figrecipe 0.5.0__py3-none-any.whl → 0.6.0__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (90) hide show
  1. figrecipe/__init__.py +361 -93
  2. figrecipe/_dev/__init__.py +120 -0
  3. figrecipe/_dev/demo_plotters/__init__.py +195 -0
  4. figrecipe/_dev/demo_plotters/plot_acorr.py +24 -0
  5. figrecipe/_dev/demo_plotters/plot_angle_spectrum.py +28 -0
  6. figrecipe/_dev/demo_plotters/plot_bar.py +25 -0
  7. figrecipe/_dev/demo_plotters/plot_barbs.py +30 -0
  8. figrecipe/_dev/demo_plotters/plot_barh.py +25 -0
  9. figrecipe/_dev/demo_plotters/plot_boxplot.py +24 -0
  10. figrecipe/_dev/demo_plotters/plot_cohere.py +29 -0
  11. figrecipe/_dev/demo_plotters/plot_contour.py +30 -0
  12. figrecipe/_dev/demo_plotters/plot_contourf.py +29 -0
  13. figrecipe/_dev/demo_plotters/plot_csd.py +29 -0
  14. figrecipe/_dev/demo_plotters/plot_ecdf.py +24 -0
  15. figrecipe/_dev/demo_plotters/plot_errorbar.py +28 -0
  16. figrecipe/_dev/demo_plotters/plot_eventplot.py +25 -0
  17. figrecipe/_dev/demo_plotters/plot_fill.py +29 -0
  18. figrecipe/_dev/demo_plotters/plot_fill_between.py +30 -0
  19. figrecipe/_dev/demo_plotters/plot_fill_betweenx.py +28 -0
  20. figrecipe/_dev/demo_plotters/plot_hexbin.py +25 -0
  21. figrecipe/_dev/demo_plotters/plot_hist.py +24 -0
  22. figrecipe/_dev/demo_plotters/plot_hist2d.py +25 -0
  23. figrecipe/_dev/demo_plotters/plot_imshow.py +23 -0
  24. figrecipe/_dev/demo_plotters/plot_loglog.py +27 -0
  25. figrecipe/_dev/demo_plotters/plot_magnitude_spectrum.py +28 -0
  26. figrecipe/_dev/demo_plotters/plot_matshow.py +23 -0
  27. figrecipe/_dev/demo_plotters/plot_pcolor.py +29 -0
  28. figrecipe/_dev/demo_plotters/plot_pcolormesh.py +29 -0
  29. figrecipe/_dev/demo_plotters/plot_phase_spectrum.py +28 -0
  30. figrecipe/_dev/demo_plotters/plot_pie.py +23 -0
  31. figrecipe/_dev/demo_plotters/plot_plot.py +27 -0
  32. figrecipe/_dev/demo_plotters/plot_psd.py +29 -0
  33. figrecipe/_dev/demo_plotters/plot_quiver.py +30 -0
  34. figrecipe/_dev/demo_plotters/plot_scatter.py +24 -0
  35. figrecipe/_dev/demo_plotters/plot_semilogx.py +27 -0
  36. figrecipe/_dev/demo_plotters/plot_semilogy.py +27 -0
  37. figrecipe/_dev/demo_plotters/plot_specgram.py +30 -0
  38. figrecipe/_dev/demo_plotters/plot_spy.py +29 -0
  39. figrecipe/_dev/demo_plotters/plot_stackplot.py +29 -0
  40. figrecipe/_dev/demo_plotters/plot_stairs.py +27 -0
  41. figrecipe/_dev/demo_plotters/plot_stem.py +27 -0
  42. figrecipe/_dev/demo_plotters/plot_step.py +27 -0
  43. figrecipe/_dev/demo_plotters/plot_streamplot.py +30 -0
  44. figrecipe/_dev/demo_plotters/plot_tricontour.py +28 -0
  45. figrecipe/_dev/demo_plotters/plot_tricontourf.py +28 -0
  46. figrecipe/_dev/demo_plotters/plot_tripcolor.py +29 -0
  47. figrecipe/_dev/demo_plotters/plot_triplot.py +25 -0
  48. figrecipe/_dev/demo_plotters/plot_violinplot.py +25 -0
  49. figrecipe/_dev/demo_plotters/plot_xcorr.py +25 -0
  50. figrecipe/_editor/__init__.py +230 -0
  51. figrecipe/_editor/_bbox.py +978 -0
  52. figrecipe/_editor/_flask_app.py +1229 -0
  53. figrecipe/_editor/_hitmap.py +937 -0
  54. figrecipe/_editor/_overrides.py +318 -0
  55. figrecipe/_editor/_renderer.py +349 -0
  56. figrecipe/_editor/_templates/__init__.py +75 -0
  57. figrecipe/_editor/_templates/_html.py +406 -0
  58. figrecipe/_editor/_templates/_scripts.py +2778 -0
  59. figrecipe/_editor/_templates/_styles.py +1326 -0
  60. figrecipe/_params/_DECORATION_METHODS.py +27 -0
  61. figrecipe/_params/_PLOTTING_METHODS.py +58 -0
  62. figrecipe/_params/__init__.py +9 -0
  63. figrecipe/_recorder.py +126 -73
  64. figrecipe/_reproducer.py +658 -41
  65. figrecipe/_seaborn.py +14 -9
  66. figrecipe/_serializer.py +2 -2
  67. figrecipe/_signatures/README.md +68 -0
  68. figrecipe/_signatures/__init__.py +12 -2
  69. figrecipe/_signatures/_loader.py +515 -56
  70. figrecipe/_utils/__init__.py +6 -4
  71. figrecipe/_utils/_crop.py +10 -4
  72. figrecipe/_utils/_image_diff.py +37 -33
  73. figrecipe/_utils/_numpy_io.py +0 -1
  74. figrecipe/_utils/_units.py +11 -3
  75. figrecipe/_validator.py +12 -3
  76. figrecipe/_wrappers/_axes.py +860 -46
  77. figrecipe/_wrappers/_figure.py +115 -18
  78. figrecipe/plt.py +0 -1
  79. figrecipe/pyplot.py +2 -1
  80. figrecipe/styles/__init__.py +9 -10
  81. figrecipe/styles/_style_applier.py +332 -28
  82. figrecipe/styles/_style_loader.py +172 -44
  83. figrecipe/styles/presets/MATPLOTLIB.yaml +94 -0
  84. figrecipe/styles/presets/SCITEX.yaml +176 -0
  85. figrecipe-0.6.0.dist-info/METADATA +394 -0
  86. figrecipe-0.6.0.dist-info/RECORD +90 -0
  87. figrecipe-0.5.0.dist-info/METADATA +0 -336
  88. figrecipe-0.5.0.dist-info/RECORD +0 -26
  89. {figrecipe-0.5.0.dist-info → figrecipe-0.6.0.dist-info}/WHEEL +0 -0
  90. {figrecipe-0.5.0.dist-info → figrecipe-0.6.0.dist-info}/licenses/LICENSE +0 -0
figrecipe/_reproducer.py CHANGED
@@ -3,14 +3,13 @@
3
3
  """Reproduce figures from recipe files."""
4
4
 
5
5
  from pathlib import Path
6
- from typing import Any, Dict, List, Optional, Tuple, Union
6
+ from typing import Any, Dict, List, Optional, Union
7
7
 
8
8
  import matplotlib.pyplot as plt
9
9
  import numpy as np
10
10
  from matplotlib.axes import Axes
11
- from matplotlib.figure import Figure
12
11
 
13
- from ._recorder import FigureRecord, CallRecord
12
+ from ._recorder import CallRecord, FigureRecord
14
13
  from ._serializer import load_recipe
15
14
 
16
15
 
@@ -18,32 +17,77 @@ def reproduce(
18
17
  path: Union[str, Path],
19
18
  calls: Optional[List[str]] = None,
20
19
  skip_decorations: bool = False,
21
- ) -> Tuple[Figure, Union[Axes, List[Axes]]]:
20
+ apply_overrides: bool = True,
21
+ ):
22
22
  """Reproduce a figure from a recipe file.
23
23
 
24
24
  Parameters
25
25
  ----------
26
26
  path : str or Path
27
- Path to .yaml recipe file.
27
+ Path to .yaml or .png recipe file. If .png is provided,
28
+ the corresponding .yaml file will be loaded.
28
29
  calls : list of str, optional
29
30
  If provided, only reproduce these specific call IDs.
30
31
  skip_decorations : bool
31
32
  If True, skip decoration calls (labels, legends, etc.).
33
+ apply_overrides : bool
34
+ If True (default), apply .overrides.json if it exists.
35
+ This preserves manual GUI editor changes.
32
36
 
33
37
  Returns
34
38
  -------
35
- fig : matplotlib.figure.Figure
36
- Reproduced figure.
37
- axes : Axes or list of Axes
38
- Reproduced axes (single if 1x1, otherwise list).
39
+ fig : RecordingFigure
40
+ Reproduced figure (same type as subplots() returns).
41
+ axes : RecordingAxes or ndarray of RecordingAxes
42
+ Reproduced axes (single if 1x1, otherwise numpy array).
39
43
 
40
44
  Examples
41
45
  --------
42
46
  >>> import figrecipe as ps
43
47
  >>> fig, ax = ps.reproduce("experiment_001.yaml")
48
+ >>> fig, ax = ps.reproduce("experiment_001.png") # Also works
44
49
  >>> plt.show()
45
50
  """
51
+ path = Path(path)
52
+
53
+ # Accept both .png and .yaml - find the yaml file
54
+ if path.suffix.lower() in (".png", ".jpg", ".jpeg", ".pdf", ".svg"):
55
+ yaml_path = path.with_suffix(".yaml")
56
+ if not yaml_path.exists():
57
+ raise FileNotFoundError(
58
+ f"Recipe file not found: {yaml_path}. "
59
+ f"Expected .yaml file alongside {path}"
60
+ )
61
+ path = yaml_path
62
+
46
63
  record = load_recipe(path)
64
+
65
+ # Check for override file and merge if exists
66
+ if apply_overrides:
67
+ overrides_path = path.with_suffix(".overrides.json")
68
+ if overrides_path.exists():
69
+ import json
70
+
71
+ with open(overrides_path) as f:
72
+ data = json.load(f)
73
+
74
+ # Apply style overrides
75
+ manual_overrides = data.get("manual_overrides", {})
76
+ if manual_overrides:
77
+ # Merge overrides into record style
78
+ if record.style is None:
79
+ record.style = {}
80
+ record.style.update(manual_overrides)
81
+
82
+ # Apply call overrides (kwargs changes from editor)
83
+ call_overrides = data.get("call_overrides", {})
84
+ if call_overrides:
85
+ for ax_key, ax_record in record.axes.items():
86
+ for call in ax_record.calls:
87
+ if call.id in call_overrides:
88
+ # Merge call kwargs overrides
89
+ call.kwargs.update(call_overrides[call.id])
90
+
47
91
  return reproduce_from_record(
48
92
  record,
49
93
  calls=calls,
@@ -55,7 +99,7 @@ def reproduce_from_record(
55
99
  record: FigureRecord,
56
100
  calls: Optional[List[str]] = None,
57
101
  skip_decorations: bool = False,
58
- ) -> Tuple[Figure, Union[Axes, List[Axes]]]:
102
+ ):
59
103
  """Reproduce a figure from a FigureRecord.
60
104
 
61
105
  Parameters
@@ -69,11 +113,14 @@ def reproduce_from_record(
69
113
 
70
114
  Returns
71
115
  -------
72
- fig : matplotlib.figure.Figure
73
- Reproduced figure.
74
- axes : Axes or list of Axes
75
- Reproduced axes.
116
+ fig : RecordingFigure
117
+ Reproduced figure (wrapped).
118
+ axes : RecordingAxes or ndarray of RecordingAxes
119
+ Reproduced axes (wrapped, numpy array for multi-axes).
76
120
  """
121
+ from ._recorder import Recorder
122
+ from ._wrappers import RecordingAxes, RecordingFigure
123
+
77
124
  # Determine grid size from axes positions
78
125
  max_row = 0
79
126
  max_col = 0
@@ -95,8 +142,8 @@ def reproduce_from_record(
95
142
  constrained_layout=record.constrained_layout,
96
143
  )
97
144
 
98
- # Apply layout if recorded
99
- if record.layout is not None:
145
+ # Apply layout if recorded (skip if constrained_layout is used)
146
+ if record.layout is not None and not record.constrained_layout:
100
147
  fig.subplots_adjust(**record.layout)
101
148
 
102
149
  # Ensure axes is 2D array
@@ -113,10 +160,14 @@ def reproduce_from_record(
113
160
  # style is applied during subplots(), then user creates plots/decorations)
114
161
  if record.style is not None:
115
162
  from .styles import apply_style_mm
163
+
116
164
  for row in range(nrows):
117
165
  for col in range(ncols):
118
166
  apply_style_mm(axes_2d[row, col], record.style)
119
167
 
168
+ # Result cache for resolving references (e.g., clabel needs ContourSet from contour)
169
+ result_cache: Dict[str, Any] = {}
170
+
120
171
  # Replay calls on each axes
121
172
  for ax_key, ax_record in record.axes.items():
122
173
  parts = ax_key.split("_")
@@ -131,27 +182,72 @@ def reproduce_from_record(
131
182
  for call in ax_record.calls:
132
183
  if calls is not None and call.id not in calls:
133
184
  continue
134
- _replay_call(ax, call)
185
+ result = _replay_call(ax, call, result_cache)
186
+ if result is not None:
187
+ result_cache[call.id] = result
135
188
 
136
189
  # Replay decorations
137
190
  if not skip_decorations:
138
191
  for call in ax_record.decorations:
139
192
  if calls is not None and call.id not in calls:
140
193
  continue
141
- _replay_call(ax, call)
142
-
143
- # Return in appropriate format
194
+ result = _replay_call(ax, call, result_cache)
195
+ if result is not None:
196
+ result_cache[call.id] = result
197
+
198
+ # Finalize tick configuration (avoids categorical axis interference)
199
+ from .styles._style_applier import finalize_ticks
200
+
201
+ for row in range(nrows):
202
+ for col in range(ncols):
203
+ finalize_ticks(axes_2d[row, col])
204
+
205
+ # Apply figure-level labels if recorded
206
+ if record.suptitle is not None:
207
+ text = record.suptitle.get("text", "")
208
+ kwargs = record.suptitle.get("kwargs", {}).copy()
209
+ # Only add y=1.02 if not using constrained_layout (which handles positioning)
210
+ if "y" not in kwargs and not record.constrained_layout:
211
+ kwargs["y"] = 1.02
212
+ fig.suptitle(text, **kwargs)
213
+
214
+ if record.supxlabel is not None:
215
+ text = record.supxlabel.get("text", "")
216
+ kwargs = record.supxlabel.get("kwargs", {})
217
+ fig.supxlabel(text, **kwargs)
218
+
219
+ if record.supylabel is not None:
220
+ text = record.supylabel.get("text", "")
221
+ kwargs = record.supylabel.get("kwargs", {})
222
+ fig.supylabel(text, **kwargs)
223
+
224
+ # Wrap in Recording types (same as subplots() returns)
225
+ recorder = Recorder()
226
+ recorder._figure_record = record
227
+
228
+ # Wrap axes in RecordingAxes
229
+ wrapped_axes = np.empty((nrows, ncols), dtype=object)
230
+ for i in range(nrows):
231
+ for j in range(ncols):
232
+ wrapped_axes[i, j] = RecordingAxes(axes_2d[i, j], recorder, position=(i, j))
233
+
234
+ # Create RecordingFigure
235
+ wrapped_fig = RecordingFigure(fig, recorder, wrapped_axes.tolist())
236
+
237
+ # Return in appropriate format (matching subplots() behavior)
144
238
  if nrows == 1 and ncols == 1:
145
- return fig, axes_2d[0, 0]
239
+ return wrapped_fig, wrapped_axes[0, 0]
146
240
  elif nrows == 1:
147
- return fig, list(axes_2d[0])
241
+ return wrapped_fig, np.array(wrapped_axes[0], dtype=object)
148
242
  elif ncols == 1:
149
- return fig, list(axes_2d[:, 0])
243
+ return wrapped_fig, np.array(wrapped_axes[:, 0], dtype=object)
150
244
  else:
151
- return fig, axes_2d.tolist()
245
+ return wrapped_fig, wrapped_axes
152
246
 
153
247
 
154
- def _replay_call(ax: Axes, call: CallRecord) -> Any:
248
+ def _replay_call(
249
+ ax: Axes, call: CallRecord, result_cache: Optional[Dict[str, Any]] = None
250
+ ) -> Any:
155
251
  """Replay a single call on an axes.
156
252
 
157
253
  Parameters
@@ -160,18 +256,35 @@ def _replay_call(ax: Axes, call: CallRecord) -> Any:
160
256
  The matplotlib axes.
161
257
  call : CallRecord
162
258
  The call to replay.
259
+ result_cache : dict, optional
260
+ Cache mapping call_id -> result for resolving references.
163
261
 
164
262
  Returns
165
263
  -------
166
264
  Any
167
265
  Result of the matplotlib call.
168
266
  """
267
+ if result_cache is None:
268
+ result_cache = {}
269
+
169
270
  method_name = call.function
170
271
 
171
272
  # Check if it's a seaborn call
172
273
  if method_name.startswith("sns."):
173
274
  return _replay_seaborn_call(ax, call)
174
275
 
276
+ # Handle violinplot with inner option specially
277
+ if method_name == "violinplot":
278
+ return _replay_violinplot_call(ax, call)
279
+
280
+ # Handle joyplot specially (custom method)
281
+ if method_name == "joyplot":
282
+ return _replay_joyplot_call(ax, call)
283
+
284
+ # Handle swarmplot specially (custom method)
285
+ if method_name == "swarmplot":
286
+ return _replay_swarmplot_call(ax, call)
287
+
175
288
  method = getattr(ax, method_name, None)
176
289
 
177
290
  if method is None:
@@ -181,11 +294,22 @@ def _replay_call(ax: Axes, call: CallRecord) -> Any:
181
294
  # Reconstruct args
182
295
  args = []
183
296
  for arg_data in call.args:
184
- value = _reconstruct_value(arg_data)
297
+ value = _reconstruct_value(arg_data, result_cache)
185
298
  args.append(value)
186
299
 
187
- # Get kwargs
188
- kwargs = call.kwargs.copy()
300
+ # Get kwargs and reconstruct arrays
301
+ kwargs = _reconstruct_kwargs(call.kwargs)
302
+
303
+ # Handle special transform markers
304
+ if "transform" in kwargs:
305
+ transform_val = kwargs["transform"]
306
+ if transform_val == "axes":
307
+ kwargs["transform"] = ax.transAxes
308
+ elif transform_val == "data":
309
+ kwargs["transform"] = ax.transData
310
+ elif transform_val == "figure":
311
+ kwargs["transform"] = ax.figure.transFigure
312
+ # If it's already a Transform object or something else, leave it
189
313
 
190
314
  # Call the method
191
315
  try:
@@ -193,10 +317,208 @@ def _replay_call(ax: Axes, call: CallRecord) -> Any:
193
317
  except Exception as e:
194
318
  # Log warning but continue
195
319
  import warnings
320
+
196
321
  warnings.warn(f"Failed to replay {method_name}: {e}")
197
322
  return None
198
323
 
199
324
 
325
+ def _reconstruct_kwargs(kwargs: Dict[str, Any]) -> Dict[str, Any]:
326
+ """Reconstruct kwargs, converting 2D lists back to numpy arrays.
327
+
328
+ Parameters
329
+ ----------
330
+ kwargs : dict
331
+ Raw kwargs from call record.
332
+
333
+ Returns
334
+ -------
335
+ dict
336
+ Kwargs with arrays properly reconstructed.
337
+ """
338
+ result = {}
339
+ for key, value in kwargs.items():
340
+ if isinstance(value, list) and len(value) > 0:
341
+ # Check if it's a 2D list (list of lists) - should be numpy array
342
+ if isinstance(value[0], list):
343
+ result[key] = np.array(value)
344
+ else:
345
+ # 1D list - could be array or just list, try to preserve
346
+ result[key] = value
347
+ else:
348
+ result[key] = value
349
+ return result
350
+
351
+
352
+ def _replay_violinplot_call(ax: Axes, call: CallRecord) -> Any:
353
+ """Replay a violinplot call with inner option support.
354
+
355
+ Parameters
356
+ ----------
357
+ ax : Axes
358
+ The matplotlib axes.
359
+ call : CallRecord
360
+ The violinplot call to replay.
361
+
362
+ Returns
363
+ -------
364
+ Any
365
+ Result of the violinplot call.
366
+ """
367
+ # Reconstruct args
368
+ args = []
369
+ for arg_data in call.args:
370
+ value = _reconstruct_value(arg_data)
371
+ args.append(value)
372
+
373
+ # Get kwargs and reconstruct arrays
374
+ kwargs = _reconstruct_kwargs(call.kwargs)
375
+
376
+ # Extract inner option (not a matplotlib kwarg)
377
+ inner = kwargs.pop("inner", "box")
378
+
379
+ # Get display options
380
+ showmeans = kwargs.pop("showmeans", False)
381
+ showmedians = kwargs.pop("showmedians", True)
382
+ showextrema = kwargs.pop("showextrema", False)
383
+
384
+ # When using inner box/swarm, suppress default median/extrema lines
385
+ if inner in ("box", "swarm"):
386
+ showmedians = False
387
+ showextrema = False
388
+
389
+ # Call matplotlib's violinplot
390
+ try:
391
+ result = ax.violinplot(
392
+ *args,
393
+ showmeans=showmeans,
394
+ showmedians=showmedians,
395
+ showextrema=showextrema,
396
+ **kwargs,
397
+ )
398
+
399
+ # Get style settings for inner display
400
+ from .styles import get_style
401
+
402
+ style = get_style()
403
+ violin_style = style.get("violinplot", {}) if style else {}
404
+
405
+ # Apply alpha from style to violin bodies
406
+ alpha = violin_style.get("alpha", 0.7)
407
+ if "bodies" in result:
408
+ for body in result["bodies"]:
409
+ body.set_alpha(alpha)
410
+
411
+ # Determine positions
412
+ dataset = args[0] if args else []
413
+ positions = kwargs.get("positions")
414
+ if positions is None:
415
+ positions = list(range(1, len(dataset) + 1))
416
+
417
+ # Overlay inner elements based on inner type
418
+ if inner == "box":
419
+ _add_violin_inner_box(ax, dataset, positions, violin_style)
420
+ elif inner == "swarm":
421
+ _add_violin_inner_swarm(ax, dataset, positions, violin_style)
422
+ elif inner == "stick":
423
+ _add_violin_inner_stick(ax, dataset, positions, violin_style)
424
+ elif inner == "point":
425
+ _add_violin_inner_point(ax, dataset, positions, violin_style)
426
+
427
+ return result
428
+ except Exception as e:
429
+ import warnings
430
+
431
+ warnings.warn(f"Failed to replay violinplot: {e}")
432
+ return None
433
+
434
+
435
+ def _add_violin_inner_box(ax: Axes, dataset, positions, style: Dict[str, Any]) -> None:
436
+ """Add box plot inside violin for reproduction."""
437
+ from .styles._style_applier import mm_to_pt
438
+
439
+ whisker_lw = mm_to_pt(style.get("whisker_mm", 0.2))
440
+ median_size = mm_to_pt(style.get("median_mm", 0.8))
441
+
442
+ for data, pos in zip(dataset, positions):
443
+ data = np.asarray(data)
444
+ q1, median, q3 = np.percentile(data, [25, 50, 75])
445
+ iqr = q3 - q1
446
+ whisker_low = max(data.min(), q1 - 1.5 * iqr)
447
+ whisker_high = min(data.max(), q3 + 1.5 * iqr)
448
+
449
+ # Draw box (Q1 to Q3)
450
+ ax.vlines(pos, q1, q3, colors="black", linewidths=whisker_lw, zorder=3)
451
+ # Draw whiskers
452
+ ax.vlines(
453
+ pos, whisker_low, q1, colors="black", linewidths=whisker_lw * 0.5, zorder=3
454
+ )
455
+ ax.vlines(
456
+ pos, q3, whisker_high, colors="black", linewidths=whisker_lw * 0.5, zorder=3
457
+ )
458
+ # Draw median as a white dot with black edge
459
+ ax.scatter(
460
+ [pos],
461
+ [median],
462
+ s=median_size**2,
463
+ c="white",
464
+ edgecolors="black",
465
+ linewidths=whisker_lw,
466
+ zorder=4,
467
+ )
468
+
469
+
470
+ def _add_violin_inner_swarm(
471
+ ax: Axes, dataset, positions, style: Dict[str, Any]
472
+ ) -> None:
473
+ """Add swarm points inside violin for reproduction."""
474
+ from .styles._style_applier import mm_to_pt
475
+
476
+ point_size = mm_to_pt(style.get("median_mm", 0.8))
477
+
478
+ for data, pos in zip(dataset, positions):
479
+ data = np.asarray(data)
480
+ n = len(data)
481
+ jitter = np.random.default_rng(42).uniform(-0.15, 0.15, n)
482
+ x_positions = pos + jitter
483
+ ax.scatter(x_positions, data, s=point_size**2, c="black", alpha=0.5, zorder=3)
484
+
485
+
486
+ def _add_violin_inner_stick(
487
+ ax: Axes, dataset, positions, style: Dict[str, Any]
488
+ ) -> None:
489
+ """Add stick markers inside violin for reproduction."""
490
+ from .styles._style_applier import mm_to_pt
491
+
492
+ lw = mm_to_pt(style.get("whisker_mm", 0.2))
493
+
494
+ for data, pos in zip(dataset, positions):
495
+ data = np.asarray(data)
496
+ for val in data:
497
+ ax.hlines(
498
+ val,
499
+ pos - 0.05,
500
+ pos + 0.05,
501
+ colors="black",
502
+ linewidths=lw * 0.5,
503
+ alpha=0.3,
504
+ zorder=3,
505
+ )
506
+
507
+
508
+ def _add_violin_inner_point(
509
+ ax: Axes, dataset, positions, style: Dict[str, Any]
510
+ ) -> None:
511
+ """Add point markers inside violin for reproduction."""
512
+ from .styles._style_applier import mm_to_pt
513
+
514
+ point_size = mm_to_pt(style.get("median_mm", 0.8)) * 0.5
515
+
516
+ for data, pos in zip(dataset, positions):
517
+ data = np.asarray(data)
518
+ x_positions = np.full_like(data, pos)
519
+ ax.scatter(x_positions, data, s=point_size**2, c="black", alpha=0.3, zorder=3)
520
+
521
+
200
522
  def _replay_seaborn_call(ax: Axes, call: CallRecord) -> Any:
201
523
  """Replay a seaborn call on an axes.
202
524
 
@@ -213,10 +535,11 @@ def _replay_seaborn_call(ax: Axes, call: CallRecord) -> Any:
213
535
  Result of the seaborn call.
214
536
  """
215
537
  try:
216
- import seaborn as sns
217
538
  import pandas as pd
539
+ import seaborn as sns
218
540
  except ImportError:
219
541
  import warnings
542
+
220
543
  warnings.warn("seaborn/pandas required to replay seaborn calls")
221
544
  return None
222
545
 
@@ -226,6 +549,7 @@ def _replay_seaborn_call(ax: Axes, call: CallRecord) -> Any:
226
549
 
227
550
  if func is None:
228
551
  import warnings
552
+
229
553
  warnings.warn(f"Seaborn function {func_name} not found")
230
554
  return None
231
555
 
@@ -276,29 +600,318 @@ def _replay_seaborn_call(ax: Axes, call: CallRecord) -> Any:
276
600
  return func(**kwargs)
277
601
  except Exception as e:
278
602
  import warnings
603
+
279
604
  warnings.warn(f"Failed to replay sns.{func_name}: {e}")
280
605
  return None
281
606
 
282
607
 
283
- def _reconstruct_value(arg_data: Dict[str, Any]) -> Any:
608
+ def _replay_joyplot_call(ax: Axes, call: CallRecord) -> Any:
609
+ """Replay a joyplot call on an axes.
610
+
611
+ Parameters
612
+ ----------
613
+ ax : Axes
614
+ The matplotlib axes.
615
+ call : CallRecord
616
+ The joyplot call to replay.
617
+
618
+ Returns
619
+ -------
620
+ Any
621
+ Result of the joyplot call.
622
+ """
623
+ from scipy import stats
624
+
625
+ # Reconstruct args
626
+ arrays = []
627
+ for arg_data in call.args:
628
+ value = _reconstruct_value(arg_data)
629
+ if isinstance(value, list):
630
+ # Could be a list of arrays
631
+ arrays = [np.asarray(arr) for arr in value]
632
+ else:
633
+ arrays.append(np.asarray(value))
634
+
635
+ if not arrays:
636
+ return None
637
+
638
+ # Get kwargs
639
+ kwargs = _reconstruct_kwargs(call.kwargs)
640
+ overlap = kwargs.get("overlap", 0.5)
641
+ fill_alpha = kwargs.get("fill_alpha", 0.7)
642
+ line_alpha = kwargs.get("line_alpha", 1.0)
643
+ labels = kwargs.get("labels")
644
+
645
+ n_ridges = len(arrays)
646
+
647
+ # Get colors from style
648
+ from .styles import get_style
649
+
650
+ style = get_style()
651
+ if style and "colors" in style and "palette" in style.colors:
652
+ palette = list(style.colors.palette)
653
+ colors = []
654
+ for c in palette:
655
+ if isinstance(c, (list, tuple)) and len(c) >= 3:
656
+ if all(v <= 1.0 for v in c):
657
+ colors.append(tuple(c))
658
+ else:
659
+ colors.append(tuple(v / 255.0 for v in c))
660
+ else:
661
+ colors.append(c)
662
+ else:
663
+ colors = [c["color"] for c in plt.rcParams["axes.prop_cycle"]]
664
+
665
+ # Calculate global x range
666
+ all_data = np.concatenate([np.asarray(arr) for arr in arrays])
667
+ x_min, x_max = np.min(all_data), np.max(all_data)
668
+ x_range = x_max - x_min
669
+ x_padding = x_range * 0.1
670
+ x = np.linspace(x_min - x_padding, x_max + x_padding, 200)
671
+
672
+ # Calculate KDEs and find max density for scaling
673
+ kdes = []
674
+ max_density = 0
675
+ for arr in arrays:
676
+ arr = np.asarray(arr)
677
+ if len(arr) > 1:
678
+ kde = stats.gaussian_kde(arr)
679
+ density = kde(x)
680
+ kdes.append(density)
681
+ max_density = max(max_density, np.max(density))
682
+ else:
683
+ kdes.append(np.zeros_like(x))
684
+
685
+ # Scale factor for ridge height
686
+ ridge_height = 1.0 / (1.0 - overlap * 0.5) if overlap < 1 else 2.0
687
+
688
+ # Get line width from style
689
+ from ._utils._units import mm_to_pt
690
+
691
+ lw = mm_to_pt(0.2) # Default
692
+ if style and "lines" in style:
693
+ lw = mm_to_pt(style.lines.get("trace_mm", 0.2))
694
+
695
+ # Plot each ridge from back to front
696
+ for i in range(n_ridges - 1, -1, -1):
697
+ color = colors[i % len(colors)]
698
+ baseline = i * (1.0 - overlap)
699
+
700
+ # Scale density to fit nicely
701
+ scaled_density = (
702
+ kdes[i] / max_density * ridge_height if max_density > 0 else kdes[i]
703
+ )
704
+
705
+ # Fill
706
+ ax.fill_between(
707
+ x,
708
+ baseline,
709
+ baseline + scaled_density,
710
+ facecolor=color,
711
+ edgecolor="none",
712
+ alpha=fill_alpha,
713
+ )
714
+ # Line on top
715
+ ax.plot(
716
+ x, baseline + scaled_density, color=color, alpha=line_alpha, linewidth=lw
717
+ )
718
+
719
+ # Set y limits
720
+ ax.set_ylim(-0.1, n_ridges * (1.0 - overlap) + ridge_height)
721
+
722
+ # Set y-axis labels if provided
723
+ if labels:
724
+ y_positions = [(i * (1.0 - overlap)) + 0.3 for i in range(n_ridges)]
725
+ ax.set_yticks(y_positions)
726
+ ax.set_yticklabels(labels)
727
+ else:
728
+ ax.set_yticks([])
729
+
730
+ return ax
731
+
732
+
733
+ def _replay_swarmplot_call(ax: Axes, call: CallRecord) -> Any:
734
+ """Replay a swarmplot call on an axes.
735
+
736
+ Parameters
737
+ ----------
738
+ ax : Axes
739
+ The matplotlib axes.
740
+ call : CallRecord
741
+ The swarmplot call to replay.
742
+
743
+ Returns
744
+ -------
745
+ list
746
+ List of PathCollection objects.
747
+ """
748
+ # Reconstruct args
749
+ data = []
750
+ for arg_data in call.args:
751
+ value = _reconstruct_value(arg_data)
752
+ if isinstance(value, list):
753
+ # Could be a list of arrays
754
+ data = [np.asarray(arr) for arr in value]
755
+ else:
756
+ data.append(np.asarray(value))
757
+
758
+ if not data:
759
+ return []
760
+
761
+ # Get kwargs
762
+ kwargs = _reconstruct_kwargs(call.kwargs)
763
+ positions = kwargs.get("positions")
764
+ size = kwargs.get("size", 0.8)
765
+ alpha = kwargs.get("alpha", 0.7)
766
+ jitter = kwargs.get("jitter", 0.3)
767
+
768
+ if positions is None:
769
+ positions = list(range(1, len(data) + 1))
770
+
771
+ # Get style
772
+ from ._utils._units import mm_to_pt
773
+ from .styles import get_style
774
+
775
+ style = get_style()
776
+ size_pt = mm_to_pt(size) ** 2 # matplotlib uses area
777
+
778
+ # Get colors
779
+ if style and "colors" in style and "palette" in style.colors:
780
+ palette = list(style.colors.palette)
781
+ colors = []
782
+ for c in palette:
783
+ if isinstance(c, (list, tuple)) and len(c) >= 3:
784
+ if all(v <= 1.0 for v in c):
785
+ colors.append(tuple(c))
786
+ else:
787
+ colors.append(tuple(v / 255.0 for v in c))
788
+ else:
789
+ colors.append(c)
790
+ else:
791
+ colors = [c["color"] for c in plt.rcParams["axes.prop_cycle"]]
792
+
793
+ # Random generator for reproducible jitter
794
+ rng = np.random.default_rng(42)
795
+
796
+ results = []
797
+ for i, (arr, pos) in enumerate(zip(data, positions)):
798
+ arr = np.asarray(arr)
799
+
800
+ # Create jittered x positions using simplified beeswarm
801
+ x_offsets = _beeswarm_positions(arr, jitter, rng)
802
+ x_positions = pos + x_offsets
803
+
804
+ c = colors[i % len(colors)]
805
+ result = ax.scatter(
806
+ x_positions,
807
+ arr,
808
+ s=size_pt,
809
+ c=[c],
810
+ alpha=alpha,
811
+ )
812
+ results.append(result)
813
+
814
+ return results
815
+
816
+
817
+ def _beeswarm_positions(
818
+ data: np.ndarray,
819
+ width: float,
820
+ rng: np.random.Generator,
821
+ ) -> np.ndarray:
822
+ """Calculate beeswarm-style x positions to minimize overlap.
823
+
824
+ Parameters
825
+ ----------
826
+ data : array
827
+ Y values of points.
828
+ width : float
829
+ Maximum jitter width.
830
+ rng : Generator
831
+ Random number generator.
832
+
833
+ Returns
834
+ -------
835
+ array
836
+ X offsets for each point.
837
+ """
838
+ n = len(data)
839
+ if n == 0:
840
+ return np.array([])
841
+
842
+ # Sort data and get order
843
+ order = np.argsort(data)
844
+ sorted_data = data[order]
845
+
846
+ # Group nearby points and offset them
847
+ x_offsets = np.zeros(n)
848
+
849
+ # Simple approach: bin by quantiles and spread within each bin
850
+ n_bins = max(1, int(np.sqrt(n)))
851
+ bin_edges = np.percentile(sorted_data, np.linspace(0, 100, n_bins + 1))
852
+
853
+ for i in range(n_bins):
854
+ mask = (sorted_data >= bin_edges[i]) & (sorted_data <= bin_edges[i + 1])
855
+ n_in_bin = mask.sum()
856
+ if n_in_bin > 0:
857
+ # Spread points evenly within bin width
858
+ offsets = np.linspace(-width / 2, width / 2, n_in_bin)
859
+ # Add small random noise
860
+ offsets += rng.uniform(-width * 0.1, width * 0.1, n_in_bin)
861
+ x_offsets[mask] = offsets
862
+
863
+ # Restore original order
864
+ result = np.zeros(n)
865
+ result[order] = x_offsets
866
+ return result
867
+
868
+
869
+ def _reconstruct_value(
870
+ arg_data: Dict[str, Any], result_cache: Optional[Dict[str, Any]] = None
871
+ ) -> Any:
284
872
  """Reconstruct a value from serialized arg data.
285
873
 
286
874
  Parameters
287
875
  ----------
288
876
  arg_data : dict
289
877
  Serialized argument data.
878
+ result_cache : dict, optional
879
+ Cache mapping call_id -> result for resolving references.
290
880
 
291
881
  Returns
292
882
  -------
293
883
  Any
294
884
  Reconstructed value.
295
885
  """
886
+ if result_cache is None:
887
+ result_cache = {}
888
+
296
889
  # Check if we have a pre-loaded array
297
890
  if "_loaded_array" in arg_data:
298
891
  return arg_data["_loaded_array"]
299
892
 
300
893
  data = arg_data.get("data")
301
894
 
895
+ # Check if it's a reference to another call's result (e.g., ContourSet for clabel)
896
+ if isinstance(data, dict) and "__ref__" in data:
897
+ ref_id = data["__ref__"]
898
+ if ref_id in result_cache:
899
+ return result_cache[ref_id]
900
+ else:
901
+ import warnings
902
+
903
+ warnings.warn(f"Could not resolve reference to {ref_id}")
904
+ return None
905
+
906
+ # Check if it's a list of arrays (e.g., boxplot, violinplot)
907
+ if arg_data.get("_is_array_list") and isinstance(data, list):
908
+ dtype = arg_data.get("dtype")
909
+ # Convert each inner list to numpy array
910
+ return [
911
+ np.array(arr_data, dtype=dtype if isinstance(dtype, str) else None)
912
+ for arr_data in data
913
+ ]
914
+
302
915
  # If data is a list, convert to numpy array
303
916
  if isinstance(data, list):
304
917
  dtype = arg_data.get("dtype")
@@ -334,18 +947,22 @@ def get_recipe_info(path: Union[str, Path]) -> Dict[str, Any]:
334
947
  all_calls = []
335
948
  for ax_record in record.axes.values():
336
949
  for call in ax_record.calls:
337
- all_calls.append({
338
- "id": call.id,
339
- "function": call.function,
340
- "n_args": len(call.args),
341
- "kwargs": list(call.kwargs.keys()),
342
- })
950
+ all_calls.append(
951
+ {
952
+ "id": call.id,
953
+ "function": call.function,
954
+ "n_args": len(call.args),
955
+ "kwargs": list(call.kwargs.keys()),
956
+ }
957
+ )
343
958
  for call in ax_record.decorations:
344
- all_calls.append({
345
- "id": call.id,
346
- "function": call.function,
347
- "type": "decoration",
348
- })
959
+ all_calls.append(
960
+ {
961
+ "id": call.id,
962
+ "function": call.function,
963
+ "type": "decoration",
964
+ }
965
+ )
349
966
 
350
967
  return {
351
968
  "id": record.id,