flaxdiff 0.1.28__py3-none-any.whl → 0.1.29__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
@@ -136,32 +136,25 @@ class UViT(nn.Module):
136
136
  # print(f'Shape of x after transformer blocks: {x.shape}')
137
137
  x = self.norm()(x)
138
138
 
139
- # print(f'Shape of x after norm: {x.shape}')
140
-
141
139
  patch_dim = self.patch_size ** 2 * self.output_channels
142
140
  x = nn.Dense(features=patch_dim, dtype=self.dtype, precision=self.precision, kernel_init=self.kernel_init())(x)
143
- # print(f'Shape of x after patch dense layer: {x.shape}, patch_dim: {patch_dim}')
144
141
  x = x[:, 1 + num_text_tokens:, :]
145
142
  x = unpatchify(x, channels=self.output_channels)
146
- # print(f'Shape of x after final dense layer: {x.shape}')
147
143
 
148
144
  if self.add_residualblock_output:
149
145
  # Concatenate the original image
150
146
  x = jnp.concatenate([original_img, x], axis=-1)
151
147
 
152
- x = ResidualBlock(
148
+ x = ConvLayer(
153
149
  "conv",
154
- name="final_residual",
155
150
  features=64,
156
- kernel_init=self.kernel_init(1.0),
157
- kernel_size=(3,3),
151
+ kernel_size=(3, 3),
158
152
  strides=(1, 1),
159
- activation=self.activation,
160
- norm_groups=self.norm_groups,
153
+ # activation=jax.nn.mish
154
+ kernel_init=self.kernel_init(0.0),
161
155
  dtype=self.dtype,
162
- precision=self.precision,
163
- named_norms=False
164
- )(x, temb)
156
+ precision=self.precision
157
+ )(x)
165
158
 
166
159
  x = self.norm()(x)
167
160
  x = self.activation(x)
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.1
2
2
  Name: flaxdiff
3
- Version: 0.1.28
3
+ Version: 0.1.29
4
4
  Summary: A versatile and easy to understand Diffusion library
5
5
  Author: Ashish Kumar Singh
6
6
  Author-email: ashishkmr472@gmail.com
@@ -7,7 +7,7 @@ flaxdiff/models/attention.py,sha256=ZbDGIb5Q6FRqJ6qRY660cqw4WvF9IwCnhEuYdTpLPdM,
7
7
  flaxdiff/models/common.py,sha256=fw_gP7PZayO6RVe6xSf-7FtVq-S0pp5U6NgHg4PlKO8,10990
8
8
  flaxdiff/models/favor_fastattn.py,sha256=79Ew1nqarsNLPzZaBSd1ILORzJr74CupYeqGiCQK5E4,27689
9
9
  flaxdiff/models/simple_unet.py,sha256=h1o9mQlLJy7Ec8Pz_O5miRbAyUaM5UNhSs-oXzpQvZo,10763
10
- flaxdiff/models/simple_vit.py,sha256=W2LxTKWA0wJHbPLf4hd2eUO4-ZV5u0Y-M168QulGwTg,7786
10
+ flaxdiff/models/simple_vit.py,sha256=atjeXc22w8WYub_6d0JAFFgvQ4TP1wt4N1ubIzZlQZ0,7436
11
11
  flaxdiff/models/autoencoder/__init__.py,sha256=qY-7MldZpsfkF-_T2LqlRK7VHbqfmosz0NmvzDlBkOk,78
12
12
  flaxdiff/models/autoencoder/autoencoder.py,sha256=27_hYl0yXAdH9Mx4Xu9J79mSNo-FEKr9SxhVaS3ffn4,591
13
13
  flaxdiff/models/autoencoder/diffusers.py,sha256=JHeFLCxiHhu-QHwhKiCuKsQJn4AZumquiuxgZkiYGQ0,3643
@@ -34,7 +34,7 @@ flaxdiff/trainer/__init__.py,sha256=T-vUVq4zHcMK6kpCsG4Gu8vn71q6lZD-lg-Ul7yKfEk,
34
34
  flaxdiff/trainer/autoencoder_trainer.py,sha256=al7AsZ7yeDMEiDD-gbcXf0ADq_xfk1VMxvg24GfA-XQ,7008
35
35
  flaxdiff/trainer/diffusion_trainer.py,sha256=wKkg63DWZjx2MoM3VQNCDIr40rWN8fUGxH9jWWxfZao,9373
36
36
  flaxdiff/trainer/simple_trainer.py,sha256=Z77zRS5viJpd2Mpl6sonJk5WcnEWi2Cd4gl4u5tIX2M,18206
37
- flaxdiff-0.1.28.dist-info/METADATA,sha256=AeUPnS3eT-lJSMSM9p1J_HBkJz9f5QFey5r0wdZddH8,22083
38
- flaxdiff-0.1.28.dist-info/WHEEL,sha256=cVxcB9AmuTcXqmwrtPhNK88dr7IR_b6qagTj0UvIEbY,91
39
- flaxdiff-0.1.28.dist-info/top_level.txt,sha256=-2-nXnfkJgSfkki1tjm5Faw6Dso7vhtdn2szwCdX5CQ,9
40
- flaxdiff-0.1.28.dist-info/RECORD,,
37
+ flaxdiff-0.1.29.dist-info/METADATA,sha256=PcevgEjt61-62ccMC_CI4EvHYUX-tdrpEBptKXkTudA,22083
38
+ flaxdiff-0.1.29.dist-info/WHEEL,sha256=cVxcB9AmuTcXqmwrtPhNK88dr7IR_b6qagTj0UvIEbY,91
39
+ flaxdiff-0.1.29.dist-info/top_level.txt,sha256=-2-nXnfkJgSfkki1tjm5Faw6Dso7vhtdn2szwCdX5CQ,9
40
+ flaxdiff-0.1.29.dist-info/RECORD,,