ferromic 0.1.2__cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of ferromic might be problematic. Click here for more details.
ferromic/__init__.py
ADDED
|
Binary file
|
|
@@ -0,0 +1,366 @@
|
|
|
1
|
+
Metadata-Version: 2.4
|
|
2
|
+
Name: ferromic
|
|
3
|
+
Version: 0.1.2
|
|
4
|
+
Classifier: Development Status :: 4 - Beta
|
|
5
|
+
Classifier: Intended Audience :: Science/Research
|
|
6
|
+
Classifier: License :: Other/Proprietary License
|
|
7
|
+
Classifier: Programming Language :: Python
|
|
8
|
+
Classifier: Programming Language :: Python :: 3
|
|
9
|
+
Classifier: Programming Language :: Rust
|
|
10
|
+
Classifier: Topic :: Scientific/Engineering :: Bio-Informatics
|
|
11
|
+
Requires-Dist: numpy>=1.23
|
|
12
|
+
Requires-Dist: pytest ; extra == 'test'
|
|
13
|
+
Requires-Dist: numpy ; extra == 'test'
|
|
14
|
+
Requires-Dist: scikit-allel ; extra == 'test'
|
|
15
|
+
Requires-Dist: scipy ; extra == 'test'
|
|
16
|
+
Requires-Dist: pytest-benchmark ; extra == 'test'
|
|
17
|
+
Requires-Dist: patchelf ; platform_system == 'Linux' and extra == 'test'
|
|
18
|
+
Provides-Extra: test
|
|
19
|
+
License-File: LICENSE.md
|
|
20
|
+
Summary: Rust-accelerated population genetics toolkit with ergonomic Python bindings
|
|
21
|
+
Keywords: population-genetics,bioinformatics,rust,pyo3,numpy
|
|
22
|
+
Home-Page: https://github.com/SauersML/ferromic
|
|
23
|
+
Author: SauersML
|
|
24
|
+
Requires-Python: >=3.9
|
|
25
|
+
Description-Content-Type: text/markdown; charset=UTF-8; variant=GFM
|
|
26
|
+
|
|
27
|
+
# Ferromic
|
|
28
|
+
|
|
29
|
+
A Rust-based tool for population genetic analysis that calculates diversity statistics from VCF files, with support for haplotype-group-specific analyses and genomic regions.
|
|
30
|
+
|
|
31
|
+
## Overview
|
|
32
|
+
|
|
33
|
+
Ferromic processes genomic variant data from VCF files to calculate key population genetic statistics. It can analyze diversity metrics separately for different haplotype groups (0 and 1) as defined in a configuration file, making it particularly useful for analyzing regions with structural variants or any other genomic features where haplotypes can be classified into distinct groups.
|
|
34
|
+
|
|
35
|
+
## Features
|
|
36
|
+
|
|
37
|
+
- Efficient VCF processing using multi-threaded parallelization
|
|
38
|
+
- Calculate key population genetic statistics:
|
|
39
|
+
- Nucleotide diversity (π)
|
|
40
|
+
- Watterson's theta (θ)
|
|
41
|
+
- Segregating sites counts
|
|
42
|
+
- Allele frequencies
|
|
43
|
+
- Apply various filtering strategies:
|
|
44
|
+
- Genotype quality (GQ) thresholds
|
|
45
|
+
- Genomic masks (exclude regions)
|
|
46
|
+
- Allowed regions (include only)
|
|
47
|
+
- Multi-allelic site handling
|
|
48
|
+
- Missing data management
|
|
49
|
+
- Extract coding sequences (CDS) from genomic regions using GTF annotations
|
|
50
|
+
- Generate PHYLIP format sequence files for phylogenetic analysis
|
|
51
|
+
- Create per-site diversity statistics for fine-grained analysis
|
|
52
|
+
- Support both individual region analysis and batch processing via configuration files
|
|
53
|
+
|
|
54
|
+
## Python bindings
|
|
55
|
+
|
|
56
|
+
Ferromic's Rust core is exposed to Python through [PyO3](https://pyo3.rs) and
|
|
57
|
+
is distributed as a binary wheel on PyPI. Installing the extension pulls in the
|
|
58
|
+
compiled Rust library together with its runtime dependency on NumPy:
|
|
59
|
+
|
|
60
|
+
```bash
|
|
61
|
+
pip install ferromic
|
|
62
|
+
```
|
|
63
|
+
|
|
64
|
+
Once installed, the `ferromic` module mirrors the high-level statistics API of
|
|
65
|
+
the Rust crate. The example below shows how to construct an in-memory
|
|
66
|
+
population, compute basic diversity statistics, and run a principal component
|
|
67
|
+
analysis directly from Python:
|
|
68
|
+
|
|
69
|
+
```python
|
|
70
|
+
import numpy as np
|
|
71
|
+
import ferromic as fm
|
|
72
|
+
|
|
73
|
+
genotypes = np.array([
|
|
74
|
+
[[0, 0], [0, 1], [1, 1]],
|
|
75
|
+
[[0, 1], [0, 0], [1, 1]],
|
|
76
|
+
], dtype=np.uint8)
|
|
77
|
+
|
|
78
|
+
population = fm.Population.from_numpy(
|
|
79
|
+
"demo",
|
|
80
|
+
genotypes=genotypes,
|
|
81
|
+
positions=[101, 202], # plain Python sequences are accepted
|
|
82
|
+
haplotypes=[(0, 0), (0, 1), (1, 0), (1, 1), (2, 0), (2, 1)],
|
|
83
|
+
sequence_length=1000,
|
|
84
|
+
sample_names=["sampleA", "sampleB", "sampleC"],
|
|
85
|
+
)
|
|
86
|
+
|
|
87
|
+
print(f"Ferromic version: {fm.__version__}")
|
|
88
|
+
print("Segregating sites:", population.segregating_sites())
|
|
89
|
+
print("Nucleotide diversity:", population.nucleotide_diversity())
|
|
90
|
+
|
|
91
|
+
pca = fm.chromosome_pca(
|
|
92
|
+
variants=[
|
|
93
|
+
{"position": 101, "genotypes": [[0, 0], [0, 1], [1, 1]]},
|
|
94
|
+
{"position": 202, "genotypes": [[0, 1], [0, 0], [1, 1]]},
|
|
95
|
+
],
|
|
96
|
+
sample_names=["sampleA", "sampleB", "sampleC"],
|
|
97
|
+
)
|
|
98
|
+
|
|
99
|
+
print("PCA components shape:", pca.coordinates.shape)
|
|
100
|
+
```
|
|
101
|
+
|
|
102
|
+
Additional helpers for Hudson FST, Weir & Cockerham FST, sequence length
|
|
103
|
+
adjustment, and inversion allele frequency are available under the top-level
|
|
104
|
+
`ferromic` namespace. Consult `src/pytests` for further end-to-end examples
|
|
105
|
+
and integration tests.
|
|
106
|
+
|
|
107
|
+
## Usage
|
|
108
|
+
|
|
109
|
+
```
|
|
110
|
+
cargo run --release --bin run_vcf -- [OPTIONS]
|
|
111
|
+
```
|
|
112
|
+
|
|
113
|
+
### Required Arguments
|
|
114
|
+
|
|
115
|
+
- `--vcf_folder <FOLDER>`: Directory containing VCF files
|
|
116
|
+
- `--reference <PATH>`: Path to reference genome FASTA file
|
|
117
|
+
- `--gtf <PATH>`: Path to GTF annotation file
|
|
118
|
+
|
|
119
|
+
### Optional Arguments
|
|
120
|
+
|
|
121
|
+
- `--chr <CHROMOSOME>`: Process a specific chromosome
|
|
122
|
+
- `--region <START-END>`: Process a specific region (1-based coordinates)
|
|
123
|
+
- `--config_file <FILE>`: Configuration file for batch processing multiple regions
|
|
124
|
+
- `--output_file <FILE>`: Output file path (default: output.csv)
|
|
125
|
+
- `--min_gq <INT>`: Minimum genotype quality threshold (default: 30)
|
|
126
|
+
- `--mask_file <FILE>`: BED file of regions to exclude
|
|
127
|
+
- `--allow_file <FILE>`: BED file of regions to include
|
|
128
|
+
- `--pca`: Perform principal component analysis on filtered haplotypes (writes per-chromosome TSV files under `pca_per_chr_outputs/`)
|
|
129
|
+
- `--pca_components <INT>`: Number of principal components to compute (default: 10)
|
|
130
|
+
- `--pca_output <FILE>`: Desired filename for the combined PCA summary table produced by Ferromic's PCA utilities (default: `pca_results.tsv`)
|
|
131
|
+
- `--fst`: Enable haplotype FST calculations (required for Weir & Cockerham and Hudson outputs)
|
|
132
|
+
- `--fst_populations <FILE>`: Optional CSV (population name followed by comma-separated sample IDs) describing named populations for additional FST comparisons
|
|
133
|
+
|
|
134
|
+
## Example Command
|
|
135
|
+
|
|
136
|
+
```
|
|
137
|
+
cargo run --release --bin run_vcf -- \
|
|
138
|
+
--vcf_folder ../vcfs \
|
|
139
|
+
--config_file ../variants.tsv \
|
|
140
|
+
--mask_file ../hardmask.bed \
|
|
141
|
+
--reference ../hg38.no_alt.fa \
|
|
142
|
+
--gtf ../hg38.knownGene.gtf
|
|
143
|
+
```
|
|
144
|
+
|
|
145
|
+
## Coordinate Systems
|
|
146
|
+
|
|
147
|
+
Ferromic handles different coordinate systems:
|
|
148
|
+
- VCF files: 1-based coordinates
|
|
149
|
+
- BED mask/allow files: 0-based, half-open intervals
|
|
150
|
+
- TSV config files: 1-based, inclusive coordinates
|
|
151
|
+
- GTF files: 1-based, inclusive coordinates
|
|
152
|
+
|
|
153
|
+
## Configuration File Format
|
|
154
|
+
|
|
155
|
+
The configuration file must be tab-delimited. Ferromic expects the header to begin with seven metadata columns followed by one column per sample:
|
|
156
|
+
|
|
157
|
+
1. `seqnames`: Chromosome (with or without "chr" prefix)
|
|
158
|
+
2. `start`: Region start position (1-based, inclusive)
|
|
159
|
+
3. `end`: Region end position (1-based, inclusive)
|
|
160
|
+
4. `POS`: Representative variant position within the region (retained for bookkeeping)
|
|
161
|
+
5. `orig_ID`: Region identifier
|
|
162
|
+
6. `verdict`: Manual/automated review verdict
|
|
163
|
+
7. `categ`: Category label for the region
|
|
164
|
+
|
|
165
|
+
Columns eight onward must be sample names. Each cell in these sample columns stores a genotype string such as `"0|0"`, `"0|1"`, `"1|0"`, or `"1|1"` that assigns both haplotypes to group 0 or group 1.
|
|
166
|
+
|
|
167
|
+
Where:
|
|
168
|
+
- "0" and "1" represent the two haplotype groups to be analyzed separately
|
|
169
|
+
- The "|" character indicates the phase separation between left and right haplotypes
|
|
170
|
+
- Genotypes with special formats (e.g., "0|1_lowconf") are included in unfiltered analyses but excluded from filtered analyses
|
|
171
|
+
|
|
172
|
+
## Output Files
|
|
173
|
+
|
|
174
|
+
### Main CSV Output
|
|
175
|
+
|
|
176
|
+
Contains summary statistics for each region with columns:
|
|
177
|
+
```
|
|
178
|
+
chr,region_start,region_end,0_sequence_length,1_sequence_length,
|
|
179
|
+
0_sequence_length_adjusted,1_sequence_length_adjusted,
|
|
180
|
+
0_segregating_sites,1_segregating_sites,0_w_theta,1_w_theta,
|
|
181
|
+
0_pi,1_pi,0_segregating_sites_filtered,1_segregating_sites_filtered,
|
|
182
|
+
0_w_theta_filtered,1_w_theta_filtered,0_pi_filtered,1_pi_filtered,
|
|
183
|
+
0_num_hap_no_filter,1_num_hap_no_filter,0_num_hap_filter,1_num_hap_filter,
|
|
184
|
+
inversion_freq_no_filter,inversion_freq_filter,
|
|
185
|
+
haplotype_overall_fst_wc,haplotype_between_pop_variance_wc,
|
|
186
|
+
haplotype_within_pop_variance_wc,haplotype_num_informative_sites_wc,
|
|
187
|
+
hudson_fst_hap_group_0v1,hudson_dxy_hap_group_0v1,
|
|
188
|
+
hudson_pi_hap_group_0,hudson_pi_hap_group_1,hudson_pi_avg_hap_group_0v1
|
|
189
|
+
```
|
|
190
|
+
|
|
191
|
+
Where:
|
|
192
|
+
- Values prefixed with "0_" are statistics for haplotype group 0
|
|
193
|
+
- Values prefixed with "1_" are statistics for haplotype group 1
|
|
194
|
+
- "sequence_length" is the raw length of the region
|
|
195
|
+
- "sequence_length_adjusted" accounts for masked regions
|
|
196
|
+
- "num_hap" columns indicate the number of haplotypes in each group
|
|
197
|
+
- Statistics with "_filtered" are calculated from strictly filtered data
|
|
198
|
+
- Columns prefixed with `haplotype_` contain Weir & Cockerham FST outputs; they are
|
|
199
|
+
populated when haplotype FST analysis is enabled and `NA` when insufficient data
|
|
200
|
+
are available
|
|
201
|
+
- Columns prefixed with `hudson_` summarise Hudson-style FST components for the
|
|
202
|
+
haplotype 0 vs. 1 comparison and are likewise `NA` when FST statistics cannot be
|
|
203
|
+
computed
|
|
204
|
+
|
|
205
|
+
### Per-site FASTA-style outputs
|
|
206
|
+
|
|
207
|
+
Two FASTA-like files are produced in the working directory to capture
|
|
208
|
+
position-specific metrics:
|
|
209
|
+
|
|
210
|
+
- `per_site_diversity_output.falsta` – per-haplotype π and θ values. Each record is
|
|
211
|
+
emitted with a FASTA-style header such as
|
|
212
|
+
`>filtered_pi_chr_X_start_Y_end_Z_group_0` followed by a comma-separated vector of
|
|
213
|
+
site-wise values (one entry per base in the region). `NA` marks positions without
|
|
214
|
+
data and `0` marks zero-valued statistics.
|
|
215
|
+
- `per_site_fst_output.falsta` – per-site summaries for Weir & Cockerham and Hudson
|
|
216
|
+
FST. Headers identify the statistic (overall FST, pairwise 0 vs 1, or Hudson
|
|
217
|
+
haplotype FST) and the associated region, with comma-separated values mirroring the
|
|
218
|
+
region length.
|
|
219
|
+
|
|
220
|
+
Both files encode positions implicitly by index: the first entry corresponds to the
|
|
221
|
+
region start (1-based), the second to start + 1, and so on.
|
|
222
|
+
|
|
223
|
+
### Hudson FST TSV (optional)
|
|
224
|
+
|
|
225
|
+
When run with `--fst`, Ferromic writes `hudson_fst_results.tsv` alongside the main
|
|
226
|
+
CSV. The TSV header is: `chr`, `region_start_0based`, `region_end_0based`,
|
|
227
|
+
`pop1_id_type`, `pop1_id_name`, `pop2_id_type`, `pop2_id_name`, `Dxy`, `pi_pop1`,
|
|
228
|
+
`pi_pop2`, `pi_xy_avg`, `FST`. Region coordinates are 0-based inclusive and the
|
|
229
|
+
population columns capture the identifier type (haplotype group or named
|
|
230
|
+
population) alongside the label for each comparison.
|
|
231
|
+
|
|
232
|
+
### PHYLIP Files
|
|
233
|
+
|
|
234
|
+
Generated for each transcript that overlaps with the query region:
|
|
235
|
+
- File naming: `group_{0/1}_{transcript_id}_chr_{chromosome}_start_{start}_end_{end}_combined.phy`
|
|
236
|
+
- Contains aligned sequences (based on the reference genome with variants applied)
|
|
237
|
+
- Sample names in the PHYLIP files are constructed from sample names with "_L" or "_R" suffixes to indicate left or right haplotypes
|
|
238
|
+
|
|
239
|
+
## Implementation Details
|
|
240
|
+
|
|
241
|
+
- For PHYLIP files, if a CDS region overlaps with the query region (even partially), the entire transcript's coding sequence is included
|
|
242
|
+
- For diversity statistics (π and θ), only variants strictly within the region boundaries are used
|
|
243
|
+
- Different filtering approaches:
|
|
244
|
+
- Unfiltered: Includes all valid genotypes, regardless of quality or exact format
|
|
245
|
+
- Filtered: Excludes low-quality variants, masked regions, and non-standard genotypes
|
|
246
|
+
- Sequence length is adjusted for masked regions when calculating diversity statistics
|
|
247
|
+
- Multi-threading is implemented via Rayon for efficient processing
|
|
248
|
+
- Missing data is properly accounted for in diversity calculations
|
|
249
|
+
- Special values in results:
|
|
250
|
+
- θ = 0: No segregating sites (no genetic variation)
|
|
251
|
+
- θ = Infinity: Insufficient haplotypes or zero sequence length
|
|
252
|
+
- π = 0: No nucleotide differences (genetic uniformity)
|
|
253
|
+
- π = Infinity: Insufficient data
|
|
254
|
+
|
|
255
|
+
## Python bindings with PyO3
|
|
256
|
+
|
|
257
|
+
Ferromic now ships with a rich, Python-first API powered by
|
|
258
|
+
[PyO3](https://pyo3.rs/). You can compute the same high-performance statistics
|
|
259
|
+
that drive the Rust binaries directly from notebooks or scripts using familiar
|
|
260
|
+
Python data structures.
|
|
261
|
+
|
|
262
|
+
### Building the extension module
|
|
263
|
+
|
|
264
|
+
1. Install Python 3.8+ and the [maturin](https://github.com/PyO3/maturin) build tool
|
|
265
|
+
(include the optional `patchelf` dependency on Linux to enable rpath fixing):
|
|
266
|
+
```bash
|
|
267
|
+
python -m pip install "maturin[patchelf]"
|
|
268
|
+
```
|
|
269
|
+
2. Compile and install the extension into your active virtual environment:
|
|
270
|
+
```bash
|
|
271
|
+
maturin develop --release
|
|
272
|
+
```
|
|
273
|
+
The command compiles the `ferromic` shared library and makes it importable from Python. To
|
|
274
|
+
target a specific interpreter (for example, one provided by Conda), pass
|
|
275
|
+
`--python /path/to/python` or set the `PYO3_PYTHON` environment variable before invoking
|
|
276
|
+
`maturin`.
|
|
277
|
+
|
|
278
|
+
After `maturin develop` completes successfully, you can import the module with `import ferromic`
|
|
279
|
+
inside Python.
|
|
280
|
+
|
|
281
|
+
### Ergonomic Python API
|
|
282
|
+
|
|
283
|
+
All functions accept plain Python collections. Variants can be dictionaries,
|
|
284
|
+
dataclasses, namedtuples or any object exposing a ``position`` attribute and a
|
|
285
|
+
``genotypes`` iterable (with allele integers or ``None``). Haplotype entries are
|
|
286
|
+
interpreted from tuples like ``(sample_index, "L")`` or ``(sample_index, 1)``.
|
|
287
|
+
|
|
288
|
+
| Function or class | Description |
|
|
289
|
+
| --- | --- |
|
|
290
|
+
| `ferromic.segregating_sites(variants)` | Count polymorphic sites. |
|
|
291
|
+
| `ferromic.nucleotide_diversity(variants, haplotypes, sequence_length)` | Compute π (nucleotide diversity). |
|
|
292
|
+
| `ferromic.watterson_theta(segregating_sites, sample_count, sequence_length)` | Watterson's θ estimator. |
|
|
293
|
+
| `ferromic.pairwise_differences(variants, sample_count)` | List of `PairwiseDifference` objects containing counts for every sample pair. |
|
|
294
|
+
| `ferromic.per_site_diversity(variants, haplotypes, region=None)` | Per-position π and θ as `DiversitySite` objects. |
|
|
295
|
+
| `ferromic.Population` | Reusable container for Hudson-style statistics. Pass either a haplotype group (0/1) or a custom label. |
|
|
296
|
+
| `ferromic.hudson_dxy(pop1, pop2)` | Between-population nucleotide diversity. |
|
|
297
|
+
| `ferromic.hudson_fst(pop1, pop2)` | Hudson FST with rich metadata. |
|
|
298
|
+
| `ferromic.hudson_fst_sites(pop1, pop2, region)` | Per-site Hudson components across a region. |
|
|
299
|
+
| `ferromic.hudson_fst_with_sites(pop1, pop2, region)` | Tuple ``(HudsonFstResult, [HudsonFstSite, ...])``. |
|
|
300
|
+
| `ferromic.wc_fst(variants, sample_names, sample_to_group, region)` | Weir & Cockerham FST with pairwise and per-site summaries. |
|
|
301
|
+
| `ferromic.wc_fst_components(fst_estimate)` | Extract `(value, sum_a, sum_b, sites)` from any `FstEstimate`. |
|
|
302
|
+
| `ferromic.chromosome_pca(variants, sample_names, n_components=10)` | Run PCA for a single chromosome and return a `ChromosomePcaResult`. |
|
|
303
|
+
| `ferromic.chromosome_pca_to_file(variants, sample_names, chromosome, output_dir, n_components=10)` | Convenience helper that writes a TSV with PCA coordinates for one chromosome. |
|
|
304
|
+
| `ferromic.per_chromosome_pca(variants_by_chromosome, sample_names, output_dir, n_components=10)` | Batch PCA analysis across chromosomes, emitting one TSV per chromosome. |
|
|
305
|
+
| `ferromic.global_pca(variants_by_chromosome, sample_names, output_dir, n_components=10)` | Memory-efficient pipeline that runs per-chromosome PCA and produces a combined summary table. |
|
|
306
|
+
| `ferromic.ChromosomePcaResult` | Light-weight container exposing `haplotype_labels`, `coordinates`, and `positions`. |
|
|
307
|
+
| `ferromic.adjusted_sequence_length(start, end, allow=None, mask=None)` | Apply BED-style masks to a region length. |
|
|
308
|
+
| `ferromic.inversion_allele_frequency(sample_map)` | Frequency of allele ``1`` across haplotypes. |
|
|
309
|
+
|
|
310
|
+
Every result type is a tiny Python class with descriptive attributes and a
|
|
311
|
+
readable ``repr`` making it pleasant to explore interactively.
|
|
312
|
+
|
|
313
|
+
### End-to-end example
|
|
314
|
+
|
|
315
|
+
```python
|
|
316
|
+
from dataclasses import dataclass
|
|
317
|
+
|
|
318
|
+
import ferromic
|
|
319
|
+
|
|
320
|
+
|
|
321
|
+
@dataclass
|
|
322
|
+
class Variant:
|
|
323
|
+
# Positions are zero-based and inclusive to match Ferromic's internal representation.
|
|
324
|
+
position: int
|
|
325
|
+
genotypes: list
|
|
326
|
+
|
|
327
|
+
|
|
328
|
+
variants = [
|
|
329
|
+
Variant(position=999, genotypes=[(0, 0), (0, 1), None]),
|
|
330
|
+
Variant(position=1_009, genotypes=[(0, 0), (0, 0), (1, 1)]),
|
|
331
|
+
]
|
|
332
|
+
|
|
333
|
+
haplotypes = [(0, "L"), (0, "R"), (1, 0), (1, 1), (2, "L")]
|
|
334
|
+
|
|
335
|
+
pi = ferromic.nucleotide_diversity(variants, haplotypes, sequence_length=100)
|
|
336
|
+
theta = ferromic.watterson_theta(ferromic.segregating_sites(variants), len(haplotypes), 100)
|
|
337
|
+
|
|
338
|
+
group0 = ferromic.Population(0, variants, haplotypes, sequence_length=100)
|
|
339
|
+
group1 = ferromic.Population("inversion", variants, haplotypes, sequence_length=100)
|
|
340
|
+
|
|
341
|
+
hudson = ferromic.hudson_fst(group0, group1)
|
|
342
|
+
sites = ferromic.hudson_fst_sites(group0, group1, region=(990, 1_020))
|
|
343
|
+
|
|
344
|
+
wc = ferromic.wc_fst(
|
|
345
|
+
variants,
|
|
346
|
+
sample_names=["S0", "S1", "S2"],
|
|
347
|
+
sample_to_group={"S0": (0, 0), "S1": (0, 1), "S2": (1, 1)},
|
|
348
|
+
region=(990, 1_020),
|
|
349
|
+
)
|
|
350
|
+
|
|
351
|
+
pca_result = ferromic.chromosome_pca(variants, ["S0", "S1", "S2"], n_components=3)
|
|
352
|
+
ferromic.chromosome_pca_to_file(variants, ["S0", "S1", "S2"], "2L", "./pca_outputs")
|
|
353
|
+
|
|
354
|
+
print(f"π={pi:.6f}, θ={theta:.6f}")
|
|
355
|
+
print(hudson)
|
|
356
|
+
print(sites[0])
|
|
357
|
+
print(wc.overall_fst)
|
|
358
|
+
print(pca_result.coordinates[0][:3])
|
|
359
|
+
```
|
|
360
|
+
|
|
361
|
+
The example demonstrates how the Python API mirrors Ferromic's Rust types while
|
|
362
|
+
remaining easy to use from high-level workflows. Variants and haplotypes can be
|
|
363
|
+
assembled from pandas data frames, NumPy arrays, or plain Python lists—Ferromic
|
|
364
|
+
only inspects the fields it needs.
|
|
365
|
+
|
|
366
|
+
|
|
@@ -0,0 +1,6 @@
|
|
|
1
|
+
ferromic-0.1.2.dist-info/METADATA,sha256=VRWo8M4ok3Sf5W_T2hnqaBnoGIQElmX4iMWhIhI-c8k,16759
|
|
2
|
+
ferromic-0.1.2.dist-info/WHEEL,sha256=ZJd3FIFRX6O029IHMP-_l9xXBeZL7q-nGfVGoJNvYMw,131
|
|
3
|
+
ferromic-0.1.2.dist-info/licenses/LICENSE.md,sha256=ZUhjdsYcsoc7ZisJORA4kRd2t3eKONA_vPDeIqiRNFY,169
|
|
4
|
+
ferromic/__init__.py,sha256=aNX1Ggsg2XdYFZ-hNIAQzCzjz7dGwk9BCdmrwwYZKh0,115
|
|
5
|
+
ferromic/ferromic.cpython-311-powerpc64le-linux-gnu.so,sha256=wnLWsvTmW2IPIkaucqIF62y0fM57inHpHkyyyxAhYAU,2299456
|
|
6
|
+
ferromic-0.1.2.dist-info/RECORD,,
|