flaxdiff 0.1.12__py3-none-any.whl → 0.1.14__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- flaxdiff/data/__init__.py +1 -0
- flaxdiff/data/online_loader.py +208 -0
- flaxdiff/models/autoencoder/diffusers.py +3 -3
- {flaxdiff-0.1.12.dist-info → flaxdiff-0.1.14.dist-info}/METADATA +1 -1
- {flaxdiff-0.1.12.dist-info → flaxdiff-0.1.14.dist-info}/RECORD +7 -5
- {flaxdiff-0.1.12.dist-info → flaxdiff-0.1.14.dist-info}/WHEEL +0 -0
- {flaxdiff-0.1.12.dist-info → flaxdiff-0.1.14.dist-info}/top_level.txt +0 -0
@@ -0,0 +1 @@
|
|
1
|
+
from .online_loader import OnlineStreamingDataLoader
|
@@ -0,0 +1,208 @@
|
|
1
|
+
import multiprocessing
|
2
|
+
import threading
|
3
|
+
from multiprocessing import Queue
|
4
|
+
# from arrayqueues.shared_arrays import ArrayQueue
|
5
|
+
# from faster_fifo import Queue
|
6
|
+
import time
|
7
|
+
import albumentations as A
|
8
|
+
import queue
|
9
|
+
import cv2
|
10
|
+
from functools import partial
|
11
|
+
from typing import Any, Dict, List, Tuple
|
12
|
+
|
13
|
+
import numpy as np
|
14
|
+
from functools import partial
|
15
|
+
|
16
|
+
from datasets import load_dataset, concatenate_datasets, Dataset
|
17
|
+
from datasets.utils.file_utils import get_datasets_user_agent
|
18
|
+
from concurrent.futures import ThreadPoolExecutor
|
19
|
+
import io
|
20
|
+
import urllib
|
21
|
+
|
22
|
+
import PIL.Image
|
23
|
+
import cv2
|
24
|
+
|
25
|
+
USER_AGENT = get_datasets_user_agent()
|
26
|
+
|
27
|
+
data_queue = Queue(16*2000)
|
28
|
+
error_queue = Queue(16*2000)
|
29
|
+
|
30
|
+
|
31
|
+
def fetch_single_image(image_url, timeout=None, retries=0):
|
32
|
+
for _ in range(retries + 1):
|
33
|
+
try:
|
34
|
+
request = urllib.request.Request(
|
35
|
+
image_url,
|
36
|
+
data=None,
|
37
|
+
headers={"user-agent": USER_AGENT},
|
38
|
+
)
|
39
|
+
with urllib.request.urlopen(request, timeout=timeout) as req:
|
40
|
+
image = PIL.Image.open(io.BytesIO(req.read()))
|
41
|
+
break
|
42
|
+
except Exception:
|
43
|
+
image = None
|
44
|
+
return image
|
45
|
+
|
46
|
+
def map_sample(
|
47
|
+
url, caption,
|
48
|
+
image_shape=(256, 256),
|
49
|
+
upscale_interpolation=cv2.INTER_LANCZOS4,
|
50
|
+
downscale_interpolation=cv2.INTER_AREA,
|
51
|
+
):
|
52
|
+
try:
|
53
|
+
image = fetch_single_image(url, timeout=15, retries=3) # Assuming fetch_single_image is defined elsewhere
|
54
|
+
if image is None:
|
55
|
+
return
|
56
|
+
|
57
|
+
image = np.array(image)
|
58
|
+
original_height, original_width = image.shape[:2]
|
59
|
+
# check if the image is too small
|
60
|
+
if min(original_height, original_width) < min(image_shape):
|
61
|
+
return
|
62
|
+
# check if wrong aspect ratio
|
63
|
+
if max(original_height, original_width) / min(original_height, original_width) > 2:
|
64
|
+
return
|
65
|
+
# check if the variance is too low
|
66
|
+
if np.std(image) < 1e-4:
|
67
|
+
return
|
68
|
+
image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
|
69
|
+
downscale = max(original_width, original_height) > max(image_shape)
|
70
|
+
interpolation = downscale_interpolation if downscale else upscale_interpolation
|
71
|
+
image = A.longest_max_size(image, max(image_shape), interpolation=interpolation)
|
72
|
+
image = A.pad(
|
73
|
+
image,
|
74
|
+
min_height=image_shape[0],
|
75
|
+
min_width=image_shape[1],
|
76
|
+
border_mode=cv2.BORDER_CONSTANT,
|
77
|
+
value=[255, 255, 255],
|
78
|
+
)
|
79
|
+
data_queue.put({
|
80
|
+
"url": url,
|
81
|
+
"caption": caption,
|
82
|
+
"image": image,
|
83
|
+
"original_height": original_height,
|
84
|
+
"original_width": original_width,
|
85
|
+
})
|
86
|
+
except Exception as e:
|
87
|
+
error_queue.put({
|
88
|
+
"url": url,
|
89
|
+
"caption": caption,
|
90
|
+
"error": str(e)
|
91
|
+
})
|
92
|
+
|
93
|
+
def map_batch(batch, num_threads=256, image_shape=(256, 256), timeout=None, retries=0):
|
94
|
+
with ThreadPoolExecutor(max_workers=num_threads) as executor:
|
95
|
+
executor.map(map_sample, batch["url"], batch['caption'], image_shape=image_shape, timeout=timeout, retries=retries)
|
96
|
+
|
97
|
+
def parallel_image_loader(dataset: Dataset, num_workers: int = 8, image_shape=(256, 256), num_threads=256):
|
98
|
+
map_batch_fn = partial(map_batch, num_threads=num_threads, image_shape=image_shape)
|
99
|
+
shard_len = len(dataset) // num_workers
|
100
|
+
print(f"Local Shard lengths: {shard_len}")
|
101
|
+
with multiprocessing.Pool(num_workers) as pool:
|
102
|
+
iteration = 0
|
103
|
+
while True:
|
104
|
+
# Repeat forever
|
105
|
+
dataset = dataset.shuffle(seed=iteration)
|
106
|
+
shards = [dataset[i*shard_len:(i+1)*shard_len] for i in range(num_workers)]
|
107
|
+
pool.map(map_batch_fn, shards)
|
108
|
+
iteration += 1
|
109
|
+
|
110
|
+
class ImageBatchIterator:
|
111
|
+
def __init__(self, dataset: Dataset, batch_size: int = 64, image_shape=(256, 256), num_workers: int = 8, num_threads=256):
|
112
|
+
self.dataset = dataset
|
113
|
+
self.num_workers = num_workers
|
114
|
+
self.batch_size = batch_size
|
115
|
+
loader = partial(parallel_image_loader, num_threads=num_threads, image_shape=image_shape, num_workers=num_workers)
|
116
|
+
self.thread = threading.Thread(target=loader, args=(dataset))
|
117
|
+
self.thread.start()
|
118
|
+
|
119
|
+
def __iter__(self):
|
120
|
+
return self
|
121
|
+
|
122
|
+
def __next__(self):
|
123
|
+
def fetcher(_):
|
124
|
+
return data_queue.get()
|
125
|
+
with ThreadPoolExecutor(max_workers=self.batch_size) as executor:
|
126
|
+
batch = list(executor.map(fetcher, range(self.batch_size)))
|
127
|
+
return batch
|
128
|
+
|
129
|
+
def __del__(self):
|
130
|
+
self.thread.join()
|
131
|
+
|
132
|
+
def __len__(self):
|
133
|
+
return len(self.dataset) // self.batch_size
|
134
|
+
|
135
|
+
def default_collate(batch):
|
136
|
+
urls = [sample["url"] for sample in batch]
|
137
|
+
captions = [sample["caption"] for sample in batch]
|
138
|
+
images = np.stack([sample["image"] for sample in batch], axis=0)
|
139
|
+
return {
|
140
|
+
"url": urls,
|
141
|
+
"caption": captions,
|
142
|
+
"image": images,
|
143
|
+
}
|
144
|
+
|
145
|
+
def dataMapper(map: Dict[str, Any]):
|
146
|
+
def _map(sample) -> Dict[str, Any]:
|
147
|
+
return {
|
148
|
+
"url": sample[map["url"]],
|
149
|
+
"caption": sample[map["caption"]],
|
150
|
+
}
|
151
|
+
return _map
|
152
|
+
|
153
|
+
class OnlineStreamingDataLoader():
|
154
|
+
def __init__(
|
155
|
+
self,
|
156
|
+
dataset,
|
157
|
+
batch_size=64,
|
158
|
+
image_shape=(256, 256),
|
159
|
+
num_workers=16,
|
160
|
+
num_threads=512,
|
161
|
+
default_split="all",
|
162
|
+
pre_map_maker=dataMapper,
|
163
|
+
pre_map_def={
|
164
|
+
"url": "URL",
|
165
|
+
"caption": "TEXT",
|
166
|
+
},
|
167
|
+
global_process_count=1,
|
168
|
+
global_process_index=0,
|
169
|
+
prefetch=1000,
|
170
|
+
collate_fn=default_collate,
|
171
|
+
):
|
172
|
+
if isinstance(dataset, str):
|
173
|
+
dataset_path = dataset
|
174
|
+
print("Loading dataset from path")
|
175
|
+
dataset = load_dataset(dataset_path, split=default_split)
|
176
|
+
elif isinstance(dataset, list):
|
177
|
+
if isinstance(dataset[0], str):
|
178
|
+
print("Loading multiple datasets from paths")
|
179
|
+
dataset = [load_dataset(dataset_path, split=default_split) for dataset_path in dataset]
|
180
|
+
else:
|
181
|
+
print("Concatenating multiple datasets")
|
182
|
+
dataset = concatenate_datasets(dataset)
|
183
|
+
dataset = dataset.map(pre_map_maker(pre_map_def))
|
184
|
+
self.dataset = dataset.shard(num_shards=global_process_count, index=global_process_index)
|
185
|
+
print(f"Dataset length: {len(dataset)}")
|
186
|
+
self.iterator = ImageBatchIterator(self.dataset, image_shape=image_shape, num_workers=num_workers, batch_size=batch_size, num_threads=num_threads)
|
187
|
+
self.collate_fn = collate_fn
|
188
|
+
|
189
|
+
# Launch a thread to load batches in the background
|
190
|
+
self.batch_queue = queue.Queue(prefetch)
|
191
|
+
|
192
|
+
def batch_loader():
|
193
|
+
for batch in self.iterator:
|
194
|
+
self.batch_queue.put(batch)
|
195
|
+
|
196
|
+
self.loader_thread = threading.Thread(target=batch_loader)
|
197
|
+
self.loader_thread.start()
|
198
|
+
|
199
|
+
def __iter__(self):
|
200
|
+
return self
|
201
|
+
|
202
|
+
def __next__(self):
|
203
|
+
return self.collate_fn(self.batch_queue.get())
|
204
|
+
# return self.collate_fn(next(self.iterator))
|
205
|
+
|
206
|
+
def __len__(self):
|
207
|
+
return len(self.dataset) // self.batch_size
|
208
|
+
|
@@ -11,15 +11,15 @@ All credits for the model go to the developers of Stable Diffusion VAE and all c
|
|
11
11
|
"""
|
12
12
|
|
13
13
|
class StableDiffusionVAE(AutoEncoder):
|
14
|
-
def __init__(self, modelname = "CompVis/stable-diffusion-v1-4"):
|
14
|
+
def __init__(self, modelname = "CompVis/stable-diffusion-v1-4", revision="bf16", dtype=jnp.bfloat16):
|
15
15
|
|
16
16
|
from diffusers.models.vae_flax import FlaxEncoder, FlaxDecoder
|
17
17
|
from diffusers import FlaxStableDiffusionPipeline
|
18
18
|
|
19
19
|
pipeline, params = FlaxStableDiffusionPipeline.from_pretrained(
|
20
20
|
modelname,
|
21
|
-
revision=
|
22
|
-
dtype=
|
21
|
+
revision=revision,
|
22
|
+
dtype=dtype,
|
23
23
|
)
|
24
24
|
|
25
25
|
vae = pipeline.vae
|
@@ -1,5 +1,7 @@
|
|
1
1
|
flaxdiff/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
2
2
|
flaxdiff/utils.py,sha256=B0GcHlzlVYDNEIdh2v5qmP4u0neIT-FqexNohuyuCvg,2452
|
3
|
+
flaxdiff/data/__init__.py,sha256=PM3PkHihyohT5SHVYKc8vQ4IeVfGPpCktkSVwvqMjQ4,52
|
4
|
+
flaxdiff/data/online_loader.py,sha256=IjCVdeq18lF71eLX8RplJLezjKASO1cSFVe2GSYkLQ8,7283
|
3
5
|
flaxdiff/models/__init__.py,sha256=FAivVYXxM2JrCFIXf-C3374RB2Hth25dBrzOeNFhH1U,26
|
4
6
|
flaxdiff/models/attention.py,sha256=ZbDGIb5Q6FRqJ6qRY660cqw4WvF9IwCnhEuYdTpLPdM,13023
|
5
7
|
flaxdiff/models/common.py,sha256=fd-Fl0VCNEBjijHNwGBqYL5VvXe9u0347h25czNTmRw,10780
|
@@ -8,7 +10,7 @@ flaxdiff/models/simple_unet.py,sha256=h1o9mQlLJy7Ec8Pz_O5miRbAyUaM5UNhSs-oXzpQvZ
|
|
8
10
|
flaxdiff/models/simple_vit.py,sha256=xD23i1b7WEvoH4tUMsLyCe9ebDcv-PpaV0Nso38Jlb8,3887
|
9
11
|
flaxdiff/models/autoencoder/__init__.py,sha256=qY-7MldZpsfkF-_T2LqlRK7VHbqfmosz0NmvzDlBkOk,78
|
10
12
|
flaxdiff/models/autoencoder/autoencoder.py,sha256=27_hYl0yXAdH9Mx4Xu9J79mSNo-FEKr9SxhVaS3ffn4,591
|
11
|
-
flaxdiff/models/autoencoder/diffusers.py,sha256=
|
13
|
+
flaxdiff/models/autoencoder/diffusers.py,sha256=JHeFLCxiHhu-QHwhKiCuKsQJn4AZumquiuxgZkiYGQ0,3643
|
12
14
|
flaxdiff/models/autoencoder/simple_autoenc.py,sha256=UXHPgDmwGTnv3Uts6Zj3p9R9nJXnEiEXbllgarwDfXM,805
|
13
15
|
flaxdiff/predictors/__init__.py,sha256=SKkYYRF9Wfgk2zhtZw4vCXOdOeRlrm2Mk6cvuaEvAzc,4403
|
14
16
|
flaxdiff/samplers/__init__.py,sha256=_S-9TwDeshrI0VmapV-J2hqjTByOa0-oOeUs_IdovjU,285
|
@@ -32,7 +34,7 @@ flaxdiff/trainer/__init__.py,sha256=T-vUVq4zHcMK6kpCsG4Gu8vn71q6lZD-lg-Ul7yKfEk,
|
|
32
34
|
flaxdiff/trainer/autoencoder_trainer.py,sha256=al7AsZ7yeDMEiDD-gbcXf0ADq_xfk1VMxvg24GfA-XQ,7008
|
33
35
|
flaxdiff/trainer/diffusion_trainer.py,sha256=wKkg63DWZjx2MoM3VQNCDIr40rWN8fUGxH9jWWxfZao,9373
|
34
36
|
flaxdiff/trainer/simple_trainer.py,sha256=Z77zRS5viJpd2Mpl6sonJk5WcnEWi2Cd4gl4u5tIX2M,18206
|
35
|
-
flaxdiff-0.1.
|
36
|
-
flaxdiff-0.1.
|
37
|
-
flaxdiff-0.1.
|
38
|
-
flaxdiff-0.1.
|
37
|
+
flaxdiff-0.1.14.dist-info/METADATA,sha256=rcwF7cCFfgPLHn5gD7GZ_KvtG6EmiAIiel7xt8HylAo,22083
|
38
|
+
flaxdiff-0.1.14.dist-info/WHEEL,sha256=R0nc6qTxuoLk7ShA2_Y-UWkN8ZdfDBG2B6Eqpz2WXbs,91
|
39
|
+
flaxdiff-0.1.14.dist-info/top_level.txt,sha256=-2-nXnfkJgSfkki1tjm5Faw6Dso7vhtdn2szwCdX5CQ,9
|
40
|
+
flaxdiff-0.1.14.dist-info/RECORD,,
|
File without changes
|
File without changes
|