flaxdiff 0.1.36.1__py3-none-any.whl → 0.1.36.2__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (49) hide show
  1. data/__init__.py +1 -0
  2. data/dataset_map.py +71 -0
  3. data/datasets.py +169 -0
  4. data/online_loader.py +363 -0
  5. data/sources/gcs.py +81 -0
  6. data/sources/tfds.py +67 -0
  7. {flaxdiff-0.1.36.1.dist-info → flaxdiff-0.1.36.2.dist-info}/METADATA +1 -1
  8. flaxdiff-0.1.36.2.dist-info/RECORD +47 -0
  9. flaxdiff-0.1.36.2.dist-info/top_level.txt +9 -0
  10. metrics/inception.py +658 -0
  11. metrics/utils.py +49 -0
  12. models/__init__.py +1 -0
  13. models/attention.py +368 -0
  14. models/autoencoder/__init__.py +2 -0
  15. models/autoencoder/autoencoder.py +19 -0
  16. models/autoencoder/diffusers.py +91 -0
  17. models/autoencoder/simple_autoenc.py +26 -0
  18. models/common.py +346 -0
  19. models/favor_fastattn.py +723 -0
  20. models/simple_unet.py +233 -0
  21. models/simple_vit.py +180 -0
  22. predictors/__init__.py +96 -0
  23. samplers/__init__.py +7 -0
  24. samplers/common.py +165 -0
  25. samplers/ddim.py +10 -0
  26. samplers/ddpm.py +37 -0
  27. samplers/euler.py +56 -0
  28. samplers/heun_sampler.py +27 -0
  29. samplers/multistep_dpm.py +59 -0
  30. samplers/rk4_sampler.py +34 -0
  31. schedulers/__init__.py +6 -0
  32. schedulers/common.py +98 -0
  33. schedulers/continuous.py +12 -0
  34. schedulers/cosine.py +40 -0
  35. schedulers/discrete.py +74 -0
  36. schedulers/exp.py +13 -0
  37. schedulers/karras.py +69 -0
  38. schedulers/linear.py +14 -0
  39. schedulers/sqrt.py +10 -0
  40. trainer/__init__.py +2 -0
  41. trainer/autoencoder_trainer.py +182 -0
  42. trainer/diffusion_trainer.py +326 -0
  43. trainer/simple_trainer.py +540 -0
  44. trainer/video_diffusion_trainer.py +62 -0
  45. flaxdiff-0.1.36.1.dist-info/RECORD +0 -6
  46. flaxdiff-0.1.36.1.dist-info/top_level.txt +0 -1
  47. /flaxdiff/__init__.py → /__init__.py +0 -0
  48. {flaxdiff-0.1.36.1.dist-info → flaxdiff-0.1.36.2.dist-info}/WHEEL +0 -0
  49. /flaxdiff/utils.py → /utils.py +0 -0
data/sources/tfds.py ADDED
@@ -0,0 +1,67 @@
1
+ import cv2
2
+ import jax.numpy as jnp
3
+ import grain.python as pygrain
4
+ from flaxdiff.utils import AutoTextTokenizer
5
+ from typing import Dict
6
+ import random
7
+
8
+ # -----------------------------------------------------------------------------------------------#
9
+ # Oxford flowers and other TFDS datasources -----------------------------------------------------#
10
+ # -----------------------------------------------------------------------------------------------#
11
+
12
+ PROMPT_TEMPLATES = [
13
+ "a photo of a {}",
14
+ "a photo of a {} flower",
15
+ "This is a photo of a {}",
16
+ "This is a photo of a {} flower",
17
+ "A photo of a {} flower",
18
+ ]
19
+
20
+ def data_source_tfds(name, use_tf=True, split="all"):
21
+ import tensorflow_datasets as tfds
22
+ if use_tf:
23
+ def data_source(path_override):
24
+ return tfds.load(name, split=split, shuffle_files=True)
25
+ else:
26
+ def data_source(path_override):
27
+ return tfds.data_source(name, split=split, try_gcs=False)
28
+ return data_source
29
+
30
+ def labelizer_oxford_flowers102(path):
31
+ with open(path, "r") as f:
32
+ textlabels = [i.strip() for i in f.readlines()]
33
+
34
+ def load_labels(sample):
35
+ raw = textlabels[int(sample['label'])]
36
+ # randomly select a prompt template
37
+ template = random.choice(PROMPT_TEMPLATES)
38
+ # format the template with the label
39
+ caption = template.format(raw)
40
+ # return the caption
41
+ return caption
42
+ return load_labels
43
+
44
+ def tfds_augmenters(image_scale, method):
45
+ labelizer = labelizer_oxford_flowers102("/home/mrwhite0racle/tensorflow_datasets/oxford_flowers102/2.1.1/label.labels.txt")
46
+ if image_scale > 256:
47
+ interpolation = cv2.INTER_CUBIC
48
+ else:
49
+ interpolation = cv2.INTER_AREA
50
+ class augmenters(pygrain.MapTransform):
51
+ def __init__(self, *args, **kwargs):
52
+ super().__init__(*args, **kwargs)
53
+ self.tokenize = AutoTextTokenizer(tensor_type="np")
54
+
55
+ def map(self, element) -> Dict[str, jnp.array]:
56
+ image = element['image']
57
+ image = cv2.resize(image, (image_scale, image_scale),
58
+ interpolation=interpolation)
59
+ # image = (image - 127.5) / 127.5
60
+ caption = labelizer(element)
61
+ results = self.tokenize(caption)
62
+ return {
63
+ "image": image,
64
+ "input_ids": results['input_ids'][0],
65
+ "attention_mask": results['attention_mask'][0],
66
+ }
67
+ return augmenters
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.4
2
2
  Name: flaxdiff
3
- Version: 0.1.36.1
3
+ Version: 0.1.36.2
4
4
  Summary: A versatile and easy to understand Diffusion library
5
5
  Author-email: Ashish Kumar Singh <ashishkmr472@gmail.com>
6
6
  License-Expression: MIT
@@ -0,0 +1,47 @@
1
+ __init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
2
+ utils.py,sha256=b_hFXsam2NICQYCFk0EOcqtBjM-RUqnN0NKTn0lQ070,6532
3
+ data/__init__.py,sha256=PM3PkHihyohT5SHVYKc8vQ4IeVfGPpCktkSVwvqMjQ4,52
4
+ data/dataset_map.py,sha256=hcHaoR2IbNQmfyPUhYd6_8xinurxxCqawQijAsDI0Ek,3093
5
+ data/datasets.py,sha256=YUMoSvF2yAyikRvRofZVlHwfEOU3zXSSG4KkLnVfpoA,5626
6
+ data/online_loader.py,sha256=1Fi_QRixxRzbt602nORINcDeHEccvCrBpagrz4PURYg,12499
7
+ data/sources/gcs.py,sha256=11ZuQhvMyJRLg21DgVdzO5qEuae7zgzTXGNOskF-cbs,3380
8
+ data/sources/tfds.py,sha256=WA3h9lyR4yotCNEmJON2noIN-2HNcqhf6zigx1XXsMI,2481
9
+ metrics/inception.py,sha256=a5kjMCPMT9gB88c_HCKiek-2vsAyoE35K7nDt4h4pVI,31843
10
+ metrics/utils.py,sha256=YuuOfqvqgIjsceupwNeJ59vQ2TnGeNMIyKdkIqOmoNg,1702
11
+ models/__init__.py,sha256=FAivVYXxM2JrCFIXf-C3374RB2Hth25dBrzOeNFhH1U,26
12
+ models/attention.py,sha256=JvrP7-09MV6IfRLRBhqjPmNUU-lkEMk9TOnJSBKcar8,13289
13
+ models/common.py,sha256=hWsSs2BP2J-JN1s4qLRr-h-KYkcVyl2hOp1Wsm_L-h8,10994
14
+ models/favor_fastattn.py,sha256=79Ew1nqarsNLPzZaBSd1ILORzJr74CupYeqGiCQK5E4,27689
15
+ models/simple_unet.py,sha256=L5m2j5580QP7pJ5VIme7U5xYA22PZiGP7qdvcKUnB38,11463
16
+ models/simple_vit.py,sha256=UCDDr0XVnpf6tbJWKFtEt3_nAqMqOoakXf5amyVWZNo,7929
17
+ models/autoencoder/__init__.py,sha256=qY-7MldZpsfkF-_T2LqlRK7VHbqfmosz0NmvzDlBkOk,78
18
+ models/autoencoder/autoencoder.py,sha256=27_hYl0yXAdH9Mx4Xu9J79mSNo-FEKr9SxhVaS3ffn4,591
19
+ models/autoencoder/diffusers.py,sha256=JHeFLCxiHhu-QHwhKiCuKsQJn4AZumquiuxgZkiYGQ0,3643
20
+ models/autoencoder/simple_autoenc.py,sha256=UXHPgDmwGTnv3Uts6Zj3p9R9nJXnEiEXbllgarwDfXM,805
21
+ predictors/__init__.py,sha256=SKkYYRF9Wfgk2zhtZw4vCXOdOeRlrm2Mk6cvuaEvAzc,4403
22
+ samplers/__init__.py,sha256=_S-9TwDeshrI0VmapV-J2hqjTByOa0-oOeUs_IdovjU,285
23
+ samplers/common.py,sha256=ZA08VyovxegpRx4wOQq9LSwZi0gSCz2lrbS5oVYOEYg,8488
24
+ samplers/ddim.py,sha256=pB8Kod8ZLJ3GXev4uM3cOj1Uy6ibR0jsaZa-VE0fyJM,552
25
+ samplers/ddpm.py,sha256=u1OchQu0XPhc_6w9JXoaFp2wo4y-zXyQNtGAIJwxNLg,2209
26
+ samplers/euler.py,sha256=Htb-IJeu7jSgY6mvgYr9yl9pUnos49vijlVk5IQsRps,2740
27
+ samplers/heun_sampler.py,sha256=UyI-hSlyWvt-7VEUJj27zjgyzKkGVl8fDUHV-YpSOCc,1421
28
+ samplers/multistep_dpm.py,sha256=3Wu3MrMLYaBb1ObraTbWrJmtEtU0adl1dDbz5fPJ4Gs,2735
29
+ samplers/rk4_sampler.py,sha256=1j1pES_Q2QiaURvEWeedbbT1LHmkc3jsu0GgH83qBL0,1926
30
+ schedulers/__init__.py,sha256=3id390WEfdf-MN-oLSPAhlRFIXrFWr6ioAHPAwURJyE,375
31
+ schedulers/common.py,sha256=b-W4iI-aqScpVE8VZbBpiYvAVI6rqDkUP-C_hEVBwCI,4151
32
+ schedulers/continuous.py,sha256=5c_niOA20fxJ5oJDi09FfayIRogBGwtfG0XThW2IUZk,334
33
+ schedulers/cosine.py,sha256=9ban0dFHLMm35wQvaBT4nCQwPGmzNsXwQ1xI0oppmJI,2005
34
+ schedulers/discrete.py,sha256=O54wH2HVu3olJA71NxgAXFW9cr6B6Gl-DR_uZeytpds,3319
35
+ schedulers/exp.py,sha256=cPTnUJpYdzJRRZqMLYQz0rRUCpEmaP2tXhRumLx94jA,605
36
+ schedulers/karras.py,sha256=4GN120kGwdxxU-h2mVdhBVy9IORkUMm_vvz3XjthBcI,3355
37
+ schedulers/linear.py,sha256=6003F5ISq1Wc0h6UAzY95MJgsDIKGMhBzbiVALpea0k,581
38
+ schedulers/sqrt.py,sha256=1F84ZgQPuoNMhe6yxGTR2G0h7dPOZtm4UDQOakbSsEU,445
39
+ trainer/__init__.py,sha256=T-vUVq4zHcMK6kpCsG4Gu8vn71q6lZD-lg-Ul7yKfEk,128
40
+ trainer/autoencoder_trainer.py,sha256=hxihkRL9WCIQVGOP-pc1jjjIUaRXDLcNo3_erTKsuWM,7049
41
+ trainer/diffusion_trainer.py,sha256=ajOWBgFFwXP_VQScUjcuPoaB4Gk02aF0Ls5LNlA8wqA,12691
42
+ trainer/simple_trainer.py,sha256=lmRo8N0bMupIyS3ejPvPtxoskY_3GLC8iyJE6u4TIWc,21990
43
+ trainer/video_diffusion_trainer.py,sha256=gMkKpnKNTo8QhTx5ptEEkc7W5-7rzXIr9queU53hXyQ,2197
44
+ flaxdiff-0.1.36.2.dist-info/METADATA,sha256=4c3Kl8wDAN6pzg_nLfQ3VSbN6e9xVv3flLCsh1ub-4U,22310
45
+ flaxdiff-0.1.36.2.dist-info/WHEEL,sha256=CmyFI0kx5cdEMTLiONQRbGQwjIoR1aIYB7eCAQ4KPJ0,91
46
+ flaxdiff-0.1.36.2.dist-info/top_level.txt,sha256=FMc3ZGZsKPjeaG9fWYdPl5HYvG4JBNSxqXJj2WwJz6s,74
47
+ flaxdiff-0.1.36.2.dist-info/RECORD,,
@@ -0,0 +1,9 @@
1
+ __init__
2
+ data
3
+ metrics
4
+ models
5
+ predictors
6
+ samplers
7
+ schedulers
8
+ trainer
9
+ utils