flixopt 2.2.0rc2__py3-none-any.whl → 3.0.1__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (58) hide show
  1. flixopt/__init__.py +33 -4
  2. flixopt/aggregation.py +60 -80
  3. flixopt/calculation.py +403 -182
  4. flixopt/commons.py +1 -10
  5. flixopt/components.py +939 -448
  6. flixopt/config.py +553 -191
  7. flixopt/core.py +513 -846
  8. flixopt/effects.py +644 -178
  9. flixopt/elements.py +610 -355
  10. flixopt/features.py +394 -966
  11. flixopt/flow_system.py +736 -219
  12. flixopt/interface.py +1104 -302
  13. flixopt/io.py +103 -79
  14. flixopt/linear_converters.py +387 -95
  15. flixopt/modeling.py +757 -0
  16. flixopt/network_app.py +73 -39
  17. flixopt/plotting.py +294 -138
  18. flixopt/results.py +1254 -300
  19. flixopt/solvers.py +25 -21
  20. flixopt/structure.py +938 -396
  21. flixopt/utils.py +36 -12
  22. flixopt-3.0.1.dist-info/METADATA +209 -0
  23. flixopt-3.0.1.dist-info/RECORD +26 -0
  24. flixopt-3.0.1.dist-info/top_level.txt +1 -0
  25. docs/examples/00-Minimal Example.md +0 -5
  26. docs/examples/01-Basic Example.md +0 -5
  27. docs/examples/02-Complex Example.md +0 -10
  28. docs/examples/03-Calculation Modes.md +0 -5
  29. docs/examples/index.md +0 -5
  30. docs/faq/contribute.md +0 -61
  31. docs/faq/index.md +0 -3
  32. docs/images/architecture_flixOpt-pre2.0.0.png +0 -0
  33. docs/images/architecture_flixOpt.png +0 -0
  34. docs/images/flixopt-icon.svg +0 -1
  35. docs/javascripts/mathjax.js +0 -18
  36. docs/user-guide/Mathematical Notation/Bus.md +0 -33
  37. docs/user-guide/Mathematical Notation/Effects, Penalty & Objective.md +0 -132
  38. docs/user-guide/Mathematical Notation/Flow.md +0 -26
  39. docs/user-guide/Mathematical Notation/LinearConverter.md +0 -21
  40. docs/user-guide/Mathematical Notation/Piecewise.md +0 -49
  41. docs/user-guide/Mathematical Notation/Storage.md +0 -44
  42. docs/user-guide/Mathematical Notation/index.md +0 -22
  43. docs/user-guide/Mathematical Notation/others.md +0 -3
  44. docs/user-guide/index.md +0 -124
  45. flixopt/config.yaml +0 -10
  46. flixopt-2.2.0rc2.dist-info/METADATA +0 -167
  47. flixopt-2.2.0rc2.dist-info/RECORD +0 -54
  48. flixopt-2.2.0rc2.dist-info/top_level.txt +0 -5
  49. pics/architecture_flixOpt-pre2.0.0.png +0 -0
  50. pics/architecture_flixOpt.png +0 -0
  51. pics/flixOpt_plotting.jpg +0 -0
  52. pics/flixopt-icon.svg +0 -1
  53. pics/pics.pptx +0 -0
  54. scripts/extract_release_notes.py +0 -45
  55. scripts/gen_ref_pages.py +0 -54
  56. tests/ressources/Zeitreihen2020.csv +0 -35137
  57. {flixopt-2.2.0rc2.dist-info → flixopt-3.0.1.dist-info}/WHEEL +0 -0
  58. {flixopt-2.2.0rc2.dist-info → flixopt-3.0.1.dist-info}/licenses/LICENSE +0 -0
@@ -1 +0,0 @@
1
- <svg width="1911" height="1159" xmlns="http://www.w3.org/2000/svg" xmlns:xlink="http://www.w3.org/1999/xlink" xml:space="preserve" overflow="hidden"><defs><image width="173" height="173" xlink:href="" preserveAspectRatio="none" id="img0"></image><clipPath id="clip1"><path d="M0.0896218 0.170055 792480 0.170055 792480 792480 0.0625 792480Z" fill-rule="evenodd" clip-rule="evenodd"/></clipPath><image width="173" height="173" xlink:href="" preserveAspectRatio="none" id="img2"></image><clipPath id="clip3"><path d="M-0.390869 0.016424 792480 0.016424 792480 792480-0.375 792480Z" fill-rule="evenodd" clip-rule="evenodd"/></clipPath><clipPath id="clip4"><rect x="-0.272727" y="-0.0909091" width="795251" height="795251"/></clipPath><image width="173" height="173" xlink:href="" preserveAspectRatio="none" id="img5"></image><clipPath id="clip6"><path d="M-0.23291-0.381592 792480-0.381592 792480 792480-0.25 792480Z" fill-rule="evenodd" clip-rule="evenodd"/></clipPath><clipPath id="clip7"><rect x="-0.181818" y="-2770.82" width="792480" height="795251"/></clipPath><image width="190" height="190" xlink:href="" preserveAspectRatio="none" id="img8"></image><clipPath id="clip9"><rect x="0" y="0" width="789709" height="789709"/></clipPath><clipPath id="clip10"><rect x="0" y="-0.181818" width="792480" height="795251"/></clipPath><image width="190" height="190" xlink:href="" preserveAspectRatio="none" id="img11"></image><clipPath id="clip12"><path d="M0.447998-0.00794569 792480-0.00794569 792480 792480 0.4375 792480Z" fill-rule="evenodd" clip-rule="evenodd"/></clipPath><image width="169" height="173" xlink:href="" preserveAspectRatio="none" id="img13"></image><clipPath id="clip14"><rect x="0" y="0" width="770312" height="788544"/></clipPath><clipPath id="clip15"><rect x="-0.181818" y="-2770.82" width="773084" height="795251"/></clipPath><image width="185" height="190" xlink:href="" preserveAspectRatio="none" id="img16"></image><clipPath id="clip17"><rect x="0" y="0" width="770313" height="791132"/></clipPath><image width="92" height="91" xlink:href="" preserveAspectRatio="none" id="img18"></image><clipPath id="clip19"><rect x="0" y="0" width="382385" height="378229"/></clipPath><clipPath id="clip20"><rect x="-1.86265e-09" y="-2770.64" width="814647" height="795251"/></clipPath><image width="134" height="130" xlink:href="" preserveAspectRatio="none" id="img21"></image><clipPath id="clip22"><rect x="0" y="0" width="814647" height="790329"/></clipPath><image width="129" height="132" xlink:href="" preserveAspectRatio="none" id="img23"></image><clipPath id="clip24"><rect x="0" y="0" width="770313" height="788227"/></clipPath></defs><g transform="translate(-2328 -999)"><g><path d="M2447 1579.5C2447 1348.92 2817.26 1162 3274 1162 3730.74 1162 4101 1348.92 4101 1579.5 4101 1810.08 3730.74 1997 3274 1997 2817.26 1997 2447 1810.08 2447 1579.5Z" stroke="#59358C" stroke-width="43.5417" stroke-linecap="butt" stroke-linejoin="miter" stroke-miterlimit="8" stroke-opacity="1" fill="none" fill-rule="evenodd"/><path d="M2854.5 1470.83C2854.5 1446.35 2874.35 1426.5 2898.83 1426.5L3613.17 1426.5C3637.65 1426.5 3657.5 1446.35 3657.5 1470.83L3657.5 1648.17C3657.5 1672.65 3637.65 1692.5 3613.17 1692.5L2898.83 1692.5C2874.35 1692.5 2854.5 1672.65 2854.5 1648.17Z" stroke="#0073A4" stroke-width="4.58333" stroke-linecap="butt" stroke-linejoin="miter" stroke-miterlimit="8" stroke-opacity="1" fill="#59358C" fill-rule="evenodd" fill-opacity="1"/><text fill="#FFFFFF" fill-opacity="1" font-family="Open Sans,Open Sans_MSFontService,sans-serif" font-style="normal" font-variant="normal" font-weight="700" font-stretch="normal" font-size="110" text-anchor="start" direction="ltr" writing-mode="lr-tb" unicode-bidi="normal" text-decoration="none" transform="matrix(1 0 0 1 2985.66 1597)">flixOpt</text><rect x="3846" y="1702" width="286" height="286" fill="#FFFFFF" fill-opacity="1"/><g transform="matrix(0.000360892 0 0 0.000360892 3846 1702)"><g clip-path="url(#clip1)"><use width="100%" height="100%" xlink:href="#img0" opacity="1" transform="matrix(4580.81 0 0 4580.81 0.0896218 0.170055)"></use></g></g><rect x="3101" y="1000" width="286" height="286" fill="#FFFFFF" fill-opacity="1"/><g transform="matrix(0.000360892 0 0 0.000360892 3101 1000)"><g clip-path="url(#clip3)"><use width="100%" height="100%" xlink:href="#img2" opacity="1" transform="matrix(4580.81 0 0 4580.81 -0.390869 0.016424)"></use></g></g><rect x="2962" y="1871" width="286" height="286" fill="#FFFFFF" fill-opacity="1"/><g clip-path="url(#clip4)" transform="matrix(0.000360892 0 0 0.000360892 2962 1871)"><g clip-path="url(#clip6)"><use width="100%" height="100%" xlink:href="#img5" opacity="1" transform="matrix(4580.81 0 0 4580.81 -0.23291 -0.381592)"></use></g></g><rect x="3951" y="1275" width="285" height="286" fill="#FFFFFF" fill-opacity="1"/><g clip-path="url(#clip7)" transform="matrix(0.000360892 0 0 0.000360892 3951 1275)"><g clip-path="url(#clip9)" transform="matrix(1 0 0 1.00351 0.204346 0.142822)"><use width="100%" height="100%" xlink:href="#img8" opacity="1" transform="scale(4156.36 4156.36)"></use></g></g><rect x="3553" y="1058" width="286" height="286" fill="#FFFFFF" fill-opacity="1"/><g clip-path="url(#clip10)" transform="matrix(0.000360892 0 0 0.000360892 3553 1058)"><g clip-path="url(#clip12)"><use width="100%" height="100%" xlink:href="#img11" opacity="1" transform="matrix(4170.95 0 0 4170.95 0.447998 -0.00794569)"></use></g></g><rect x="2676" y="1080" width="278" height="286" fill="#FFFFFF" fill-opacity="1"/><g transform="matrix(0.000360892 0 0 0.000360892 2676 1080)"><g clip-path="url(#clip14)" transform="matrix(1 0 0 1.00499 0.311523 -0.0113637)"><use width="100%" height="100%" xlink:href="#img13" opacity="1" transform="scale(4558.06 4558.06)"></use></g></g><rect x="2543" y="1704" width="278" height="286" fill="#FFFFFF" fill-opacity="1"/><g clip-path="url(#clip15)" transform="matrix(0.000360892 0 0 0.000360892 2543 1704)"><g clip-path="url(#clip17)" transform="matrix(1 0 0 1.0017 -0.0769043 0.326172)"><use width="100%" height="100%" xlink:href="#img16" opacity="1" transform="scale(4163.85 4163.85)"></use></g></g><g transform="matrix(0.000360892 0 0 0.000360892 3424 1488)"><g clip-path="url(#clip19)" transform="matrix(1 0 0 1.00366 0.195312 -0.165661)"><use width="100%" height="100%" xlink:href="#img18" opacity="1" transform="scale(4156.36 4156.36)"></use></g></g><rect x="3421" y="1845" width="294" height="286" fill="#FFFFFF" fill-opacity="1"/><g clip-path="url(#clip20)" transform="matrix(0.000360892 0 0 0.000360892 3421 1845)"><g clip-path="url(#clip22)" transform="matrix(1 0 0 1.00272 0.468506 0.147838)"><use width="100%" height="100%" xlink:href="#img21" opacity="1" transform="scale(6079.45 6079.45)"></use></g></g><rect x="2329" y="1390" width="278" height="286" fill="#FFFFFF" fill-opacity="1"/><g transform="matrix(0.000360892 0 0 0.000360892 2329 1390)"><g clip-path="url(#clip24)" transform="matrix(1 0 0 1.0054 -0.0891113 0.258656)"><use width="100%" height="100%" xlink:href="#img23" opacity="1" transform="scale(5971.42 5971.42)"></use></g></g></g></g></svg>
@@ -1,18 +0,0 @@
1
- window.MathJax = {
2
- tex: {
3
- inlineMath: [['$', '$'], ['\\(', '\\)']],
4
- displayMath: [['$$', '$$'], ['\\[', '\\]']],
5
- processEscapes: true,
6
- tags: 'all'
7
- },
8
- options: {
9
- skipHtmlTags: ['script', 'noscript', 'style', 'textarea', 'pre']
10
- }
11
- };
12
-
13
- document$.subscribe(() => {
14
- MathJax.startup.output.clearCache()
15
- MathJax.typesetClear()
16
- MathJax.texReset()
17
- MathJax.typesetPromise()
18
- })
@@ -1,33 +0,0 @@
1
- A Bus is a simple nodal balance between its incoming and outgoing flow rates.
2
-
3
- $$ \label{eq:bus_balance}
4
- \sum_{f_\text{in} \in \mathcal{F}_\text{in}} p_{f_\text{in}}(\text{t}_i) =
5
- \sum_{f_\text{out} \in \mathcal{F}_\text{out}} p_{f_\text{out}}(\text{t}_i)
6
- $$
7
-
8
- Optionally, a Bus can have a `excess_penalty_per_flow_hour` parameter, which allows to penaltize the balance for missing or excess flow-rates.
9
- This is usefull as it handles a possible ifeasiblity gently.
10
-
11
- This changes the balance to
12
-
13
- $$ \label{eq:bus_balance-excess}
14
- \sum_{f_\text{in} \in \mathcal{F}_\text{in}} p_{f_ \text{in}}(\text{t}_i) + \phi_\text{in}(\text{t}_i) =
15
- \sum_{f_\text{out} \in \mathcal{F}_\text{out}} p_{f_\text{out}}(\text{t}_i) + \phi_\text{out}(\text{t}_i)
16
- $$
17
-
18
- The penalty term is defined as
19
-
20
- $$ \label{eq:bus_penalty}
21
- s_{b \rightarrow \Phi}(\text{t}_i) =
22
- \text a_{b \rightarrow \Phi}(\text{t}_i) \cdot \Delta \text{t}_i
23
- \cdot [ \phi_\text{in}(\text{t}_i) + \phi_\text{out}(\text{t}_i) ]
24
- $$
25
-
26
- With:
27
-
28
- - $\mathcal{F}_\text{in}$ and $\mathcal{F}_\text{out}$ being the set of all incoming and outgoing flows
29
- - $p_{f_\text{in}}(\text{t}_i)$ and $p_{f_\text{out}}(\text{t}_i)$ being the flow-rate at time $\text{t}_i$ for flow $f_\text{in}$ and $f_\text{out}$, respectively
30
- - $\phi_\text{in}(\text{t}_i)$ and $\phi_\text{out}(\text{t}_i)$ being the missing or excess flow-rate at time $\text{t}_i$, respectively
31
- - $\text{t}_i$ being the time step
32
- - $s_{b \rightarrow \Phi}(\text{t}_i)$ being the penalty term
33
- - $\text a_{b \rightarrow \Phi}(\text{t}_i)$ being the penalty coefficient (`excess_penalty_per_flow_hour`)
@@ -1,132 +0,0 @@
1
- ## Effects
2
- [`Effects`][flixopt.effects.Effect] are used to allocate things like costs, emissions, or other "effects" occuring in the system.
3
- These arise from so called **Shares**, which originate from **Elements** like [Flows](Flow.md).
4
-
5
- **Example:**
6
-
7
- [`Flows`][flixopt.elements.Flow] have an attribute called `effects_per_flow_hour`, defining the effect amount of per flow hour.
8
- Assiziated effects could be:
9
- - costs - given in [€/kWh]...
10
- - ...or emissions - given in [kg/kWh].
11
- -
12
- Effects are allocated seperatly for investments and operation.
13
-
14
- ### Shares to Effects
15
-
16
- $$ \label{eq:Share_invest}
17
- s_{l \rightarrow e, \text{inv}} = \sum_{v \in \mathcal{V}_{l, \text{inv}}} v \cdot \text a_{v \rightarrow e}
18
- $$
19
-
20
- $$ \label{eq:Share_operation}
21
- s_{l \rightarrow e, \text{op}}(\text{t}_i) = \sum_{v \in \mathcal{V}_{l,\text{op}}} v(\text{t}_i) \cdot \text a_{v \rightarrow e}(\text{t}_i)
22
- $$
23
-
24
- With:
25
-
26
- - $\text{t}_i$ being the time step
27
- - $\mathcal{V_l}$ being the set of all optimization variables of element $e$
28
- - $\mathcal{V}_{l, \text{inv}}$ being the set of all optimization variables of element $e$ related to investment
29
- - $\mathcal{V}_{l, \text{op}}$ being the set of all optimization variables of element $e$ related to operation
30
- - $v$ being an optimization variable of the element $l$
31
- - $v(\text{t}_i)$ being an optimization variable of the element $l$ at timestep $\text{t}_i$
32
- - $\text a_{v \rightarrow e}$ being the factor between the optimization variable $v$ to effect $e$
33
- - $\text a_{v \rightarrow e}(\text{t}_i)$ being the factor between the optimization variable $v$ to effect $e$ for timestep $\text{t}_i$
34
- - $s_{l \rightarrow e, \text{inv}}$ being the share of element $l$ to the investment part of effect $e$
35
- - $s_{l \rightarrow e, \text{op}}(\text{t}_i)$ being the share of element $l$ to the operation part of effect $e$
36
-
37
- ### Shares between different Effects
38
-
39
- Furthermore, the Effect $x$ can contribute a share to another Effect ${e} \in \mathcal{E}\backslash x$.
40
- This share is defined by the factor $\text r_{x \rightarrow e}$.
41
-
42
- For example, the Effect "CO$_2$ emissions" (unit: kg)
43
- can cause an additional share to Effect "monetary costs" (unit: €).
44
- In this case, the factor $\text a_{x \rightarrow e}$ is the specific CO$_2$ price in €/kg. However, circular references have to be avoided.
45
-
46
- The overall sum of investment shares of an Effect $e$ is given by $\eqref{Effect_invest}$
47
-
48
- $$ \label{eq:Effect_invest}
49
- E_{e, \text{inv}} =
50
- \sum_{l \in \mathcal{L}} s_{l \rightarrow e,\text{inv}} +
51
- \sum_{x \in \mathcal{E}\backslash e} E_{x, \text{inv}} \cdot \text{r}_{x \rightarrow e,\text{inv}}
52
- $$
53
-
54
- The overall sum of operation shares is given by $\eqref{eq:Effect_Operation}$
55
-
56
- $$ \label{eq:Effect_Operation}
57
- E_{e, \text{op}}(\text{t}_{i}) =
58
- \sum_{l \in \mathcal{L}} s_{l \rightarrow e, \text{op}}(\text{t}_i) +
59
- \sum_{x \in \mathcal{E}\backslash e} E_{x, \text{op}}(\text{t}_i) \cdot \text{r}_{x \rightarrow {e},\text{op}}(\text{t}_i)
60
- $$
61
-
62
- and totals to $\eqref{eq:Effect_Operation_total}$
63
- $$\label{eq:Effect_Operation_total}
64
- E_{e,\text{op},\text{tot}} = \sum_{i=1}^n E_{e,\text{op}}(\text{t}_{i})
65
- $$
66
-
67
- With:
68
-
69
- - $\mathcal{L}$ being the set of all elements in the FlowSystem
70
- - $\mathcal{E}$ being the set of all effects in the FlowSystem
71
- - $\text r_{x \rightarrow e, \text{inv}}$ being the factor between the operation part of Effect $x$ and Effect $e$
72
- - $\text r_{x \rightarrow e, \text{op}}(\text{t}_i)$ being the factor between the invest part of Effect $x$ and Effect $e$
73
-
74
- - $\text{t}_i$ being the time step
75
- - $s_{l \rightarrow e, \text{inv}}$ being the share of element $l$ to the investment part of effect $e$
76
- - $s_{l \rightarrow e, \text{op}}(\text{t}_i)$ being the share of element $l$ to the operation part of effect $e$
77
-
78
-
79
- The total of an effect $E_{e}$ is given as $\eqref{eq:Effect_Total}$
80
-
81
- $$ \label{eq:Effect_Total}
82
- E_{e} = E_{\text{inv},e} +E_{\text{op},\text{tot},e}
83
- $$
84
-
85
- ### Constraining Effects
86
-
87
- For each variable $v \in \{ E_{e,\text{inv}}, E_{e,\text{op},\text{tot}}, E_e\}$, a lower bound $v^\text{L}$ and upper bound $v^\text{U}$ can be defined as
88
-
89
- $$ \label{eq:Bounds_Single}
90
- \text v^\text{L} \leq v \leq \text v^\text{U}
91
- $$
92
-
93
- Furthermore, bounds for the operational shares can be set for each time step
94
-
95
- $$ \label{eq:Bounds_Time_Steps}
96
- \text E_{e,\text{op}}^\text{L}(\text{t}_i) \leq E_{e,\text{op}}(\text{t}_i) \leq \text E_{e,\text{op}}^\text{U}(\text{t}_i)
97
- $$
98
-
99
- ## Penalty
100
-
101
- Additionally to the user defined [Effects](#effects), a Penalty $\Phi$ is part of every FlixOpt Model.
102
- Its used to prevent unsolvable problems and simplify troubleshooting.
103
- Shares to the penalty can originate from every Element and are constructed similarly to
104
- $\eqref{Share_invest}$ and $\eqref{Share_operation}$.
105
-
106
- $$ \label{eq:Penalty}
107
- \Phi = \sum_{l \in \mathcal{L}} \left( s_{l \rightarrow \Phi} +\sum_{\text{t}_i \in \mathcal{T}} s_{l \rightarrow \Phi}(\text{t}_{i}) \right)
108
- $$
109
-
110
- With:
111
-
112
- - $\mathcal{L}$ being the set of all elements in the FlowSystem
113
- - $\mathcal{T}$ being the set of all timesteps
114
- - $s_{l \rightarrow \Phi}$ being the share of element $l$ to the penalty
115
-
116
- At the moment, penalties only occur in [Buses](#buses)
117
-
118
- ## Objective
119
-
120
- The optimization objective of a FlixOpt Model is defined as $\eqref{eq:Objective}$
121
- $$ \label{eq:Objective}
122
- \min(E_{\Omega} + \Phi)
123
- $$
124
-
125
- With:
126
-
127
- - $\Omega$ being the chosen **Objective [Effect](#effects)** (see $\eqref{eq:Effect_Total}$)
128
- - $\Phi$ being the [Penalty](#penalty)
129
-
130
- This approach allows for a multi-criteria optimization using both...
131
- - ... the **Weigted Sum**Method, as the chosen **Objective Effect** can incorporate other Effects.
132
- - ... the ($\epsilon$-constraint method) by constraining effects.
@@ -1,26 +0,0 @@
1
- The flow_rate is the main optimization variable of the Flow. It's limited by the size of the Flow and relative bounds \eqref{eq:flow_rate}.
2
-
3
- $$ \label{eq:flow_rate}
4
- \text P \cdot \text p^{\text{L}}_{\text{rel}}(\text{t}_{i})
5
- \leq p(\text{t}_{i}) \leq
6
- \text P \cdot \text p^{\text{U}}_{\text{rel}}(\text{t}_{i})
7
- $$
8
-
9
- With:
10
-
11
- - $\text P$ being the size of the Flow
12
- - $p(\text{t}_{i})$ being the flow-rate at time $\text{t}_{i}$
13
- - $\text p^{\text{L}}_{\text{rel}}(\text{t}_{i})$ being the relative lower bound (typically 0)
14
- - $\text p^{\text{U}}_{\text{rel}}(\text{t}_{i})$ being the relative upper bound (typically 1)
15
-
16
- With $\text p^{\text{L}}_{\text{rel}}(\text{t}_{i}) = 0$ and $\text p^{\text{U}}_{\text{rel}}(\text{t}_{i}) = 1$,
17
- equation \eqref{eq:flow_rate} simplifies to
18
-
19
- $$
20
- 0 \leq p(\text{t}_{i}) \leq \text P
21
- $$
22
-
23
-
24
- This mathematical Formulation can be extended or changed when using [OnOffParameters](#onoffparameters)
25
- to define the On/Off state of the Flow, or [InvestParameters](#investments),
26
- which changes the size of the Flow from a constant to an optimization variable.
@@ -1,21 +0,0 @@
1
- [`LinearConverters`][flixopt.components.LinearConverter] define a ratio between incoming and outgoing [Flows](#flows).
2
-
3
- $$ \label{eq:Linear-Transformer-Ratio}
4
- \sum_{f_{\text{in}} \in \mathcal F_{in}} \text a_{f_{\text{in}}}(\text{t}_i) \cdot p_{f_\text{in}}(\text{t}_i) = \sum_{f_{\text{out}} \in \mathcal F_{out}} \text b_{f_\text{out}}(\text{t}_i) \cdot p_{f_\text{out}}(\text{t}_i)
5
- $$
6
-
7
- With:
8
-
9
- - $\mathcal F_{in}$ and $\mathcal F_{out}$ being the set of all incoming and outgoing flows
10
- - $p_{f_\text{in}}(\text{t}_i)$ and $p_{f_\text{out}}(\text{t}_i)$ being the flow-rate at time $\text{t}_i$ for flow $f_\text{in}$ and $f_\text{out}$, respectively
11
- - $\text a_{f_\text{in}}(\text{t}_i)$ and $\text b_{f_\text{out}}(\text{t}_i)$ being the ratio of the flow-rate at time $\text{t}_i$ for flow $f_\text{in}$ and $f_\text{out}$, respectively
12
-
13
- With one incoming **Flow** and one outgoing **Flow**, this can be simplified to:
14
-
15
- $$ \label{eq:Linear-Transformer-Ratio-simple}
16
- \text a(\text{t}_i) \cdot p_{f_\text{in}}(\text{t}_i) = p_{f_\text{out}}(\text{t}_i)
17
- $$
18
-
19
- where $\text a$ can be interpreted as the conversion efficiency of the **LinearTransformer**.
20
- #### Piecewise Concersion factors
21
- The conversion efficiency can be defined as a piecewise linear approximation. See [Piecewise](Piecewise.md) for more details.
@@ -1,49 +0,0 @@
1
- # Piecewise
2
-
3
- A Piecewise is a collection of [`Pieces`][flixopt.interface.Piece], which each define a valid range for a variable $v$
4
-
5
- $$ \label{eq:active_piece}
6
- \beta_\text{k} = \lambda_\text{0, k} + \lambda_\text{1, k}
7
- $$
8
-
9
- $$ \label{eq:piece}
10
- v_\text{k} = \lambda_\text{0, k} * \text{v}_{\text{start,k}} + \lambda_\text{1,k} * \text{v}_{\text{end,k}}
11
- $$
12
-
13
- $$ \label{eq:piecewise_in_pieces}
14
- \sum_{k=1}^k \beta_{k} = 1
15
- $$
16
-
17
- With:
18
-
19
- - $v$: The variable to be defined by the Piecewise
20
- - $\text{v}_{\text{start,k}}$: the start point of the piece for variable $v$
21
- - $\text{v}_{\text{end,k}}$: the end point of the piece for variable $v$
22
- - $\beta_\text{k} \in \{0, 1\}$: defining wether the Piece $k$ is active
23
- - $\lambda_\text{0,k} \in [0, 1]$: A variable defining the fraction of $\text{v}_{\text{start,k}}$ that is active
24
- - $\lambda_\text{1,k} \in [0, 1]$: A variable defining the fraction of $\text{v}_{\text{end,k}}$ that is active
25
-
26
- Which can also be described as $v \in 0 \cup [\text{v}_\text{start}, \text{v}_\text{end}]$.
27
-
28
- Instead of \eqref{eq:piecewise_in_pieces}, the following constraint is used to also allow all variables to be zero:
29
-
30
- $$ \label{eq:piecewise_in_pieces_zero}
31
- \sum_{k=1}^k \beta_{k} = \beta_\text{zero}
32
- $$
33
-
34
- With:
35
-
36
- - $\beta_\text{zero} \in \{0, 1\}$.
37
-
38
- Which can also be described as $v \in \{0\} \cup [\text{v}_{\text{start_k}}, \text{v}_{\text{end_k}}]$
39
-
40
-
41
- ## Combining multiple Piecewises
42
-
43
- Piecewise allows representing non-linear relationships.
44
- This is a powerful technique in linear optimization to model non-linear behaviors while maintaining the problem's linearity.
45
-
46
- Therefore, each Piecewise must have the same number of Pieces $k$.
47
-
48
- The variables described in [Piecewise](#piecewise) are created for each Piece, but nor for each Piecewise.
49
- Rather, \eqref{eq:piece} is the only constraint that is created for each Piecewise, using the start and endpoints $\text{v}_{\text{start,k}}$ and $\text{v}_{\text{end,k}}$ of each Piece for the corresponding variable $v$