flock-core 0.3.16__py3-none-any.whl → 0.3.18__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of flock-core might be problematic. Click here for more details.

@@ -69,6 +69,7 @@ Like a hummingbird, modules are small and nimble code packages. Put enough of th
69
69
  - **Output Module** – Advanced output formatting and storage
70
70
  - **Metrics Module** – Detailed performance tracking
71
71
  - **Zep Module** – Uses Zep for Knowledge Graphs
72
+ - **Azure Search Tools** – Integration with Azure AI Search for vector search and document retrieval
72
73
 
73
74
  ---
74
75
 
@@ -0,0 +1,496 @@
1
+ import os
2
+ from typing import Any
3
+
4
+ from azure.core.credentials import AzureKeyCredential
5
+ from azure.search.documents import SearchClient
6
+ from azure.search.documents.indexes import SearchIndexClient
7
+ from azure.search.documents.indexes.models import (
8
+ ExhaustiveKnnAlgorithmConfiguration,
9
+ HnswAlgorithmConfiguration,
10
+ SearchableField,
11
+ SearchField,
12
+ SearchFieldDataType,
13
+ SearchIndex,
14
+ SimpleField,
15
+ VectorSearch,
16
+ VectorSearchProfile,
17
+ )
18
+ from azure.search.documents.models import VectorizedQuery
19
+
20
+ from flock.core.logging.trace_and_logged import traced_and_logged
21
+
22
+
23
+ def _get_default_endpoint() -> str:
24
+ """Get the default Azure Search endpoint from environment variables."""
25
+ endpoint = os.environ.get("AZURE_SEARCH_ENDPOINT")
26
+ if not endpoint:
27
+ raise ValueError(
28
+ "AZURE_SEARCH_ENDPOINT environment variable is not set"
29
+ )
30
+ return endpoint
31
+
32
+
33
+ def _get_default_api_key() -> str:
34
+ """Get the default Azure Search API key from environment variables."""
35
+ api_key = os.environ.get("AZURE_SEARCH_API_KEY")
36
+ if not api_key:
37
+ raise ValueError("AZURE_SEARCH_API_KEY environment variable is not set")
38
+ return api_key
39
+
40
+
41
+ def _get_default_index_name() -> str:
42
+ """Get the default Azure Search index name from environment variables."""
43
+ index_name = os.environ.get("AZURE_SEARCH_INDEX_NAME")
44
+ if not index_name:
45
+ raise ValueError(
46
+ "AZURE_SEARCH_INDEX_NAME environment variable is not set"
47
+ )
48
+ return index_name
49
+
50
+
51
+ @traced_and_logged
52
+ def azure_search_initialize_clients(
53
+ endpoint: str | None = None,
54
+ api_key: str | None = None,
55
+ index_name: str | None = None,
56
+ ) -> dict[str, Any]:
57
+ """Initialize Azure AI Search clients.
58
+
59
+ Args:
60
+ endpoint: The Azure AI Search service endpoint URL (defaults to AZURE_SEARCH_ENDPOINT env var)
61
+ api_key: The Azure AI Search API key (defaults to AZURE_SEARCH_API_KEY env var)
62
+ index_name: Optional index name for SearchClient initialization (defaults to AZURE_SEARCH_INDEX_NAME env var if not None)
63
+
64
+ Returns:
65
+ Dictionary containing the initialized clients
66
+ """
67
+ # Use environment variables as defaults if not provided
68
+ endpoint = endpoint or _get_default_endpoint()
69
+ api_key = api_key or _get_default_api_key()
70
+
71
+ credential = AzureKeyCredential(api_key)
72
+
73
+ # Create the search index client
74
+ search_index_client = SearchIndexClient(
75
+ endpoint=endpoint, credential=credential
76
+ )
77
+
78
+ # Create clients dictionary
79
+ clients = {
80
+ "index_client": search_index_client,
81
+ }
82
+
83
+ # Add search client if index_name was provided or available in env
84
+ if index_name is None and os.environ.get("AZURE_SEARCH_INDEX_NAME"):
85
+ index_name = _get_default_index_name()
86
+
87
+ if index_name:
88
+ search_client = SearchClient(
89
+ endpoint=endpoint, index_name=index_name, credential=credential
90
+ )
91
+ clients["search_client"] = search_client
92
+
93
+ return clients
94
+
95
+
96
+ @traced_and_logged
97
+ def azure_search_create_index(
98
+ index_name: str | None = None,
99
+ fields: list[SearchField] = None,
100
+ vector_search: VectorSearch | None = None,
101
+ endpoint: str | None = None,
102
+ api_key: str | None = None,
103
+ ) -> dict[str, Any]:
104
+ """Create a new search index in Azure AI Search.
105
+
106
+ Args:
107
+ index_name: Name of the search index to create (defaults to AZURE_SEARCH_INDEX_NAME env var)
108
+ fields: List of field definitions for the index
109
+ vector_search: Optional vector search configuration
110
+ endpoint: The Azure AI Search service endpoint URL (defaults to AZURE_SEARCH_ENDPOINT env var)
111
+ api_key: The Azure AI Search API key (defaults to AZURE_SEARCH_API_KEY env var)
112
+
113
+ Returns:
114
+ Dictionary containing information about the created index
115
+ """
116
+ # Use environment variables as defaults if not provided
117
+ endpoint = endpoint or _get_default_endpoint()
118
+ api_key = api_key or _get_default_api_key()
119
+ index_name = index_name or _get_default_index_name()
120
+
121
+ if fields is None:
122
+ raise ValueError("Fields must be provided for index creation")
123
+
124
+ clients = azure_search_initialize_clients(endpoint, api_key)
125
+ index_client = clients["index_client"]
126
+
127
+ # Create the index
128
+ index = SearchIndex(
129
+ name=index_name, fields=fields, vector_search=vector_search
130
+ )
131
+
132
+ result = index_client.create_or_update_index(index)
133
+
134
+ return {
135
+ "index_name": result.name,
136
+ "fields": [field.name for field in result.fields],
137
+ "created": True,
138
+ }
139
+
140
+
141
+ @traced_and_logged
142
+ def azure_search_upload_documents(
143
+ documents: list[dict[str, Any]],
144
+ index_name: str | None = None,
145
+ endpoint: str | None = None,
146
+ api_key: str | None = None,
147
+ ) -> dict[str, Any]:
148
+ """Upload documents to an Azure AI Search index.
149
+
150
+ Args:
151
+ documents: List of documents to upload (as dictionaries)
152
+ index_name: Name of the search index (defaults to AZURE_SEARCH_INDEX_NAME env var)
153
+ endpoint: The Azure AI Search service endpoint URL (defaults to AZURE_SEARCH_ENDPOINT env var)
154
+ api_key: The Azure AI Search API key (defaults to AZURE_SEARCH_API_KEY env var)
155
+
156
+ Returns:
157
+ Dictionary containing the upload results
158
+ """
159
+ # Use environment variables as defaults if not provided
160
+ endpoint = endpoint or _get_default_endpoint()
161
+ api_key = api_key or _get_default_api_key()
162
+ index_name = index_name or _get_default_index_name()
163
+
164
+ clients = azure_search_initialize_clients(endpoint, api_key, index_name)
165
+ search_client = clients["search_client"]
166
+
167
+ result = search_client.upload_documents(documents=documents)
168
+
169
+ # Process results
170
+ succeeded = sum(1 for r in result if r.succeeded)
171
+
172
+ return {
173
+ "succeeded": succeeded,
174
+ "failed": len(result) - succeeded,
175
+ "total": len(result),
176
+ }
177
+
178
+
179
+ @traced_and_logged
180
+ def azure_search_query(
181
+ search_text: str | None = None,
182
+ filter: str | None = None,
183
+ select: list[str] | None = None,
184
+ top: int | None = 50,
185
+ vector: list[float] | None = None,
186
+ vector_field: str | None = None,
187
+ vector_k: int | None = 10,
188
+ index_name: str | None = None,
189
+ endpoint: str | None = None,
190
+ api_key: str | None = None,
191
+ ) -> list[dict[str, Any]]:
192
+ """Search documents in an Azure AI Search index.
193
+
194
+ Args:
195
+ search_text: Optional text to search for (keyword search)
196
+ filter: Optional OData filter expression
197
+ select: Optional list of fields to return
198
+ top: Maximum number of results to return
199
+ vector: Optional vector for vector search
200
+ vector_field: Name of the field containing vectors for vector search
201
+ vector_k: Number of nearest neighbors to retrieve in vector search
202
+ index_name: Name of the search index (defaults to AZURE_SEARCH_INDEX_NAME env var)
203
+ endpoint: The Azure AI Search service endpoint URL (defaults to AZURE_SEARCH_ENDPOINT env var)
204
+ api_key: The Azure AI Search API key (defaults to AZURE_SEARCH_API_KEY env var)
205
+
206
+ Returns:
207
+ List of search results as dictionaries
208
+ """
209
+ # Use environment variables as defaults if not provided
210
+ endpoint = endpoint or _get_default_endpoint()
211
+ api_key = api_key or _get_default_api_key()
212
+ index_name = index_name or _get_default_index_name()
213
+
214
+ clients = azure_search_initialize_clients(endpoint, api_key, index_name)
215
+ search_client = clients["search_client"]
216
+
217
+ # Set up vector query if vector is provided
218
+ vectorized_query = None
219
+ if vector and vector_field:
220
+ vectorized_query = VectorizedQuery(
221
+ vector=vector, k=vector_k, fields=[vector_field]
222
+ )
223
+
224
+ # Execute the search
225
+ results = search_client.search(
226
+ search_text=search_text,
227
+ filter=filter,
228
+ select=select,
229
+ top=top,
230
+ vector_queries=[vectorized_query] if vectorized_query else None,
231
+ )
232
+
233
+ # Convert results to list of dictionaries
234
+ result_list = [dict(result) for result in results]
235
+
236
+ return result_list
237
+
238
+
239
+ @traced_and_logged
240
+ def azure_search_get_document(
241
+ key: str,
242
+ select: list[str] | None = None,
243
+ index_name: str | None = None,
244
+ endpoint: str | None = None,
245
+ api_key: str | None = None,
246
+ ) -> dict[str, Any]:
247
+ """Retrieve a specific document from an Azure AI Search index by key.
248
+
249
+ Args:
250
+ key: The unique key of the document to retrieve
251
+ select: Optional list of fields to return
252
+ index_name: Name of the search index (defaults to AZURE_SEARCH_INDEX_NAME env var)
253
+ endpoint: The Azure AI Search service endpoint URL (defaults to AZURE_SEARCH_ENDPOINT env var)
254
+ api_key: The Azure AI Search API key (defaults to AZURE_SEARCH_API_KEY env var)
255
+
256
+ Returns:
257
+ The retrieved document as a dictionary
258
+ """
259
+ # Use environment variables as defaults if not provided
260
+ endpoint = endpoint or _get_default_endpoint()
261
+ api_key = api_key or _get_default_api_key()
262
+ index_name = index_name or _get_default_index_name()
263
+
264
+ clients = azure_search_initialize_clients(endpoint, api_key, index_name)
265
+ search_client = clients["search_client"]
266
+
267
+ result = search_client.get_document(key=key, selected_fields=select)
268
+
269
+ return dict(result)
270
+
271
+
272
+ @traced_and_logged
273
+ def azure_search_delete_documents(
274
+ keys: list[str],
275
+ key_field_name: str = "id",
276
+ index_name: str | None = None,
277
+ endpoint: str | None = None,
278
+ api_key: str | None = None,
279
+ ) -> dict[str, Any]:
280
+ """Delete documents from an Azure AI Search index.
281
+
282
+ Args:
283
+ keys: List of document keys to delete
284
+ key_field_name: Name of the key field (defaults to "id")
285
+ index_name: Name of the search index (defaults to AZURE_SEARCH_INDEX_NAME env var)
286
+ endpoint: The Azure AI Search service endpoint URL (defaults to AZURE_SEARCH_ENDPOINT env var)
287
+ api_key: The Azure AI Search API key (defaults to AZURE_SEARCH_API_KEY env var)
288
+
289
+ Returns:
290
+ Dictionary containing the deletion results
291
+ """
292
+ # Use environment variables as defaults if not provided
293
+ endpoint = endpoint or _get_default_endpoint()
294
+ api_key = api_key or _get_default_api_key()
295
+ index_name = index_name or _get_default_index_name()
296
+
297
+ clients = azure_search_initialize_clients(endpoint, api_key, index_name)
298
+ search_client = clients["search_client"]
299
+
300
+ # Format documents for deletion (only need the key field)
301
+ documents_to_delete = [{key_field_name: key} for key in keys]
302
+
303
+ result = search_client.delete_documents(documents=documents_to_delete)
304
+
305
+ # Process results
306
+ succeeded = sum(1 for r in result if r.succeeded)
307
+
308
+ return {
309
+ "succeeded": succeeded,
310
+ "failed": len(result) - succeeded,
311
+ "total": len(result),
312
+ }
313
+
314
+
315
+ @traced_and_logged
316
+ def azure_search_list_indexes(
317
+ endpoint: str | None = None, api_key: str | None = None
318
+ ) -> list[dict[str, Any]]:
319
+ """List all indexes in the Azure AI Search service.
320
+
321
+ Args:
322
+ endpoint: The Azure AI Search service endpoint URL (defaults to AZURE_SEARCH_ENDPOINT env var)
323
+ api_key: The Azure AI Search API key (defaults to AZURE_SEARCH_API_KEY env var)
324
+
325
+ Returns:
326
+ List of indexes as dictionaries
327
+ """
328
+ # Use environment variables as defaults if not provided
329
+ endpoint = endpoint or _get_default_endpoint()
330
+ api_key = api_key or _get_default_api_key()
331
+
332
+ clients = azure_search_initialize_clients(endpoint, api_key)
333
+ index_client = clients["index_client"]
334
+
335
+ result = index_client.list_indexes()
336
+
337
+ # Convert index objects to dictionaries with basic information
338
+ indexes = [
339
+ {
340
+ "name": index.name,
341
+ "fields": [field.name for field in index.fields],
342
+ "field_count": len(index.fields),
343
+ }
344
+ for index in result
345
+ ]
346
+
347
+ return indexes
348
+
349
+
350
+ @traced_and_logged
351
+ def azure_search_get_index_statistics(
352
+ index_name: str | None = None,
353
+ endpoint: str | None = None,
354
+ api_key: str | None = None,
355
+ ) -> dict[str, Any]:
356
+ """Get statistics for a specific Azure AI Search index.
357
+
358
+ Args:
359
+ index_name: Name of the search index (defaults to AZURE_SEARCH_INDEX_NAME env var)
360
+ endpoint: The Azure AI Search service endpoint URL (defaults to AZURE_SEARCH_ENDPOINT env var)
361
+ api_key: The Azure AI Search API key (defaults to AZURE_SEARCH_API_KEY env var)
362
+
363
+ Returns:
364
+ Dictionary containing index statistics
365
+ """
366
+ # Use environment variables as defaults if not provided
367
+ endpoint = endpoint or _get_default_endpoint()
368
+ api_key = api_key or _get_default_api_key()
369
+ index_name = index_name or _get_default_index_name()
370
+
371
+ clients = azure_search_initialize_clients(endpoint, api_key, index_name)
372
+ search_client = clients["search_client"]
373
+
374
+ stats = search_client.get_document_count()
375
+
376
+ return {"document_count": stats}
377
+
378
+
379
+ @traced_and_logged
380
+ def azure_search_create_vector_index(
381
+ fields: list[dict[str, Any]],
382
+ vector_dimensions: int,
383
+ index_name: str | None = None,
384
+ algorithm_kind: str = "hnsw",
385
+ endpoint: str | None = None,
386
+ api_key: str | None = None,
387
+ ) -> dict[str, Any]:
388
+ """Create a vector search index in Azure AI Search.
389
+
390
+ Args:
391
+ fields: List of field configurations (dicts with name, type, etc.)
392
+ vector_dimensions: Dimensions of the vector field
393
+ index_name: Name of the search index (defaults to AZURE_SEARCH_INDEX_NAME env var)
394
+ algorithm_kind: Vector search algorithm ("hnsw" or "exhaustive")
395
+ endpoint: The Azure AI Search service endpoint URL (defaults to AZURE_SEARCH_ENDPOINT env var)
396
+ api_key: The Azure AI Search API key (defaults to AZURE_SEARCH_API_KEY env var)
397
+
398
+ Returns:
399
+ Dictionary with index creation result
400
+ """
401
+ # Use environment variables as defaults if not provided
402
+ endpoint = endpoint or _get_default_endpoint()
403
+ api_key = api_key or _get_default_api_key()
404
+ index_name = index_name or _get_default_index_name()
405
+
406
+ clients = azure_search_initialize_clients(endpoint, api_key)
407
+ index_client = clients["index_client"]
408
+
409
+ # Convert field configurations to SearchField objects
410
+ index_fields = []
411
+ vector_fields = []
412
+
413
+ for field_config in fields:
414
+ field_name = field_config["name"]
415
+ field_type = field_config["type"]
416
+ field_searchable = field_config.get("searchable", False)
417
+ field_filterable = field_config.get("filterable", False)
418
+ field_sortable = field_config.get("sortable", False)
419
+ field_key = field_config.get("key", False)
420
+ field_vector = field_config.get("vector", False)
421
+
422
+ if field_searchable and field_type == "string":
423
+ field = SearchableField(
424
+ name=field_name,
425
+ type=SearchFieldDataType.String,
426
+ key=field_key,
427
+ filterable=field_filterable,
428
+ sortable=field_sortable,
429
+ )
430
+ else:
431
+ data_type = None
432
+ if field_type == "string":
433
+ data_type = SearchFieldDataType.String
434
+ elif field_type == "int":
435
+ data_type = SearchFieldDataType.Int32
436
+ elif field_type == "double":
437
+ data_type = SearchFieldDataType.Double
438
+ elif field_type == "boolean":
439
+ data_type = SearchFieldDataType.Boolean
440
+ elif field_type == "collection":
441
+ data_type = SearchFieldDataType.Collection(
442
+ SearchFieldDataType.String
443
+ )
444
+
445
+ field = SimpleField(
446
+ name=field_name,
447
+ type=data_type,
448
+ key=field_key,
449
+ filterable=field_filterable,
450
+ sortable=field_sortable,
451
+ )
452
+
453
+ index_fields.append(field)
454
+
455
+ if field_vector:
456
+ vector_fields.append(field_name)
457
+
458
+ # Set up vector search configuration
459
+ algorithm_config = None
460
+ if algorithm_kind.lower() == "hnsw":
461
+ algorithm_config = HnswAlgorithmConfiguration(
462
+ name="hnsw-config",
463
+ parameters={"m": 4, "efConstruction": 400, "efSearch": 500},
464
+ )
465
+ else:
466
+ algorithm_config = ExhaustiveKnnAlgorithmConfiguration(
467
+ name="exhaustive-config"
468
+ )
469
+
470
+ # Create vector search configuration
471
+ vector_search = VectorSearch(
472
+ algorithms=[algorithm_config],
473
+ profiles=[
474
+ VectorSearchProfile(
475
+ name="vector-profile",
476
+ algorithm_configuration_name=algorithm_config.name,
477
+ )
478
+ ],
479
+ )
480
+
481
+ # Create the search index
482
+ index = SearchIndex(
483
+ name=index_name, fields=index_fields, vector_search=vector_search
484
+ )
485
+
486
+ try:
487
+ result = index_client.create_or_update_index(index)
488
+ return {
489
+ "index_name": result.name,
490
+ "vector_fields": vector_fields,
491
+ "vector_dimensions": vector_dimensions,
492
+ "algorithm": algorithm_kind,
493
+ "created": True,
494
+ }
495
+ except Exception as e:
496
+ return {"error": str(e), "created": False}
@@ -1,9 +1,10 @@
1
1
  """This module contains basic agentic tools for performing various tasks."""
2
2
 
3
3
  import importlib
4
+ import json
4
5
  import os
5
6
  import re
6
- from typing import Literal
7
+ from typing import Any, Literal
7
8
 
8
9
  from flock.core.interpreter.python_interpreter import PythonInterpreter
9
10
  from flock.core.logging.trace_and_logged import traced_and_logged
@@ -201,8 +202,6 @@ def extract_numbers(text: str) -> list[float]:
201
202
 
202
203
  @traced_and_logged
203
204
  def json_parse_safe(text: str) -> dict:
204
- import json
205
-
206
205
  try:
207
206
  result = json.loads(text)
208
207
  return result
@@ -221,9 +220,98 @@ def save_to_file(content: str, filename: str):
221
220
 
222
221
  @traced_and_logged
223
222
  def read_from_file(filename: str) -> str:
223
+ with open(filename, encoding="utf-8") as file:
224
+ return file.read()
225
+
226
+
227
+ @traced_and_logged
228
+ def json_search(
229
+ json_file_path: str, search_query: str, case_sensitive: bool = False
230
+ ) -> list:
231
+ """Search a JSON file for objects containing the specified search query.
232
+
233
+ Args:
234
+ json_file_path (str): Path to the JSON file to search
235
+ search_query (str): Text to search for within the JSON objects
236
+ case_sensitive (bool, optional): Whether to perform a case-sensitive search. Defaults to False.
237
+
238
+ Returns:
239
+ list: List of JSON objects (as dicts) that contain the search query
240
+
241
+ Example:
242
+ >>> matching_tickets = json_search("tickets.json", "error 404")
243
+ >>> print(
244
+ ... f"Found {len(matching_tickets)} tickets mentioning '404 error'"
245
+ ... )
246
+ """
224
247
  try:
225
- with open(filename) as f:
226
- content = f.read()
227
- return content
228
- except Exception:
229
- raise
248
+ # Read the JSON file
249
+ file_content = read_from_file(json_file_path)
250
+
251
+ # Parse the JSON content
252
+ json_data = json_parse_safe(file_content)
253
+
254
+ # Convert search query to lowercase if case-insensitive search
255
+ if not case_sensitive:
256
+ search_query = search_query.lower()
257
+
258
+ results = []
259
+
260
+ # Determine if the JSON root is an object or array
261
+ if isinstance(json_data, dict):
262
+ # Handle case where root is a dictionary object
263
+ for key, value in json_data.items():
264
+ if isinstance(value, list):
265
+ # If this key contains a list of objects, search within them
266
+ matching_items = _search_in_list(
267
+ value, search_query, case_sensitive
268
+ )
269
+ results.extend(matching_items)
270
+ elif _contains_text(value, search_query, case_sensitive):
271
+ # The entire object matches
272
+ results.append(json_data)
273
+ break
274
+ elif isinstance(json_data, list):
275
+ # Handle case where root is an array
276
+ matching_items = _search_in_list(
277
+ json_data, search_query, case_sensitive
278
+ )
279
+ results.extend(matching_items)
280
+
281
+ return results
282
+
283
+ except Exception as e:
284
+ return [{"error": f"Error searching JSON file: {e!s}"}]
285
+
286
+
287
+ def _search_in_list(
288
+ items: list, search_query: str, case_sensitive: bool
289
+ ) -> list:
290
+ """Helper function to search for text in a list of items."""
291
+ matching_items = []
292
+ for item in items:
293
+ if _contains_text(item, search_query, case_sensitive):
294
+ matching_items.append(item)
295
+ return matching_items
296
+
297
+
298
+ def _contains_text(obj: Any, search_query: str, case_sensitive: bool) -> bool:
299
+ """Recursively check if an object contains the search query in any of its string values."""
300
+ if isinstance(obj, str):
301
+ # For string values, check if they contain the search query
302
+ if case_sensitive:
303
+ return search_query in obj
304
+ else:
305
+ return search_query in obj.lower()
306
+ elif isinstance(obj, dict):
307
+ # For dictionaries, check each value
308
+ for value in obj.values():
309
+ if _contains_text(value, search_query, case_sensitive):
310
+ return True
311
+ elif isinstance(obj, list):
312
+ # For lists, check each item
313
+ for item in obj:
314
+ if _contains_text(item, search_query, case_sensitive):
315
+ return True
316
+ # For other types (numbers, booleans, None), return False
317
+ return False
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.4
2
2
  Name: flock-core
3
- Version: 0.3.16
3
+ Version: 0.3.18
4
4
  Summary: Declarative LLM Orchestration at Scale
5
5
  Author-email: Andre Ratzenberger <andre.ratzenberger@whiteduck.de>
6
6
  License-File: LICENSE
@@ -8,6 +8,7 @@ Classifier: License :: OSI Approved :: MIT License
8
8
  Classifier: Operating System :: OS Independent
9
9
  Classifier: Programming Language :: Python :: 3
10
10
  Requires-Python: >=3.10
11
+ Requires-Dist: azure-search-documents>=11.5.2
11
12
  Requires-Dist: chromadb>=0.6.3
12
13
  Requires-Dist: cloudpickle>=3.1.1
13
14
  Requires-Dist: devtools>=0.12.2
@@ -29,6 +30,7 @@ Requires-Dist: prometheus-client>=0.21.1
29
30
  Requires-Dist: pydantic>=2.10.5
30
31
  Requires-Dist: python-box>=7.3.2
31
32
  Requires-Dist: python-decouple>=3.8
33
+ Requires-Dist: python-dotenv>=1.0.1
32
34
  Requires-Dist: questionary>=2.1.0
33
35
  Requires-Dist: rich>=13.9.4
34
36
  Requires-Dist: sentence-transformers>=3.4.1
@@ -8,7 +8,7 @@ flock/cli/load_examples.py,sha256=DkeLUlrb7rGx3nZ04aADU9HXXu5mZTf_DBwT0xhzIv4,7
8
8
  flock/cli/load_flock.py,sha256=3JdECvt5X7uyOG2vZS3-Zk5C5SI_84_QZjcsB3oJmfA,932
9
9
  flock/cli/load_release_notes.py,sha256=qFcgUrMddAE_TP6x1P-6ZywTUjTknfhTDW5LTxtg1yk,599
10
10
  flock/cli/settings.py,sha256=DkeLUlrb7rGx3nZ04aADU9HXXu5mZTf_DBwT0xhzIv4,7
11
- flock/cli/assets/release_notes.md,sha256=-RuE-G9Sn8z1LWEdr9iqjuQN7N1K_JMaCzHYoyLR42U,4793
11
+ flock/cli/assets/release_notes.md,sha256=bqnk50jxM3w5uY44Dc7MkdT8XmRREFxrVBAG9XCOSSU,4896
12
12
  flock/core/__init__.py,sha256=mPlvKc0SxC2qCvSlgYeP_7EyV8ptmdn24NO8mlQoCSo,559
13
13
  flock/core/flock.py,sha256=IURlcuNvdsnqKkvgXtX4v_pGWQ8Lfb60X--MT0zvxHo,19881
14
14
  flock/core/flock_agent.py,sha256=QPyRSa1X_aAK2MSgqLNHBiL-_cnYHOSSnrFup2YTzss,12509
@@ -40,7 +40,8 @@ flock/core/mixin/prompt_parser.py,sha256=eOqI-FK3y17gVqpc_y5GF-WmK1Jv8mFlkZxTcgw
40
40
  flock/core/registry/agent_registry.py,sha256=TUClh9e3eA6YzZC1CMTlsTPvQeqb9jYHewi-zPpcWM8,4987
41
41
  flock/core/serialization/secure_serializer.py,sha256=n5-zRvvXddgJv1FFHsaQ2wuYdL3WUSGPvG_LGaffEJo,6144
42
42
  flock/core/serialization/serializable.py,sha256=SymJ0YrjBx48mOBItYSqoRpKuzIc4vKWRS6ScTzre7s,2573
43
- flock/core/tools/basic_tools.py,sha256=P1-RWkw57U2vSxPTCd5awlNg4MME4GkBLEB5HiiKmkw,5715
43
+ flock/core/tools/azure_tools.py,sha256=9Bi6IrB5pzBTBhBSxpCVMgx8HBud8nl4gDp8aN0NT6c,17031
44
+ flock/core/tools/basic_tools.py,sha256=hEG14jNZ2itVvubCHTfsWkuJK6yuNwBtuFj2Js0VHZs,9043
44
45
  flock/core/tools/llm_tools.py,sha256=Bdt4Dpur5dGpxd2KFEQyxjfZazvW1HCDKY6ydMj6UgQ,21811
45
46
  flock/core/tools/markdown_tools.py,sha256=W6fGM48yGHbifVlaOk1jOtVcybfRbRmf20VbDOZv8S4,6031
46
47
  flock/core/tools/dev_tools/github.py,sha256=a2OTPXS7kWOVA4zrZHynQDcsmEi4Pac5MfSjQOLePzA,5308
@@ -411,8 +412,8 @@ flock/workflow/activities.py,sha256=yah-lHjMW6_Ww1gt7hMXBis1cJRlcbHx0uLsMB9oNZ0,
411
412
  flock/workflow/agent_activities.py,sha256=NhBZscflEf2IMfSRa_pBM_TRP7uVEF_O0ROvWZ33eDc,963
412
413
  flock/workflow/temporal_setup.py,sha256=VWBgmBgfTBjwM5ruS_dVpA5AVxx6EZ7oFPGw4j3m0l0,1091
413
414
  flock/workflow/workflow.py,sha256=I9MryXW_bqYVTHx-nl2epbTqeRy27CAWHHA7ZZA0nAk,1696
414
- flock_core-0.3.16.dist-info/METADATA,sha256=ufURDAvefWtPcOW36ewLIRKwXuqkdIaHCFD_LMlGWAk,20502
415
- flock_core-0.3.16.dist-info/WHEEL,sha256=qtCwoSJWgHk21S1Kb4ihdzI2rlJ1ZKaIurTj_ngOhyQ,87
416
- flock_core-0.3.16.dist-info/entry_points.txt,sha256=rWaS5KSpkTmWySURGFZk6PhbJ87TmvcFQDi2uzjlagQ,37
417
- flock_core-0.3.16.dist-info/licenses/LICENSE,sha256=iYEqWy0wjULzM9GAERaybP4LBiPeu7Z1NEliLUdJKSc,1072
418
- flock_core-0.3.16.dist-info/RECORD,,
415
+ flock_core-0.3.18.dist-info/METADATA,sha256=NiwExibjtEysHFQNtBSV0KMH36KFkeU6WFh0VEohXe4,20584
416
+ flock_core-0.3.18.dist-info/WHEEL,sha256=qtCwoSJWgHk21S1Kb4ihdzI2rlJ1ZKaIurTj_ngOhyQ,87
417
+ flock_core-0.3.18.dist-info/entry_points.txt,sha256=rWaS5KSpkTmWySURGFZk6PhbJ87TmvcFQDi2uzjlagQ,37
418
+ flock_core-0.3.18.dist-info/licenses/LICENSE,sha256=iYEqWy0wjULzM9GAERaybP4LBiPeu7Z1NEliLUdJKSc,1072
419
+ flock_core-0.3.18.dist-info/RECORD,,