examples](examples/) | [💼 Enterprise Support](mailto:support@whiteduck.de)
|
|
670
|
+
|
|
671
|
+
</div>
|
|
672
|
+
|
|
673
|
+
---
|
|
674
|
+
|
|
675
|
+
**Last Updated:** October 8, 2025
|
|
676
|
+
**Version:** Flock 0.5.0 (Blackboard Edition)
|
|
677
|
+
**Status:** Production-Ready Core, Enterprise Features Roadmapped
|
|
678
|
+
|
|
679
|
+
---
|
|
680
|
+
|
|
681
|
+
**"Declarative contracts eliminate prompt hell. Blackboard architecture eliminates graph spaghetti. Proven patterns applied to modern LLMs."**
|