featrixsphere 0.2.6127__py3-none-any.whl → 0.2.6708__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
featrixsphere/__init__.py CHANGED
@@ -57,7 +57,7 @@ TWO API OPTIONS:
57
57
  >>> print(result['prediction'])
58
58
  """
59
59
 
60
- __version__ = "0.2.6127"
60
+ __version__ = "0.2.6708"
61
61
  __author__ = "Featrix"
62
62
  __email__ = "support@featrix.com"
63
63
  __license__ = "MIT"
@@ -566,6 +566,28 @@ class FoundationalModel:
566
566
 
567
567
  return self._ctx.get_json(f"/session/{self.id}/projections")
568
568
 
569
+ def get_sphere_preview(self, save_path: str = None) -> bytes:
570
+ """
571
+ Get the 2D sphere projection preview image (PNG).
572
+
573
+ Args:
574
+ save_path: Optional path to save the PNG file. If provided, the image
575
+ will be written to this path.
576
+
577
+ Returns:
578
+ Raw PNG image bytes.
579
+ """
580
+ if not self._ctx:
581
+ raise ValueError("FoundationalModel not connected to client")
582
+
583
+ png_bytes = self._ctx.get_bytes(f"/session/{self.id}/preview")
584
+
585
+ if save_path:
586
+ with open(save_path, 'wb') as f:
587
+ f.write(png_bytes)
588
+
589
+ return png_bytes
590
+
569
591
  def get_training_metrics(self) -> Dict[str, Any]:
570
592
  """Get training metrics and history."""
571
593
  if not self._ctx:
@@ -640,6 +662,272 @@ class FoundationalModel:
640
662
  cleaned[key] = value
641
663
  return cleaned
642
664
 
665
+ def get_columns(self) -> List[str]:
666
+ """
667
+ Get the column names in this foundational model's embedding space.
668
+
669
+ Returns:
670
+ List of column name strings
671
+
672
+ Example:
673
+ columns = fm.get_columns()
674
+ print(columns) # ['age', 'income', 'city', ...]
675
+ """
676
+ if not self._ctx:
677
+ raise ValueError("FoundationalModel not connected to client")
678
+
679
+ response = self._ctx.get_json(f"/compute/session/{self.id}/columns")
680
+ return response.get('columns', [])
681
+
682
+ @property
683
+ def columns(self) -> List[str]:
684
+ """Column names in this foundational model's embedding space."""
685
+ return self.get_columns()
686
+
687
+ def clone(
688
+ self,
689
+ target_compute_cluster: Optional[str] = None,
690
+ new_name: Optional[str] = None,
691
+ source_compute_cluster: Optional[str] = None,
692
+ ) -> 'FoundationalModel':
693
+ """
694
+ Clone this embedding space, optionally to a different compute node.
695
+
696
+ Args:
697
+ target_compute_cluster: Target compute cluster (None = same node)
698
+ new_name: Name for the cloned session
699
+ source_compute_cluster: Source compute cluster (if routing needed)
700
+
701
+ Returns:
702
+ New FoundationalModel instance for the cloned embedding space
703
+
704
+ Example:
705
+ cloned = fm.clone(
706
+ target_compute_cluster="churro",
707
+ new_name="my-model-clone"
708
+ )
709
+ """
710
+ if not self._ctx:
711
+ raise ValueError("FoundationalModel not connected to client")
712
+
713
+ data = {
714
+ "to_compute": target_compute_cluster,
715
+ "new_session_name": new_name,
716
+ }
717
+
718
+ response = self._ctx.post_json(
719
+ f"/compute/session/{self.id}/clone_embedding_space",
720
+ data=data
721
+ )
722
+
723
+ new_session_id = response.get('new_session_id', '')
724
+ return FoundationalModel(
725
+ id=new_session_id,
726
+ name=new_name,
727
+ status="done",
728
+ created_at=datetime.now(),
729
+ _ctx=self._ctx,
730
+ )
731
+
732
+ def refresh(self) -> Dict[str, Any]:
733
+ """
734
+ Refresh this foundational model's state from the server.
735
+
736
+ Returns the full server-side info for this model, and updates
737
+ local attributes (status, epochs, dimensions, etc.).
738
+
739
+ Returns:
740
+ Full model info dictionary from the server
741
+
742
+ Example:
743
+ info = fm.refresh()
744
+ print(fm.status) # Updated from server
745
+ print(fm.epochs) # Updated from server
746
+ """
747
+ if not self._ctx:
748
+ raise ValueError("FoundationalModel not connected to client")
749
+
750
+ data = self._ctx.get_json(f"/compute/session/{self.id}")
751
+ self._update_from_session(data)
752
+ self.status = data.get('status', self.status)
753
+ return data
754
+
755
+ def is_ready(self) -> bool:
756
+ """
757
+ Check if this foundational model has finished training and is ready for use.
758
+
759
+ Returns:
760
+ True if training is complete, False otherwise
761
+
762
+ Example:
763
+ if fm.is_ready():
764
+ predictor = fm.create_classifier(target_column="target")
765
+ """
766
+ if not self._ctx:
767
+ raise ValueError("FoundationalModel not connected to client")
768
+
769
+ data = self._ctx.get_json(f"/compute/session/{self.id}")
770
+ status = data.get('status', 'unknown')
771
+ self.status = status
772
+ return status == 'done'
773
+
774
+ def publish(
775
+ self,
776
+ org_id: str,
777
+ name: Optional[str] = None,
778
+ ) -> Dict[str, Any]:
779
+ """
780
+ Publish this foundational model to the production directory.
781
+
782
+ Published models are protected from garbage collection and available
783
+ across all compute nodes via the shared backplane.
784
+
785
+ Args:
786
+ org_id: Organization ID for directory organization
787
+ name: Name for the published model (defaults to self.name)
788
+
789
+ Returns:
790
+ dict with published_path, output_path, and status
791
+
792
+ Example:
793
+ fm = featrix.create_foundational_model(name="my_model", csv_file="data.csv")
794
+ fm.wait_for_training()
795
+ fm.publish(org_id="my_org", name="my_model_v1")
796
+ """
797
+ if not self._ctx:
798
+ raise ValueError("FoundationalModel not connected to client")
799
+
800
+ publish_name = name or self.name
801
+ if not publish_name:
802
+ raise ValueError("name is required (either pass it or set it on the model)")
803
+
804
+ data = {
805
+ "org_id": org_id,
806
+ "name": publish_name,
807
+ }
808
+ return self._ctx.post_json(f"/compute/session/{self.id}/publish", data=data)
809
+
810
+ def deprecate(
811
+ self,
812
+ warning_message: str,
813
+ expiration_date: str,
814
+ ) -> Dict[str, Any]:
815
+ """
816
+ Deprecate this published model with a warning and expiration date.
817
+
818
+ The model remains available until the expiration date. Prediction
819
+ responses will include a model_expiration field warning consumers.
820
+
821
+ Args:
822
+ warning_message: Warning message to display
823
+ expiration_date: ISO format date string (e.g., "2026-06-01T00:00:00Z")
824
+
825
+ Returns:
826
+ dict with deprecation status
827
+
828
+ Example:
829
+ from datetime import datetime, timedelta
830
+ expiration = (datetime.now() + timedelta(days=90)).isoformat() + "Z"
831
+ fm.deprecate(
832
+ warning_message="Replaced by v2. Migrate by expiration.",
833
+ expiration_date=expiration
834
+ )
835
+ """
836
+ if not self._ctx:
837
+ raise ValueError("FoundationalModel not connected to client")
838
+
839
+ data = {
840
+ "warning_message": warning_message,
841
+ "expiration_date": expiration_date,
842
+ }
843
+ return self._ctx.post_json(f"/compute/session/{self.id}/deprecate", data=data)
844
+
845
+ def unpublish(self) -> Dict[str, Any]:
846
+ """
847
+ Unpublish this model, moving it back from the published directory.
848
+
849
+ WARNING: After unpublishing, the model is subject to garbage
850
+ collection and may be deleted when disk space is low.
851
+
852
+ Returns:
853
+ dict with unpublish status
854
+
855
+ Example:
856
+ fm.unpublish()
857
+ """
858
+ if not self._ctx:
859
+ raise ValueError("FoundationalModel not connected to client")
860
+
861
+ return self._ctx.post_json(f"/compute/session/{self.id}/unpublish", data={})
862
+
863
+ def publish_checkpoint(
864
+ self,
865
+ name: str,
866
+ org_id: Optional[str] = None,
867
+ checkpoint_epoch: Optional[int] = None,
868
+ session_name_prefix: Optional[str] = None,
869
+ publish: bool = True,
870
+ ) -> 'FoundationalModel':
871
+ """
872
+ Publish a checkpoint from this model's training as a new foundation model.
873
+
874
+ Creates a NEW FoundationalModel from a training checkpoint with full
875
+ provenance tracking. Useful for snapshotting good intermediate models
876
+ while training continues.
877
+
878
+ Args:
879
+ name: Name for the new foundation model (required)
880
+ org_id: Organization ID (required if publish=True)
881
+ checkpoint_epoch: Which epoch checkpoint to use (None = best/latest)
882
+ session_name_prefix: Optional prefix for the new session ID
883
+ publish: Move to published directory (default: True)
884
+
885
+ Returns:
886
+ New FoundationalModel instance for the published checkpoint
887
+
888
+ Example:
889
+ # Snapshot epoch 50 while training continues
890
+ checkpoint_fm = fm.publish_checkpoint(
891
+ name="My Model v0.5",
892
+ org_id="my_org",
893
+ checkpoint_epoch=50
894
+ )
895
+ # Use immediately
896
+ predictor = checkpoint_fm.create_classifier(target_column="target")
897
+ """
898
+ if not self._ctx:
899
+ raise ValueError("FoundationalModel not connected to client")
900
+
901
+ if publish and not org_id:
902
+ raise ValueError("org_id is required when publish=True")
903
+
904
+ data = {
905
+ "name": name,
906
+ "publish": publish,
907
+ }
908
+ if checkpoint_epoch is not None:
909
+ data["checkpoint_epoch"] = checkpoint_epoch
910
+ if session_name_prefix:
911
+ data["session_name_prefix"] = session_name_prefix
912
+ if org_id:
913
+ data["org_id"] = org_id
914
+
915
+ response = self._ctx.post_json(
916
+ f"/compute/session/{self.id}/publish_partial_foundation",
917
+ data=data
918
+ )
919
+
920
+ new_fm = FoundationalModel(
921
+ id=response.get("foundation_session_id", ""),
922
+ name=name,
923
+ status="done",
924
+ epochs=response.get("checkpoint_epoch"),
925
+ created_at=datetime.now(),
926
+ _ctx=self._ctx,
927
+ )
928
+
929
+ return new_fm
930
+
643
931
  def to_dict(self) -> Dict[str, Any]:
644
932
  """Convert to dictionary representation."""
645
933
  return {
@@ -121,14 +121,34 @@ class HTTPClientMixin:
121
121
 
122
122
  def _unwrap_response(self, response_json: Dict[str, Any]) -> Dict[str, Any]:
123
123
  """
124
- Unwrap server response, handling the 'response' wrapper if present.
124
+ Unwrap server response, handling wrapper formats.
125
125
 
126
- The server sometimes wraps responses in {"response": {...}}.
126
+ The server may wrap responses as:
127
+ - {"response": {...}}
128
+ - {"_meta": {...}, "data": {...}}
129
+
130
+ Captures server metadata when present.
127
131
  """
128
- if isinstance(response_json, dict) and 'response' in response_json and len(response_json) == 1:
129
- return response_json['response']
132
+ if isinstance(response_json, dict):
133
+ # Handle _meta/data wrapper (captures server metadata)
134
+ if '_meta' in response_json and 'data' in response_json:
135
+ self._last_server_metadata = response_json['_meta']
136
+ return response_json['data']
137
+ # Handle response wrapper
138
+ if 'response' in response_json and len(response_json) == 1:
139
+ return response_json['response']
130
140
  return response_json
131
141
 
142
+ @property
143
+ def last_server_metadata(self) -> Optional[Dict[str, Any]]:
144
+ """
145
+ Metadata from the most recent server response.
146
+
147
+ Contains server info like compute_cluster_time, compute_cluster,
148
+ compute_cluster_version, etc.
149
+ """
150
+ return getattr(self, '_last_server_metadata', None)
151
+
132
152
  def _get_json(
133
153
  self,
134
154
  endpoint: str,
@@ -139,6 +159,16 @@ class HTTPClientMixin:
139
159
  response = self._make_request("GET", endpoint, max_retries=max_retries, **kwargs)
140
160
  return self._unwrap_response(response.json())
141
161
 
162
+ def _get_bytes(
163
+ self,
164
+ endpoint: str,
165
+ max_retries: Optional[int] = None,
166
+ **kwargs
167
+ ) -> bytes:
168
+ """Make a GET request and return raw bytes (for binary content like images)."""
169
+ response = self._make_request("GET", endpoint, max_retries=max_retries, **kwargs)
170
+ return response.content
171
+
142
172
  def _post_json(
143
173
  self,
144
174
  endpoint: str,
@@ -207,3 +237,6 @@ class ClientContext:
207
237
  def post_multipart(self, endpoint: str, data: Dict[str, Any] = None,
208
238
  files: Dict[str, Any] = None, **kwargs) -> Dict[str, Any]:
209
239
  return self._client._post_multipart(endpoint, data, files, **kwargs)
240
+
241
+ def get_bytes(self, endpoint: str, **kwargs) -> bytes:
242
+ return self._client._get_bytes(endpoint, **kwargs)
@@ -23,11 +23,16 @@ class PredictionResult:
23
23
  prediction: Raw prediction result (class probabilities or numeric value)
24
24
  predicted_class: Predicted class name (for classification)
25
25
  confidence: Confidence score (for classification)
26
+ probabilities: Full probability distribution (for classification)
27
+ threshold: Classification threshold (for binary classification)
26
28
  query_record: Original input record
27
29
  predictor_id: ID of predictor that made this prediction
28
30
  session_id: Session ID (internal)
29
31
  timestamp: When prediction was made
30
32
  target_column: Target column name
33
+ guardrails: Per-column guardrail warnings (if any)
34
+ ignored_query_columns: Columns in input that were not used (not in training data)
35
+ available_query_columns: All columns the model knows about
31
36
 
32
37
  Usage:
33
38
  result = predictor.predict({"age": 35, "income": 50000})
@@ -35,6 +40,14 @@ class PredictionResult:
35
40
  print(result.confidence) # 0.87
36
41
  print(result.prediction_uuid) # UUID for feedback
37
42
 
43
+ # Check for guardrail warnings
44
+ if result.guardrails:
45
+ print(f"Warnings: {len(result.guardrails)} columns with issues")
46
+
47
+ # Check for ignored columns
48
+ if result.ignored_query_columns:
49
+ print(f"Ignored: {result.ignored_query_columns}")
50
+
38
51
  # Send feedback if prediction was wrong
39
52
  if result.predicted_class != actual_label:
40
53
  feedback = result.send_feedback(ground_truth=actual_label)
@@ -44,14 +57,52 @@ class PredictionResult:
44
57
  prediction_uuid: Optional[str] = None
45
58
  prediction: Optional[Union[Dict[str, float], float]] = None
46
59
  predicted_class: Optional[str] = None
60
+ probability: Optional[float] = None
47
61
  confidence: Optional[float] = None
62
+ probabilities: Optional[Dict[str, float]] = None
63
+ threshold: Optional[float] = None
48
64
  query_record: Optional[Dict[str, Any]] = None
65
+
66
+ # Documentation fields - explain what prediction/probability/confidence mean
67
+ readme_prediction: str = field(default="The predicted class label (for classification) or value (for regression).")
68
+ readme_probability: str = field(default="Raw probability of the predicted class from the model's softmax output.")
69
+ readme_confidence: str = field(default=(
70
+ "For binary classification: normalized margin from threshold. "
71
+ "confidence = (prob - threshold) / (1 - threshold) if predicting positive, "
72
+ "or (threshold - prob) / threshold if predicting negative. "
73
+ "Ranges from 0 (at decision boundary) to 1 (maximally certain). "
74
+ "For multi-class: same as probability."
75
+ ))
76
+ readme_threshold: str = field(default=(
77
+ "Decision boundary for binary classification. "
78
+ "If P(positive_class) >= threshold, predict positive; otherwise predict negative. "
79
+ "Calibrated to optimize F1 score on validation data."
80
+ ))
81
+ readme_probabilities: str = field(default=(
82
+ "Full probability distribution across all classes from the model's softmax output. "
83
+ "Dictionary mapping class labels to their probabilities (sum to 1.0)."
84
+ ))
85
+ readme_pos_label: str = field(default=(
86
+ "The class label considered 'positive' for binary classification metrics. "
87
+ "Threshold and confidence calculations are relative to this class."
88
+ ))
49
89
  predictor_id: Optional[str] = None
50
90
  session_id: Optional[str] = None
51
91
  target_column: Optional[str] = None
52
92
  timestamp: Optional[datetime] = None
53
93
  model_version: Optional[str] = None
54
94
 
95
+ # Checkpoint info from the model (epoch, metric_type, metric_value)
96
+ checkpoint_info: Optional[Dict[str, Any]] = None
97
+
98
+ # Guardrails and warnings
99
+ guardrails: Optional[Dict[str, Any]] = None
100
+ ignored_query_columns: Optional[list] = None
101
+ available_query_columns: Optional[list] = None
102
+
103
+ # Feature importance (from leave-one-out ablation)
104
+ feature_importance: Optional[Dict[str, float]] = None
105
+
55
106
  # Internal: client context for sending feedback
56
107
  _ctx: Optional['ClientContext'] = field(default=None, repr=False)
57
108
 
@@ -73,29 +124,44 @@ class PredictionResult:
73
124
  Returns:
74
125
  PredictionResult instance
75
126
  """
76
- # Extract prediction data
127
+ # Extract prediction data - handle both formats
128
+ # New format: prediction is the class label, probabilities is separate
129
+ # Old format: prediction is the probabilities dict
77
130
  prediction = response.get('prediction')
78
- predicted_class = None
79
- confidence = None
80
-
81
- # For classification, extract class and confidence
82
- if isinstance(prediction, dict):
83
- # Find the class with highest probability
131
+ probabilities = response.get('probabilities')
132
+ predicted_class = response.get('predicted_class')
133
+ probability = response.get('probability')
134
+ confidence = response.get('confidence')
135
+
136
+ # For old format where prediction is the probabilities dict
137
+ if isinstance(prediction, dict) and not probabilities:
138
+ probabilities = prediction
84
139
  if prediction:
85
140
  predicted_class = max(prediction.keys(), key=lambda k: prediction[k])
86
- confidence = prediction[predicted_class]
141
+ probability = prediction[predicted_class]
142
+ confidence = probability # Old format: confidence = probability
143
+ elif isinstance(prediction, str) and not predicted_class:
144
+ # New format: prediction is already the class label
145
+ predicted_class = prediction
87
146
 
88
147
  return cls(
89
148
  prediction_uuid=response.get('prediction_uuid') or response.get('prediction_id'),
90
149
  prediction=prediction,
91
150
  predicted_class=predicted_class,
151
+ probability=probability,
92
152
  confidence=confidence,
153
+ probabilities=probabilities,
154
+ threshold=response.get('threshold'),
93
155
  query_record=query_record,
94
156
  predictor_id=response.get('predictor_id'),
95
157
  session_id=response.get('session_id'),
96
158
  target_column=response.get('target_column'),
97
159
  timestamp=datetime.now(),
98
160
  model_version=response.get('model_version'),
161
+ checkpoint_info=response.get('checkpoint_info'),
162
+ guardrails=response.get('guardrails'),
163
+ ignored_query_columns=response.get('ignored_query_columns'),
164
+ available_query_columns=response.get('available_query_columns'),
99
165
  _ctx=ctx,
100
166
  )
101
167
 
@@ -126,18 +192,41 @@ class PredictionResult:
126
192
 
127
193
  def to_dict(self) -> Dict[str, Any]:
128
194
  """Convert to dictionary representation."""
129
- return {
195
+ result = {
130
196
  'prediction_uuid': self.prediction_uuid,
131
197
  'prediction': self.prediction,
132
198
  'predicted_class': self.predicted_class,
199
+ 'probability': self.probability,
133
200
  'confidence': self.confidence,
201
+ 'probabilities': self.probabilities,
202
+ 'threshold': self.threshold,
134
203
  'query_record': self.query_record,
135
204
  'predictor_id': self.predictor_id,
136
205
  'session_id': self.session_id,
137
206
  'target_column': self.target_column,
138
207
  'timestamp': self.timestamp.isoformat() if self.timestamp else None,
139
208
  'model_version': self.model_version,
209
+ # Documentation
210
+ 'readme_prediction': self.readme_prediction,
211
+ 'readme_probability': self.readme_probability,
212
+ 'readme_confidence': self.readme_confidence,
213
+ 'readme_threshold': self.readme_threshold,
214
+ 'readme_probabilities': self.readme_probabilities,
215
+ 'readme_pos_label': self.readme_pos_label,
140
216
  }
217
+ # Include checkpoint_info if present
218
+ if self.checkpoint_info:
219
+ result['checkpoint_info'] = self.checkpoint_info
220
+ # Include guardrails if present
221
+ if self.guardrails:
222
+ result['guardrails'] = self.guardrails
223
+ if self.ignored_query_columns:
224
+ result['ignored_query_columns'] = self.ignored_query_columns
225
+ if self.available_query_columns:
226
+ result['available_query_columns'] = self.available_query_columns
227
+ if self.feature_importance:
228
+ result['feature_importance'] = self.feature_importance
229
+ return result
141
230
 
142
231
 
143
232
  @dataclass
@@ -105,7 +105,8 @@ class Predictor:
105
105
  def predict(
106
106
  self,
107
107
  record: Dict[str, Any],
108
- best_metric_preference: Optional[str] = None
108
+ best_metric_preference: Optional[str] = None,
109
+ feature_importance: bool = False
109
110
  ) -> PredictionResult:
110
111
  """
111
112
  Make a single prediction.
@@ -113,15 +114,21 @@ class Predictor:
113
114
  Args:
114
115
  record: Input record dictionary
115
116
  best_metric_preference: Metric checkpoint to use ("roc_auc", "pr_auc", or None)
117
+ feature_importance: If True, compute feature importance via leave-one-out ablation
116
118
 
117
119
  Returns:
118
- PredictionResult with prediction, confidence, and prediction_uuid
120
+ PredictionResult with prediction, confidence, and prediction_uuid.
121
+ If feature_importance=True, also includes feature_importance dict.
119
122
 
120
123
  Example:
121
124
  result = predictor.predict({"age": 35, "income": 50000})
122
125
  print(result.predicted_class) # "churned"
123
126
  print(result.confidence) # 0.87
124
127
  print(result.prediction_uuid) # UUID for feedback
128
+
129
+ # With feature importance
130
+ result = predictor.predict(record, feature_importance=True)
131
+ print(result.feature_importance) # {"income": 0.15, "age": 0.08, ...}
125
132
  """
126
133
  if not self._ctx:
127
134
  raise ValueError("Predictor not connected to client")
@@ -129,7 +136,44 @@ class Predictor:
129
136
  # Clean the record
130
137
  cleaned_record = self._clean_record(record)
131
138
 
132
- # Build request
139
+ if feature_importance:
140
+ # Build N+1 records: original + each feature nulled out
141
+ columns = list(cleaned_record.keys())
142
+ batch = [cleaned_record] # Original first
143
+
144
+ for col in columns:
145
+ ablated = cleaned_record.copy()
146
+ ablated[col] = None
147
+ batch.append(ablated)
148
+
149
+ # Single batch call
150
+ results = self.batch_predict(
151
+ batch,
152
+ show_progress=False,
153
+ best_metric_preference=best_metric_preference
154
+ )
155
+
156
+ # Compare: importance = |original_confidence - ablated_confidence|
157
+ original = results[0]
158
+ importance = {}
159
+ original_conf = original.confidence or 0.0
160
+
161
+ for i, col in enumerate(columns):
162
+ ablated_result = results[i + 1]
163
+ ablated_conf = ablated_result.confidence or 0.0
164
+ # Higher delta = more important
165
+ delta = abs(original_conf - ablated_conf)
166
+ importance[col] = round(delta, 4)
167
+
168
+ # Sort by importance (highest first)
169
+ original.feature_importance = dict(sorted(
170
+ importance.items(),
171
+ key=lambda x: x[1],
172
+ reverse=True
173
+ ))
174
+ return original
175
+
176
+ # Standard single prediction
133
177
  request_payload = {
134
178
  "query_record": cleaned_record,
135
179
  "predictor_id": self.id,
@@ -196,6 +240,36 @@ class Predictor:
196
240
 
197
241
  return results
198
242
 
243
+ def predict_csv_file(
244
+ self,
245
+ csv_path: str,
246
+ show_progress: bool = True,
247
+ best_metric_preference: Optional[str] = None
248
+ ) -> List[PredictionResult]:
249
+ """
250
+ Load a CSV file and run batch predictions on all rows.
251
+
252
+ Args:
253
+ csv_path: Path to the CSV file
254
+ show_progress: Show progress bar
255
+ best_metric_preference: Metric checkpoint to use
256
+
257
+ Returns:
258
+ List of PredictionResult objects
259
+
260
+ Example:
261
+ results = predictor.predict_csv_file("test_data.csv")
262
+ for r in results:
263
+ print(r.predicted_class, r.confidence)
264
+ """
265
+ import pandas as pd
266
+ df = pd.read_csv(csv_path)
267
+ return self.batch_predict(
268
+ df,
269
+ show_progress=show_progress,
270
+ best_metric_preference=best_metric_preference
271
+ )
272
+
199
273
  def explain(
200
274
  self,
201
275
  record: Dict[str, Any],
featrixsphere/client.py CHANGED
@@ -137,22 +137,24 @@ class SessionInfo:
137
137
  class PredictionBatch:
138
138
  """
139
139
  Cached prediction batch that allows instant lookups after initial batch processing.
140
-
140
+
141
141
  Usage:
142
142
  # First run - populate cache
143
143
  batch = client.predict_batch(session_id, records)
144
-
144
+
145
145
  # Second run - instant cache lookups
146
146
  for i in values1:
147
147
  for j in values2:
148
148
  record = {"param1": i, "param2": j}
149
149
  result = batch.predict(record) # Instant!
150
150
  """
151
-
152
- def __init__(self, session_id: str, client: 'FeatrixSphereClient', target_column: str = None):
151
+
152
+ def __init__(self, session_id: str, client: 'FeatrixSphereClient', target_column: str = None,
153
+ best_metric_preference: str = None):
153
154
  self.session_id = session_id
154
155
  self.client = client
155
156
  self.target_column = target_column
157
+ self.best_metric_preference = best_metric_preference
156
158
  self._cache = {} # record_hash -> prediction_result
157
159
  self._stats = {'hits': 0, 'misses': 0, 'populated': 0}
158
160
 
@@ -203,14 +205,15 @@ class PredictionBatch:
203
205
  """Populate the cache with batch predictions."""
204
206
  if not records:
205
207
  return {'summary': {'total_records': 0, 'successful': 0, 'failed': 0}}
206
-
208
+
207
209
  print(f"🚀 Creating prediction batch for {len(records)} records...")
208
-
210
+
209
211
  # Use existing batch prediction system
210
212
  batch_results = self.client.predict_records(
211
213
  session_id=self.session_id,
212
214
  records=records,
213
215
  target_column=self.target_column,
216
+ best_metric_preference=self.best_metric_preference,
214
217
  show_progress_bar=True
215
218
  )
216
219
 
@@ -2927,24 +2930,26 @@ class FeatrixSphereClient:
2927
2930
  # Single Predictor Functionality
2928
2931
  # =========================================================================
2929
2932
 
2930
- def predict(self, session_id: str, record: Dict[str, Any], target_column: str = None,
2933
+ def predict(self, session_id: str, record: Dict[str, Any], target_column: str = None,
2931
2934
  predictor_id: str = None, best_metric_preference: str = None,
2932
- max_retries: int = None, queue_batches: bool = False) -> Dict[str, Any]:
2935
+ checkpoint_epoch: int = None, max_retries: int = None,
2936
+ queue_batches: bool = False) -> Dict[str, Any]:
2933
2937
  """
2934
2938
  Make a single prediction for a record.
2935
-
2939
+
2936
2940
  Args:
2937
2941
  session_id: ID of session with trained predictor
2938
2942
  record: Record dictionary (without target column)
2939
2943
  target_column: Specific target column predictor to use (required if multiple predictors exist and predictor_id not specified)
2940
2944
  predictor_id: Specific predictor ID to use (recommended - more precise than target_column)
2941
2945
  best_metric_preference: Which metric checkpoint to use: "roc_auc", "pr_auc", or None (use default checkpoint) (default: None)
2946
+ checkpoint_epoch: Specific epoch checkpoint to use (e.g., 65 for epoch 65). Overrides best_metric_preference.
2942
2947
  max_retries: Number of retries for errors (default: uses client default)
2943
2948
  queue_batches: If True, queue this prediction for batch processing instead of immediate API call
2944
-
2949
+
2945
2950
  Returns:
2946
2951
  Prediction result dictionary if queue_batches=False, or queue ID if queue_batches=True
2947
-
2952
+
2948
2953
  Note:
2949
2954
  predictor_id is recommended over target_column for precision. If both are provided, predictor_id takes precedence.
2950
2955
  Use client.list_predictors(session_id) to see available predictor IDs.
@@ -2955,29 +2960,31 @@ class FeatrixSphereClient:
2955
2960
  if should_warn:
2956
2961
  call_count = len(self._prediction_call_times.get(session_id, []))
2957
2962
  self._show_batching_warning(session_id, call_count)
2958
-
2963
+
2959
2964
  # If queueing is enabled, add to queue and return queue ID
2960
2965
  if queue_batches:
2961
2966
  queue_id = self._add_to_prediction_queue(session_id, record, target_column, predictor_id)
2962
2967
  return {"queued": True, "queue_id": queue_id}
2963
-
2964
- # Clean NaN/Inf values
2968
+
2969
+ # Clean NaN/Inf values
2965
2970
  cleaned_record = self._clean_numpy_values(record)
2966
2971
  cleaned_record = self.replace_nans_with_nulls(cleaned_record)
2967
-
2972
+
2968
2973
  # Build request payload - let the server handle predictor resolution
2969
2974
  request_payload = {
2970
2975
  "query_record": cleaned_record,
2971
2976
  }
2972
-
2977
+
2973
2978
  # Include whatever the caller provided - server will figure it out
2974
2979
  if target_column:
2975
2980
  request_payload["target_column"] = target_column
2976
2981
  if predictor_id:
2977
2982
  request_payload["predictor_id"] = predictor_id
2978
- if best_metric_preference:
2983
+ if checkpoint_epoch is not None:
2984
+ request_payload["checkpoint_epoch"] = checkpoint_epoch
2985
+ elif best_metric_preference:
2979
2986
  request_payload["best_metric_preference"] = best_metric_preference
2980
-
2987
+
2981
2988
  # Just send it to the server - it has all the smart fallback logic
2982
2989
  response_data = self._post_json(f"/session/{session_id}/predict", request_payload, max_retries=max_retries)
2983
2990
  return response_data
@@ -6648,8 +6655,8 @@ class FeatrixSphereClient:
6648
6655
 
6649
6656
  def predict_table(self, session_id: str, table_data: Dict[str, Any],
6650
6657
  target_column: str = None, predictor_id: str = None,
6651
- best_metric_preference: str = None, max_retries: int = None,
6652
- trace: bool = False) -> Dict[str, Any]:
6658
+ best_metric_preference: str = None, checkpoint_epoch: int = None,
6659
+ max_retries: int = None, trace: bool = False) -> Dict[str, Any]:
6653
6660
  """
6654
6661
  Make batch predictions using JSON Tables format.
6655
6662
 
@@ -6658,6 +6665,8 @@ class FeatrixSphereClient:
6658
6665
  table_data: Data in JSON Tables format, or list of records, or dict with 'table'/'records'
6659
6666
  target_column: Specific target column predictor to use (required if multiple predictors exist)
6660
6667
  predictor_id: Specific predictor ID to use (recommended - more precise than target_column)
6668
+ best_metric_preference: Which metric checkpoint to use: "roc_auc", "pr_auc", or None (default)
6669
+ checkpoint_epoch: Specific epoch checkpoint to use (e.g., 65). Overrides best_metric_preference.
6661
6670
  max_retries: Number of retries for errors (default: uses client default, recommend higher for batch)
6662
6671
  trace: Enable detailed debug logging (default: False)
6663
6672
 
@@ -6710,7 +6719,9 @@ class FeatrixSphereClient:
6710
6719
  table_data['target_column'] = target_column
6711
6720
  if predictor_id:
6712
6721
  table_data['predictor_id'] = predictor_id
6713
- if best_metric_preference:
6722
+ if checkpoint_epoch is not None:
6723
+ table_data['checkpoint_epoch'] = checkpoint_epoch
6724
+ elif best_metric_preference:
6714
6725
  table_data['best_metric_preference'] = best_metric_preference
6715
6726
 
6716
6727
  if trace:
@@ -6744,7 +6755,8 @@ class FeatrixSphereClient:
6744
6755
  raise
6745
6756
 
6746
6757
  def predict_records(self, session_id: str, records: List[Dict[str, Any]],
6747
- target_column: str = None, predictor_id: str = None, best_metric_preference: str = None,
6758
+ target_column: str = None, predictor_id: str = None,
6759
+ best_metric_preference: str = None, checkpoint_epoch: int = None,
6748
6760
  batch_size: int = 2500, use_async: bool = False,
6749
6761
  show_progress_bar: bool = True, print_target_column_warning: bool = True,
6750
6762
  trace: bool = False) -> Dict[str, Any]:
@@ -6756,6 +6768,8 @@ class FeatrixSphereClient:
6756
6768
  records: List of record dictionaries
6757
6769
  target_column: Specific target column predictor to use (required if multiple predictors exist and predictor_id not specified)
6758
6770
  predictor_id: Specific predictor ID to use (recommended - more precise than target_column)
6771
+ best_metric_preference: Which metric checkpoint to use: "roc_auc", "pr_auc", or None (default)
6772
+ checkpoint_epoch: Specific epoch checkpoint to use (e.g., 65). Overrides best_metric_preference.
6759
6773
  batch_size: Number of records to send per API call (default: 2500)
6760
6774
  use_async: Force async processing for large datasets (default: False - async disabled due to pickle issues)
6761
6775
  show_progress_bar: Whether to show progress bar for async jobs (default: True)
@@ -7744,23 +7758,25 @@ class FeatrixSphereClient:
7744
7758
  else:
7745
7759
  return data
7746
7760
 
7747
- def predict_csv_file(self, session_id: str, file_path: Path) -> Dict[str, Any]:
7761
+ def predict_csv_file(self, session_id: str, file_path: Path,
7762
+ best_metric_preference: str = None) -> Dict[str, Any]:
7748
7763
  """
7749
7764
  Make batch predictions on a CSV file.
7750
-
7765
+
7751
7766
  Args:
7752
7767
  session_id: ID of session with trained predictor
7753
7768
  file_path: Path to CSV file
7754
-
7769
+ best_metric_preference: Which metric checkpoint to use: "roc_auc", "pr_auc", or None (default)
7770
+
7755
7771
  Returns:
7756
7772
  Batch prediction results
7757
7773
  """
7758
7774
  import pandas as pd
7759
7775
  from jsontables import JSONTablesEncoder
7760
-
7776
+
7761
7777
  if not file_path.exists():
7762
7778
  raise FileNotFoundError(f"File not found: {file_path}")
7763
-
7779
+
7764
7780
  # Support CSV, Parquet, JSON, and JSONL files
7765
7781
  file_path_str = str(file_path).lower()
7766
7782
  if file_path_str.endswith('.parquet'):
@@ -7779,29 +7795,31 @@ class FeatrixSphereClient:
7779
7795
  df = pd.read_json(file_path)
7780
7796
  else:
7781
7797
  df = pd.read_csv(file_path)
7782
-
7798
+
7783
7799
  # Convert to JSON Tables format and clean NaNs
7784
7800
  table_data = JSONTablesEncoder.from_dataframe(df)
7785
7801
  cleaned_table_data = self.replace_nans_with_nulls(table_data)
7786
-
7787
- return self.predict_table(session_id, cleaned_table_data)
7788
7802
 
7789
- def run_predictions(self, session_id: str, records: List[Dict[str, Any]]) -> Dict[str, Any]:
7803
+ return self.predict_table(session_id, cleaned_table_data, best_metric_preference=best_metric_preference)
7804
+
7805
+ def run_predictions(self, session_id: str, records: List[Dict[str, Any]],
7806
+ best_metric_preference: str = None) -> Dict[str, Any]:
7790
7807
  """
7791
7808
  Run predictions on provided records. Clean and fast for production use.
7792
-
7809
+
7793
7810
  Args:
7794
7811
  session_id: ID of session with trained predictor
7795
7812
  records: List of record dictionaries
7796
-
7813
+ best_metric_preference: Which metric checkpoint to use: "roc_auc", "pr_auc", or None (default)
7814
+
7797
7815
  Returns:
7798
7816
  Dictionary with prediction results
7799
7817
  """
7800
7818
  # Clean NaNs for JSON encoding
7801
7819
  cleaned_records = self.replace_nans_with_nulls(records)
7802
-
7820
+
7803
7821
  # Make batch predictions
7804
- batch_results = self.predict_records(session_id, cleaned_records)
7822
+ batch_results = self.predict_records(session_id, cleaned_records, best_metric_preference=best_metric_preference)
7805
7823
  predictions = batch_results['predictions']
7806
7824
 
7807
7825
  # Process predictions into clean format
@@ -8517,32 +8535,33 @@ class FeatrixSphereClient:
8517
8535
 
8518
8536
  return cleared_counts
8519
8537
 
8520
- def predict_batch(self, session_id: str, records: List[Dict[str, Any]],
8521
- target_column: str = None) -> PredictionBatch:
8538
+ def predict_batch(self, session_id: str, records: List[Dict[str, Any]],
8539
+ target_column: str = None, best_metric_preference: str = None) -> PredictionBatch:
8522
8540
  """
8523
8541
  Create a prediction batch for instant cached lookups.
8524
-
8542
+
8525
8543
  Perfect for parameter sweeps, grid searches, and exploring prediction surfaces.
8526
8544
  Run your loops twice with identical code - first populates cache, second gets instant results.
8527
-
8545
+
8528
8546
  Args:
8529
8547
  session_id: ID of session with trained predictor
8530
8548
  records: List of all records you'll want to predict on
8531
8549
  target_column: Specific target column predictor to use
8532
-
8550
+ best_metric_preference: Which metric checkpoint to use: "roc_auc", "pr_auc", or None (default)
8551
+
8533
8552
  Returns:
8534
8553
  PredictionBatch object with instant predict() method
8535
-
8554
+
8536
8555
  Example:
8537
8556
  # Generate all combinations you'll need
8538
8557
  records = []
8539
8558
  for i in range(10):
8540
8559
  for j in range(10):
8541
8560
  records.append({"param1": i, "param2": j})
8542
-
8561
+
8543
8562
  # First run - populate cache with batch processing
8544
8563
  batch = client.predict_batch(session_id, records)
8545
-
8564
+
8546
8565
  # Second run - same loops but instant cache lookups
8547
8566
  results = []
8548
8567
  for i in range(10):
@@ -8552,50 +8571,52 @@ class FeatrixSphereClient:
8552
8571
  results.append(result)
8553
8572
  """
8554
8573
  # Create batch object
8555
- batch = PredictionBatch(session_id, self, target_column)
8556
-
8574
+ batch = PredictionBatch(session_id, self, target_column, best_metric_preference)
8575
+
8557
8576
  # Populate cache with batch predictions
8558
8577
  batch._populate_cache(records)
8559
-
8578
+
8560
8579
  return batch
8561
8580
 
8562
- def predict_grid(self, session_id: str, degrees_of_freedom: int,
8563
- grid_shape: tuple = None, target_column: str = None) -> 'PredictionGrid':
8581
+ def predict_grid(self, session_id: str, degrees_of_freedom: int,
8582
+ grid_shape: tuple = None, target_column: str = None,
8583
+ best_metric_preference: str = None) -> 'PredictionGrid':
8564
8584
  """
8565
8585
  Create a prediction grid for exploring parameter surfaces with automatic visualization.
8566
-
8586
+
8567
8587
  Perfect for 1D curves, 2D heatmaps, and 3D surfaces with built-in plotting functions.
8568
-
8588
+
8569
8589
  Args:
8570
8590
  session_id: ID of session with trained predictor
8571
8591
  degrees_of_freedom: Number of dimensions (1, 2, or 3)
8572
8592
  grid_shape: Custom grid shape tuple (default: auto-sized)
8573
8593
  target_column: Specific target column predictor to use
8574
-
8594
+ best_metric_preference: Which metric checkpoint to use: "roc_auc", "pr_auc", or None (default)
8595
+
8575
8596
  Returns:
8576
8597
  PredictionGrid object with predict() and plotting methods
8577
-
8598
+
8578
8599
  Example:
8579
8600
  # 2D parameter sweep with automatic plotting
8580
8601
  grid = client.predict_grid(session_id, degrees_of_freedom=2)
8581
8602
  grid.set_axis_labels(["Spend", "Campaign Type"])
8582
8603
  grid.set_axis_values(0, [100, 250, 500])
8583
8604
  grid.set_axis_values(1, ["search", "display", "social"])
8584
-
8605
+
8585
8606
  for i, spend in enumerate([100, 250, 500]):
8586
8607
  for j, campaign in enumerate(["search", "display", "social"]):
8587
8608
  record = {"spend": spend, "campaign_type": campaign}
8588
8609
  grid.predict(record, grid_position=(i, j))
8589
-
8610
+
8590
8611
  # Automatic visualization
8591
8612
  grid.plot_heatmap() # 2D heatmap
8592
8613
  grid.plot_3d() # 3D surface
8593
-
8614
+
8594
8615
  # Find optimal parameters
8595
8616
  optimal_pos = grid.get_optimal_position()
8596
8617
  print(f"Optimal parameters at grid position: {optimal_pos}")
8597
8618
  """
8598
- return PredictionGrid(session_id, self, degrees_of_freedom, grid_shape, target_column)
8619
+ return PredictionGrid(session_id, self, degrees_of_freedom, grid_shape, target_column, best_metric_preference)
8599
8620
 
8600
8621
  def get_embedding_space_columns(self, session_id: str) -> Dict[str, Any]:
8601
8622
  """
@@ -8672,12 +8693,13 @@ class PredictionGrid:
8672
8693
  grid.plot_3d() # 3D surface plot
8673
8694
  """
8674
8695
 
8675
- def __init__(self, session_id: str, client: 'FeatrixSphereClient', degrees_of_freedom: int,
8676
- grid_shape: tuple = None, target_column: str = None):
8696
+ def __init__(self, session_id: str, client: 'FeatrixSphereClient', degrees_of_freedom: int,
8697
+ grid_shape: tuple = None, target_column: str = None, best_metric_preference: str = None):
8677
8698
  self.session_id = session_id
8678
8699
  self.client = client
8679
8700
  self.degrees_of_freedom = degrees_of_freedom
8680
8701
  self.target_column = target_column
8702
+ self.best_metric_preference = best_metric_preference
8681
8703
 
8682
8704
  # Initialize grid matrix based on degrees of freedom
8683
8705
  if grid_shape:
@@ -8769,6 +8791,7 @@ class PredictionGrid:
8769
8791
  session_id=self.session_id,
8770
8792
  records=records_list,
8771
8793
  target_column=self.target_column,
8794
+ best_metric_preference=self.best_metric_preference,
8772
8795
  show_progress_bar=show_progress
8773
8796
  )
8774
8797
 
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.4
2
2
  Name: featrixsphere
3
- Version: 0.2.6127
3
+ Version: 0.2.6708
4
4
  Summary: Transform any CSV into a production-ready ML model in minutes, not months.
5
5
  Home-page: https://github.com/Featrix/sphere
6
6
  Author: Featrix
@@ -0,0 +1,17 @@
1
+ featrixsphere/__init__.py,sha256=NPVY3_tG74OqiLz1MYbrb9R4Wff68xFCI6zr3gVRTyQ,2190
2
+ featrixsphere/client.py,sha256=JNYAHDFtxmhQVuclO3dWEphJuxNFLi-PfvWylZWKF_4,452929
3
+ featrixsphere/api/__init__.py,sha256=quyvuPphVj9wb6v8Dio0SMG9iHgJAmY3asHk3f_zF10,1269
4
+ featrixsphere/api/api_endpoint.py,sha256=i3eCWuaUXftnH1Ai6MFZ7md7pC2FcRAIRO87CBZhyEQ,9000
5
+ featrixsphere/api/client.py,sha256=TdpujNsJxO4GfPMI_KoemQWV89go3KuK6OPAo9jX6Bs,12574
6
+ featrixsphere/api/foundational_model.py,sha256=wf5-VvVUXYoiyKr3y4Ok8OnwMhtaUuYLXwdgCwFuM-k,31065
7
+ featrixsphere/api/http_client.py,sha256=q59-41fHua_7AwtPFCvshlSUKJ-fS0X337L9Ooyn0DI,8440
8
+ featrixsphere/api/notebook_helper.py,sha256=xY9jsao26eaNiFh2s0_TlRZnR8xZ4P_e0EOKr2PtoVs,20060
9
+ featrixsphere/api/prediction_result.py,sha256=HQsJdr89zWxdRx395nevN3aP7ZXZuZxB4UGX5Ykhkfk,12235
10
+ featrixsphere/api/predictor.py,sha256=1v0ffkEjmrO3BP0PNWAXtiAU-AlOQJSiDICmW1bQbGU,20300
11
+ featrixsphere/api/reference_record.py,sha256=-XOTF6ynznB3ouz06w3AF8X9SVId0g_dO20VvGNesUQ,7095
12
+ featrixsphere/api/vector_database.py,sha256=BplxKkPnAbcBX1A4KxFBJVb3qkQ-FH9zi9v2dWG5CgY,7976
13
+ featrixsphere-0.2.6708.dist-info/METADATA,sha256=IpNh40w32ZlavhKaRkBFRLvpXyXmoNddYMjbc2NpBGI,16232
14
+ featrixsphere-0.2.6708.dist-info/WHEEL,sha256=wUyA8OaulRlbfwMtmQsvNngGrxQHAvkKcvRmdizlJi0,92
15
+ featrixsphere-0.2.6708.dist-info/entry_points.txt,sha256=QreJeYfD_VWvbEqPmMXZ3pqqlFlJ1qZb-NtqnyhEldc,51
16
+ featrixsphere-0.2.6708.dist-info/top_level.txt,sha256=AyN4wjfzlD0hWnDieuEHX0KckphIk_aC73XCG4df5uU,14
17
+ featrixsphere-0.2.6708.dist-info/RECORD,,
@@ -1,5 +1,5 @@
1
1
  Wheel-Version: 1.0
2
- Generator: setuptools (80.9.0)
2
+ Generator: setuptools (80.10.2)
3
3
  Root-Is-Purelib: true
4
4
  Tag: py3-none-any
5
5
 
@@ -1,17 +0,0 @@
1
- featrixsphere/__init__.py,sha256=tnkl4O62quDkp8n4aXzKQu1ELKyF5yfqpgmcjA9-rnY,2190
2
- featrixsphere/client.py,sha256=mxUcqkhMkAsYpwJjdamQdXB_wRlnV-TUCU71xA289tA,451235
3
- featrixsphere/api/__init__.py,sha256=quyvuPphVj9wb6v8Dio0SMG9iHgJAmY3asHk3f_zF10,1269
4
- featrixsphere/api/api_endpoint.py,sha256=i3eCWuaUXftnH1Ai6MFZ7md7pC2FcRAIRO87CBZhyEQ,9000
5
- featrixsphere/api/client.py,sha256=TdpujNsJxO4GfPMI_KoemQWV89go3KuK6OPAo9jX6Bs,12574
6
- featrixsphere/api/foundational_model.py,sha256=ZF5wKMs6SfsNC3XYYXgbRMhnrtmLe6NeckjCCiH0fK0,21628
7
- featrixsphere/api/http_client.py,sha256=TsOQHHNTDFGAR3mdHevj-0wy1-hPtgHXKe8Egiz5FVo,7269
8
- featrixsphere/api/notebook_helper.py,sha256=xY9jsao26eaNiFh2s0_TlRZnR8xZ4P_e0EOKr2PtoVs,20060
9
- featrixsphere/api/prediction_result.py,sha256=Tx7LXzF4XT-U3VqAN_IFc5DvxPnygc78M2usrD-yMu4,7521
10
- featrixsphere/api/predictor.py,sha256=-vwCKpCfTgZKqzpDnzy1iYZQ-1-MGW8aErvxM9trktw,17652
11
- featrixsphere/api/reference_record.py,sha256=-XOTF6ynznB3ouz06w3AF8X9SVId0g_dO20VvGNesUQ,7095
12
- featrixsphere/api/vector_database.py,sha256=BplxKkPnAbcBX1A4KxFBJVb3qkQ-FH9zi9v2dWG5CgY,7976
13
- featrixsphere-0.2.6127.dist-info/METADATA,sha256=Ew2yMa6rOSrsv1bSq38HXJogU0O5bliojWkbyQYGWV0,16232
14
- featrixsphere-0.2.6127.dist-info/WHEEL,sha256=_zCd3N1l69ArxyTb8rzEoP9TpbYXkqRFSNOD5OuxnTs,91
15
- featrixsphere-0.2.6127.dist-info/entry_points.txt,sha256=QreJeYfD_VWvbEqPmMXZ3pqqlFlJ1qZb-NtqnyhEldc,51
16
- featrixsphere-0.2.6127.dist-info/top_level.txt,sha256=AyN4wjfzlD0hWnDieuEHX0KckphIk_aC73XCG4df5uU,14
17
- featrixsphere-0.2.6127.dist-info/RECORD,,