flock-core 0.4.0b22__py3-none-any.whl → 0.4.0b24__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of flock-core might be problematic. Click here for more details.

Files changed (32) hide show
  1. flock/core/flock.py +24 -7
  2. flock/core/flock_agent.py +219 -75
  3. flock/core/flock_factory.py +8 -6
  4. flock/core/flock_registry.py +140 -60
  5. flock/core/flock_router.py +19 -6
  6. flock/core/serialization/serialization_utils.py +85 -19
  7. flock/core/util/input_resolver.py +5 -0
  8. flock/evaluators/declarative/declarative_evaluator.py +18 -10
  9. flock/evaluators/memory/memory_evaluator.py +2 -0
  10. flock/evaluators/test/test_case_evaluator.py +2 -0
  11. flock/evaluators/zep/zep_evaluator.py +2 -0
  12. flock/modules/assertion/assertion_module.py +286 -0
  13. flock/modules/callback/callback_module.py +2 -0
  14. flock/modules/memory/memory_module.py +2 -0
  15. flock/modules/output/output_module.py +2 -0
  16. flock/modules/performance/metrics_module.py +2 -0
  17. flock/modules/zep/zep_module.py +2 -0
  18. flock/routers/agent/agent_router.py +7 -5
  19. flock/routers/conditional/conditional_router.py +482 -0
  20. flock/routers/default/default_router.py +5 -1
  21. flock/routers/feedback/feedback_router.py +114 -0
  22. flock/routers/list_generator/list_generator_router.py +166 -0
  23. flock/routers/llm/llm_router.py +3 -1
  24. flock/workflow/activities.py +20 -1
  25. {flock_core-0.4.0b22.dist-info → flock_core-0.4.0b24.dist-info}/METADATA +2 -1
  26. {flock_core-0.4.0b22.dist-info → flock_core-0.4.0b24.dist-info}/RECORD +29 -28
  27. flock/evaluators/memory/azure_search_evaluator.py +0 -0
  28. flock/evaluators/natural_language/natural_language_evaluator.py +0 -66
  29. flock/modules/azure-search/azure_search_module.py +0 -0
  30. {flock_core-0.4.0b22.dist-info → flock_core-0.4.0b24.dist-info}/WHEEL +0 -0
  31. {flock_core-0.4.0b22.dist-info → flock_core-0.4.0b24.dist-info}/entry_points.txt +0 -0
  32. {flock_core-0.4.0b22.dist-info → flock_core-0.4.0b24.dist-info}/licenses/LICENSE +0 -0
@@ -0,0 +1,286 @@
1
+ # src/flock/modules/asserts/assertion_module.py (New File)
2
+
3
+ import json
4
+ from collections.abc import Callable
5
+ from typing import Any, Literal
6
+
7
+ import dspy # For potential LLM-based rule checking
8
+ from pydantic import BaseModel, Field, PrivateAttr, ValidationError
9
+
10
+ from flock.core.context.context import FlockContext
11
+ from flock.core.flock_agent import FlockAgent
12
+ from flock.core.flock_module import FlockModule, FlockModuleConfig
13
+
14
+ # Need registry access if rules are callables defined elsewhere
15
+ from flock.core.flock_registry import flock_component, get_registry
16
+ from flock.core.logging.logging import get_logger
17
+
18
+ logger = get_logger("module.assertion")
19
+
20
+ # --- Rule Definition ---
21
+ # Rules can be defined in several ways:
22
+ # 1. Python lambda/function: (result: Dict, inputs: Dict, context: FlockContext) -> bool | Tuple[bool, str]
23
+ # 2. String referencing a registered callable: "my_validation_function"
24
+ # 3. Natural language rule string: "The summary must contain the keyword 'Flock'." (requires LLM judge)
25
+ # 4. Pydantic Model: The output must conform to this Pydantic model.
26
+
27
+ RuleType = (
28
+ Callable[[dict, dict, FlockContext | None], bool | tuple[bool, str]]
29
+ | str
30
+ | type[BaseModel]
31
+ )
32
+
33
+
34
+ class Rule(BaseModel):
35
+ """Container for a single assertion rule."""
36
+
37
+ condition: RuleType = Field(
38
+ ...,
39
+ description="""
40
+ # --- Rule Definition ---
41
+ # Rules can be defined in several ways:
42
+ # 1. Python lambda/function: (result: Dict, inputs: Dict, context: FlockContext) -> bool | Tuple[bool, str]
43
+ # 2. String referencing a registered callable: "my_validation_function"
44
+ # 3. Natural language rule string: "The summary must contain the keyword 'Flock'." (requires LLM judge)
45
+ # 4. Pydantic Model: The output must conform to this Pydantic model.
46
+ """,
47
+ )
48
+ fail_message: str # Message to provide as feedback on failure
49
+ name: str | None = None # Optional name for clarity
50
+
51
+ def __post_init__(self):
52
+ # Basic validation of fail_message
53
+ if not isinstance(self.fail_message, str) or not self.fail_message:
54
+ raise ValueError("Rule fail_message must be a non-empty string.")
55
+
56
+
57
+ class AssertionModuleConfig(FlockModuleConfig):
58
+ """--- Rule Definition ---
59
+ Rules can be defined in several ways:
60
+ 1. Python lambda/function: (result: Dict, inputs: Dict, context: FlockContext) -> bool | Tuple[bool, str]
61
+ 2. String referencing a registered callable: "my_validation_function"
62
+ 3. Natural language rule string: "The summary must contain the keyword 'Flock'." (requires LLM judge)
63
+ 4. Pydantic Model: The output must conform to this Pydantic model.
64
+ """
65
+
66
+ rules: list[Rule] = Field(
67
+ default_factory=list,
68
+ description="List of rules to check against the agent's output.",
69
+ )
70
+ # Optional LLM for evaluating natural language rules
71
+ judge_lm_model: str | None = Field(
72
+ None, description="LLM model to use for judging natural language rules."
73
+ )
74
+ # How to handle failure
75
+ on_failure: Literal["add_feedback", "raise_error", "log_warning"] = Field(
76
+ default="add_feedback",
77
+ description="Action on rule failure: 'add_feedback' to context, 'raise_error', 'log_warning'.",
78
+ )
79
+ feedback_context_key: str = Field(
80
+ default="flock.assertion_feedback",
81
+ description="Context key to store failure messages for retry loops.",
82
+ )
83
+ clear_feedback_on_success: bool = Field(
84
+ default=True,
85
+ description="Clear the feedback key from context if all assertions pass.",
86
+ )
87
+
88
+
89
+ @flock_component(config_class=AssertionModuleConfig)
90
+ class AssertionCheckerModule(FlockModule):
91
+ """Checks the output of an agent against a set of defined rules.
92
+
93
+ Can trigger different actions on failure, including adding feedback
94
+ to the context to enable self-correction loops via routing.
95
+ """
96
+
97
+ name: str = "assertion_checker"
98
+ config: AssertionModuleConfig = Field(default_factory=AssertionModuleConfig)
99
+ _judge_lm: dspy.LM | None = PrivateAttr(None) # Initialize lazily
100
+
101
+ def _get_judge_lm(self) -> dspy.LM | None:
102
+ """Initializes the judge LM if needed."""
103
+ if self.config.judge_lm_model and self._judge_lm is None:
104
+ try:
105
+ self._judge_lm = dspy.LM(self.config.judge_lm_model)
106
+ except Exception as e:
107
+ logger.error(
108
+ f"Failed to initialize judge LM '{self.config.judge_lm_model}': {e}"
109
+ )
110
+ # Proceed without judge LM for other rule types
111
+ return self._judge_lm
112
+
113
+ async def post_evaluate(
114
+ self,
115
+ agent: FlockAgent,
116
+ inputs: dict[str, Any],
117
+ result: dict[str, Any],
118
+ context: FlockContext | None = None,
119
+ ) -> dict[str, Any]:
120
+ """Checks rules after the main evaluator runs."""
121
+ if not self.config.rules:
122
+ return result # No rules to check
123
+
124
+ logger.debug(f"Running assertion checks for agent '{agent.name}'...")
125
+ all_passed = True
126
+ failed_messages = []
127
+ registry = get_registry() # Needed for callable lookup
128
+
129
+ for i, rule in enumerate(self.config.rules):
130
+ rule_name = rule.name or f"Rule_{i + 1}"
131
+ passed = False
132
+ eval_result = None
133
+ feedback_msg = rule.fail_message
134
+
135
+ try:
136
+ condition = rule.condition
137
+ if callable(condition):
138
+ # Rule is a Python function/lambda
139
+ logger.debug(f"Checking callable rule: {rule_name}")
140
+ eval_result = condition(result, inputs, context)
141
+ elif isinstance(condition, str) and registry.contains(
142
+ condition
143
+ ):
144
+ # Rule is a string referencing a registered callable
145
+ logger.debug(
146
+ f"Checking registered callable rule: '{condition}'"
147
+ )
148
+ rule_func = registry.get_callable(condition)
149
+ eval_result = rule_func(result, inputs, context)
150
+ elif isinstance(condition, str):
151
+ # Rule is a natural language string (requires judge LLM)
152
+ logger.debug(
153
+ f"Checking natural language rule: '{condition}'"
154
+ )
155
+ judge_lm = self._get_judge_lm()
156
+ if judge_lm:
157
+ # Define a simple judge signature dynamically or use a predefined one
158
+ class JudgeSignature(dspy.Signature):
159
+ """Evaluate if the output meets the rule based on input and output."""
160
+
161
+ program_input: str = dspy.InputField(
162
+ desc="Input provided to the agent."
163
+ )
164
+ program_output: str = dspy.InputField(
165
+ desc="Output generated by the agent."
166
+ )
167
+ rule_to_check: str = dspy.InputField(
168
+ desc="The rule to verify."
169
+ )
170
+ is_met: bool = dspy.OutputField(
171
+ desc="True if the rule is met, False otherwise."
172
+ )
173
+ reasoning: str = dspy.OutputField(
174
+ desc="Brief reasoning for the decision."
175
+ )
176
+
177
+ judge_predictor = dspy.Predict(
178
+ JudgeSignature, llm=judge_lm
179
+ )
180
+ # Convert complex dicts/lists to strings for the judge prompt
181
+ input_str = json.dumps(inputs, default=str, indent=2)
182
+ result_str = json.dumps(result, default=str, indent=2)
183
+ judge_pred = judge_predictor(
184
+ program_input=input_str,
185
+ program_output=result_str,
186
+ rule_to_check=condition,
187
+ )
188
+ passed = judge_pred.is_met
189
+ feedback_msg = f"{rule.fail_message} (Reason: {judge_pred.reasoning})"
190
+ logger.debug(
191
+ f"LLM Judge result for rule '{condition}': {passed} ({judge_pred.reasoning})"
192
+ )
193
+ else:
194
+ logger.warning(
195
+ f"Cannot evaluate natural language rule '{condition}' - no judge_lm_model configured."
196
+ )
197
+ passed = True # Default to pass if no judge available? Or fail? Let's pass.
198
+
199
+ elif isinstance(condition, type) and issubclass(
200
+ condition, BaseModel
201
+ ):
202
+ # Rule is a Pydantic model for validation
203
+ logger.debug(
204
+ f"Checking Pydantic validation rule: {condition.__name__}"
205
+ )
206
+ try:
207
+ # Assumes the *entire* result dict should match the model
208
+ # More specific logic might be needed (e.g., validate only a specific key)
209
+ condition.model_validate(result)
210
+ passed = True
211
+ except ValidationError as e:
212
+ passed = False
213
+ feedback_msg = (
214
+ f"{rule.fail_message} (Validation Error: {e})"
215
+ )
216
+ else:
217
+ logger.warning(
218
+ f"Unsupported rule type for rule '{rule_name}': {type(condition)}"
219
+ )
220
+ continue # Skip rule
221
+
222
+ # Process result if it was a callable returning bool or (bool, msg)
223
+ if eval_result is not None:
224
+ if (
225
+ isinstance(eval_result, tuple)
226
+ and len(eval_result) == 2
227
+ and isinstance(eval_result[0], bool)
228
+ ):
229
+ passed, custom_msg = eval_result
230
+ if not passed and custom_msg:
231
+ feedback_msg = (
232
+ custom_msg # Use custom message on failure
233
+ )
234
+ elif isinstance(eval_result, bool):
235
+ passed = eval_result
236
+ else:
237
+ logger.warning(
238
+ f"Rule callable '{rule_name}' returned unexpected type: {type(eval_result)}. Rule skipped."
239
+ )
240
+ continue
241
+
242
+ # Handle failure
243
+ if not passed:
244
+ all_passed = False
245
+ failed_messages.append(feedback_msg)
246
+ logger.warning(
247
+ f"Assertion Failed for agent '{agent.name}': {feedback_msg}"
248
+ )
249
+ # Optionally break early? For now, check all rules.
250
+
251
+ except Exception as e:
252
+ logger.error(
253
+ f"Error executing rule '{rule_name}' for agent '{agent.name}': {e}",
254
+ exc_info=True,
255
+ )
256
+ all_passed = False
257
+ failed_messages.append(
258
+ f"Error checking rule '{rule_name}': {e}"
259
+ )
260
+ # Treat error during check as failure
261
+
262
+ # --- Take action based on results ---
263
+ if not all_passed:
264
+ logger.warning(f"Agent '{agent.name}' failed assertion checks.")
265
+ if self.config.on_failure == "add_feedback" and context:
266
+ context.set_variable(
267
+ self.config.feedback_context_key, "\n".join(failed_messages)
268
+ )
269
+ logger.debug(
270
+ f"Added assertion feedback to context key '{self.config.feedback_context_key}'"
271
+ )
272
+ elif self.config.on_failure == "raise_error":
273
+ # Maybe wrap in a specific FlockAssertionError
274
+ raise AssertionError(
275
+ f"Agent '{agent.name}' failed assertions: {'; '.join(failed_messages)}"
276
+ )
277
+ # else "log_warning" is default behavior
278
+ elif context and self.config.clear_feedback_on_success:
279
+ # Clear feedback key if all rules passed and key exists
280
+ if self.config.feedback_context_key in context.state:
281
+ del context.state[self.config.feedback_context_key]
282
+ logger.debug(
283
+ f"Cleared assertion feedback key '{self.config.feedback_context_key}' on success."
284
+ )
285
+
286
+ return result # Return the original result unmodified
@@ -7,6 +7,7 @@ from pydantic import Field
7
7
 
8
8
  from flock.core import FlockModule, FlockModuleConfig
9
9
  from flock.core.context.context import FlockContext
10
+ from flock.core.flock_registry import flock_component
10
11
 
11
12
 
12
13
  class CallbackModuleConfig(FlockModuleConfig):
@@ -36,6 +37,7 @@ class CallbackModuleConfig(FlockModuleConfig):
36
37
  )
37
38
 
38
39
 
40
+ @flock_component(config_class=CallbackModuleConfig)
39
41
  class CallbackModule(FlockModule):
40
42
  """Module that provides callback functionality for agent lifecycle events."""
41
43
 
@@ -12,6 +12,7 @@ from flock.core.context.context import FlockContext
12
12
  # from flock.core import FlockAgent
13
13
  from flock.core.flock_agent import FlockAgent
14
14
  from flock.core.flock_module import FlockModule, FlockModuleConfig
15
+ from flock.core.flock_registry import flock_component
15
16
  from flock.core.logging.logging import get_logger
16
17
  from flock.modules.memory.memory_parser import MemoryMappingParser
17
18
  from flock.modules.memory.memory_storage import FlockMemoryStore, MemoryEntry
@@ -59,6 +60,7 @@ class MemoryModuleConfig(FlockModuleConfig):
59
60
  )
60
61
 
61
62
 
63
+ @flock_component(config_class=MemoryModuleConfig)
62
64
  class MemoryModule(FlockModule):
63
65
  """Module that adds memory capabilities to a Flock agent."""
64
66
 
@@ -5,6 +5,7 @@ from typing import TYPE_CHECKING, Any
5
5
  from pydantic import Field
6
6
 
7
7
  from flock.core.context.context_vars import FLOCK_BATCH_SILENT_MODE
8
+ from flock.core.flock_registry import flock_component
8
9
 
9
10
  if TYPE_CHECKING:
10
11
  from flock.core import FlockAgent
@@ -60,6 +61,7 @@ class OutputModuleConfig(FlockModuleConfig):
60
61
  )
61
62
 
62
63
 
64
+ @flock_component(config_class=OutputModuleConfig)
63
65
  class OutputModule(FlockModule):
64
66
  """Module that handles output formatting and display."""
65
67
 
@@ -14,6 +14,7 @@ from pydantic import BaseModel, Field, validator
14
14
  from flock.core.context.context import FlockContext
15
15
  from flock.core.flock_agent import FlockAgent
16
16
  from flock.core.flock_module import FlockModule, FlockModuleConfig
17
+ from flock.core.flock_registry import flock_component
17
18
 
18
19
 
19
20
  class MetricPoint(BaseModel):
@@ -69,6 +70,7 @@ class MetricsModuleConfig(FlockModuleConfig):
69
70
  return v
70
71
 
71
72
 
73
+ @flock_component(config_class=MetricsModuleConfig)
72
74
  class MetricsModule(FlockModule):
73
75
  """Module for collecting and analyzing agent performance metrics."""
74
76
 
@@ -8,6 +8,7 @@ from zep_python.types import Message as ZepMessage, SessionSearchResult
8
8
  from flock.core.context.context import FlockContext
9
9
  from flock.core.flock_agent import FlockAgent
10
10
  from flock.core.flock_module import FlockModule, FlockModuleConfig
11
+ from flock.core.flock_registry import flock_component
11
12
  from flock.core.logging.logging import get_logger
12
13
 
13
14
  logger = get_logger("module.zep")
@@ -25,6 +26,7 @@ class ZepModuleConfig(FlockModuleConfig):
25
26
  enable_write: bool = False
26
27
 
27
28
 
29
+ @flock_component(config_class=ZepModuleConfig)
28
30
  class ZepModule(FlockModule):
29
31
  """Module that adds Zep capabilities to a Flock agent."""
30
32
 
@@ -4,6 +4,7 @@ from typing import Any
4
4
 
5
5
  from flock.core.context.context import FlockContext
6
6
  from flock.core.flock_agent import FlockAgent
7
+ from flock.core.flock_registry import flock_component
7
8
  from flock.core.flock_router import (
8
9
  FlockRouter,
9
10
  FlockRouterConfig,
@@ -34,6 +35,7 @@ class AgentRouterConfig(FlockRouterConfig):
34
35
  confidence_threshold: float = 0.5 # No additional parameters needed for now
35
36
 
36
37
 
38
+ @flock_component(config_class=AgentRouterConfig)
37
39
  class AgentRouter(FlockRouter):
38
40
  """Router that uses a FlockAgent to determine the next agent in a workflow.
39
41
 
@@ -105,7 +107,7 @@ class AgentRouter(FlockRouter):
105
107
  logger.warning("No available agents for agent-based routing")
106
108
  return HandOffRequest(
107
109
  next_agent="",
108
- hand_off_mode="add",
110
+ output_to_input_merge_strategy="add",
109
111
  override_next_agent=None,
110
112
  override_context=None,
111
113
  )
@@ -138,7 +140,7 @@ class AgentRouter(FlockRouter):
138
140
  )
139
141
  return HandOffRequest(
140
142
  next_agent="",
141
- hand_off_mode="add",
143
+ output_to_input_merge_strategy="add",
142
144
  override_next_agent=None,
143
145
  override_context=None,
144
146
  )
@@ -150,7 +152,7 @@ class AgentRouter(FlockRouter):
150
152
  )
151
153
  return HandOffRequest(
152
154
  next_agent="",
153
- hand_off_mode="add",
155
+ output_to_input_merge_strategy="add",
154
156
  override_next_agent=None,
155
157
  override_context=None,
156
158
  )
@@ -160,7 +162,7 @@ class AgentRouter(FlockRouter):
160
162
  )
161
163
  return HandOffRequest(
162
164
  next_agent=next_agent_name,
163
- hand_off_mode="add",
165
+ output_to_input_merge_strategy="add",
164
166
  override_next_agent=None,
165
167
  override_context=None,
166
168
  )
@@ -169,7 +171,7 @@ class AgentRouter(FlockRouter):
169
171
  logger.error(f"Error in agent-based routing: {e}")
170
172
  return HandOffRequest(
171
173
  next_agent="",
172
- hand_off_mode="add",
174
+ output_to_input_merge_strategy="add",
173
175
  override_next_agent=None,
174
176
  override_context=None,
175
177
  )