fbgemm-gpu-hstu-nightly 2025.6.13__cp312-cp312-manylinux_2_28_x86_64.whl → 2025.6.15__cp312-cp312-manylinux_2_28_x86_64.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- fbgemm_gpu/docs/version.py +1 -1
- fbgemm_gpu/experimental/hstu/fbgemm_gpu_experimental_hstu.so +0 -0
- fbgemm_gpu/split_table_batched_embeddings_ops_common.py +11 -0
- fbgemm_gpu/tbe/bench/embedding_ops_common_config.py +1 -3
- fbgemm_gpu/tbe/ssd/training.py +6 -1
- fbgemm_gpu/tbe/ssd/utils/partially_materialized_tensor.py +0 -102
- {fbgemm_gpu_hstu_nightly-2025.6.13.dist-info → fbgemm_gpu_hstu_nightly-2025.6.15.dist-info}/METADATA +1 -1
- {fbgemm_gpu_hstu_nightly-2025.6.13.dist-info → fbgemm_gpu_hstu_nightly-2025.6.15.dist-info}/RECORD +10 -10
- {fbgemm_gpu_hstu_nightly-2025.6.13.dist-info → fbgemm_gpu_hstu_nightly-2025.6.15.dist-info}/WHEEL +0 -0
- {fbgemm_gpu_hstu_nightly-2025.6.13.dist-info → fbgemm_gpu_hstu_nightly-2025.6.15.dist-info}/top_level.txt +0 -0
fbgemm_gpu/docs/version.py
CHANGED
|
Binary file
|
|
@@ -33,6 +33,17 @@ class EmbeddingLocation(enum.IntEnum):
|
|
|
33
33
|
HOST = 3
|
|
34
34
|
MTIA = 4
|
|
35
35
|
|
|
36
|
+
@classmethod
|
|
37
|
+
# pyre-ignore[3]
|
|
38
|
+
def str_values(cls):
|
|
39
|
+
return [
|
|
40
|
+
"device",
|
|
41
|
+
"managed",
|
|
42
|
+
"managed_caching",
|
|
43
|
+
"host",
|
|
44
|
+
"mtia",
|
|
45
|
+
]
|
|
46
|
+
|
|
36
47
|
@classmethod
|
|
37
48
|
# pyre-ignore[3]
|
|
38
49
|
def from_str(cls, key: str):
|
|
@@ -99,9 +99,7 @@ class EmbeddingOpsCommonConfigLoader:
|
|
|
99
99
|
click.option(
|
|
100
100
|
"--emb-location",
|
|
101
101
|
default="device",
|
|
102
|
-
type=click.Choice(
|
|
103
|
-
["device", "managed", "managed_caching"], case_sensitive=False
|
|
104
|
-
),
|
|
102
|
+
type=click.Choice(EmbeddingLocation.str_values(), case_sensitive=False),
|
|
105
103
|
help="Memory location of the embeddings",
|
|
106
104
|
),
|
|
107
105
|
click.option(
|
fbgemm_gpu/tbe/ssd/training.py
CHANGED
|
@@ -2804,7 +2804,12 @@ class SSDTableBatchedEmbeddingBags(nn.Module):
|
|
|
2804
2804
|
"""
|
|
2805
2805
|
Create a rocksdb hard link snapshot to provide cross procs access to the underlying data
|
|
2806
2806
|
"""
|
|
2807
|
-
self.
|
|
2807
|
+
if self.backend_type == BackendType.SSD:
|
|
2808
|
+
self.ssd_db.create_rocksdb_hard_link_snapshot(self.step)
|
|
2809
|
+
else:
|
|
2810
|
+
logging.warning(
|
|
2811
|
+
"create_rocksdb_hard_link_snapshot is only supported for SSD backend"
|
|
2812
|
+
)
|
|
2808
2813
|
|
|
2809
2814
|
def prepare_inputs(
|
|
2810
2815
|
self,
|
|
@@ -9,7 +9,6 @@
|
|
|
9
9
|
from __future__ import annotations
|
|
10
10
|
|
|
11
11
|
import functools
|
|
12
|
-
import logging
|
|
13
12
|
from typing import List, Optional, Union
|
|
14
13
|
|
|
15
14
|
import torch
|
|
@@ -26,58 +25,6 @@ def implements(torch_function):
|
|
|
26
25
|
return decorator
|
|
27
26
|
|
|
28
27
|
|
|
29
|
-
class KVTensorMetadata:
|
|
30
|
-
"""
|
|
31
|
-
Class that is used to represent a KVTensor as a Serialized Metadata in python
|
|
32
|
-
This object is used to reconstruct the KVTensor in the publish component
|
|
33
|
-
"""
|
|
34
|
-
|
|
35
|
-
checkpoint_paths: List[str]
|
|
36
|
-
tbe_uuid: str
|
|
37
|
-
rdb_num_shards: int
|
|
38
|
-
rdb_num_threads: int
|
|
39
|
-
max_D: int
|
|
40
|
-
table_offset: int
|
|
41
|
-
table_shape: List[int]
|
|
42
|
-
dtype: int
|
|
43
|
-
checkpoint_uuid: str
|
|
44
|
-
|
|
45
|
-
def __init__(
|
|
46
|
-
self,
|
|
47
|
-
checkpoint_paths: List[str],
|
|
48
|
-
tbe_uuid: str,
|
|
49
|
-
rdb_num_shards: int,
|
|
50
|
-
rdb_num_threads: int,
|
|
51
|
-
max_D: int,
|
|
52
|
-
table_offset: int,
|
|
53
|
-
table_shape: List[int],
|
|
54
|
-
dtype: int,
|
|
55
|
-
checkpoint_uuid: str,
|
|
56
|
-
) -> None:
|
|
57
|
-
"""
|
|
58
|
-
Ensure caller loads the module before creating this object.
|
|
59
|
-
|
|
60
|
-
```
|
|
61
|
-
load_torch_module(
|
|
62
|
-
"//deeplearning/fbgemm/fbgemm_gpu:ssd_split_table_batched_embeddings"
|
|
63
|
-
)
|
|
64
|
-
```
|
|
65
|
-
|
|
66
|
-
Args:
|
|
67
|
-
|
|
68
|
-
wrapped: torch.classes.fbgemm.KVTensorWrapper
|
|
69
|
-
"""
|
|
70
|
-
self.checkpoint_paths = checkpoint_paths
|
|
71
|
-
self.tbe_uuid = tbe_uuid
|
|
72
|
-
self.rdb_num_shards = rdb_num_shards
|
|
73
|
-
self.rdb_num_threads = rdb_num_threads
|
|
74
|
-
self.max_D = max_D
|
|
75
|
-
self.table_offset = table_offset
|
|
76
|
-
self.table_shape = table_shape
|
|
77
|
-
self.checkpoint_uuid = checkpoint_uuid
|
|
78
|
-
self.dtype = dtype
|
|
79
|
-
|
|
80
|
-
|
|
81
28
|
class PartiallyMaterializedTensor:
|
|
82
29
|
"""
|
|
83
30
|
A tensor-like object that represents a partially materialized tensor in memory.
|
|
@@ -104,55 +51,6 @@ class PartiallyMaterializedTensor:
|
|
|
104
51
|
self._is_virtual = is_virtual
|
|
105
52
|
self._requires_grad = False
|
|
106
53
|
|
|
107
|
-
@property
|
|
108
|
-
def generate_kvtensor_metadata(self) -> KVTensorMetadata:
|
|
109
|
-
serialized_metadata = self.wrapped.get_kvtensor_serializable_metadata()
|
|
110
|
-
try:
|
|
111
|
-
metadata_itr = 0
|
|
112
|
-
num_rdb_ckpts = int(serialized_metadata[0])
|
|
113
|
-
metadata_itr += 1
|
|
114
|
-
checkpoint_paths: List[str] = []
|
|
115
|
-
for i in range(num_rdb_ckpts):
|
|
116
|
-
checkpoint_paths.append(serialized_metadata[i + metadata_itr])
|
|
117
|
-
metadata_itr += num_rdb_ckpts
|
|
118
|
-
tbe_uuid = serialized_metadata[metadata_itr]
|
|
119
|
-
metadata_itr += 1
|
|
120
|
-
rdb_num_shards = int(serialized_metadata[metadata_itr])
|
|
121
|
-
metadata_itr += 1
|
|
122
|
-
rdb_num_threads = int(serialized_metadata[metadata_itr])
|
|
123
|
-
metadata_itr += 1
|
|
124
|
-
max_D = int(serialized_metadata[metadata_itr])
|
|
125
|
-
metadata_itr += 1
|
|
126
|
-
table_offset = int(serialized_metadata[metadata_itr])
|
|
127
|
-
metadata_itr += 1
|
|
128
|
-
table_shape: List[int] = []
|
|
129
|
-
table_shape.append(int(serialized_metadata[metadata_itr]))
|
|
130
|
-
metadata_itr += 1
|
|
131
|
-
table_shape.append(int(serialized_metadata[metadata_itr]))
|
|
132
|
-
metadata_itr += 1
|
|
133
|
-
dtype = int(serialized_metadata[metadata_itr])
|
|
134
|
-
metadata_itr += 1
|
|
135
|
-
checkpoint_uuid = serialized_metadata[metadata_itr]
|
|
136
|
-
metadata_itr += 1
|
|
137
|
-
res = KVTensorMetadata(
|
|
138
|
-
checkpoint_paths,
|
|
139
|
-
tbe_uuid,
|
|
140
|
-
rdb_num_shards,
|
|
141
|
-
rdb_num_threads,
|
|
142
|
-
max_D,
|
|
143
|
-
table_offset,
|
|
144
|
-
table_shape,
|
|
145
|
-
dtype,
|
|
146
|
-
checkpoint_uuid,
|
|
147
|
-
)
|
|
148
|
-
|
|
149
|
-
return res
|
|
150
|
-
except Exception as e:
|
|
151
|
-
logging.error(
|
|
152
|
-
f"Failed to parse metadata: {e}, here is metadata: {serialized_metadata}"
|
|
153
|
-
)
|
|
154
|
-
raise e
|
|
155
|
-
|
|
156
54
|
@property
|
|
157
55
|
def wrapped(self):
|
|
158
56
|
"""
|
{fbgemm_gpu_hstu_nightly-2025.6.13.dist-info → fbgemm_gpu_hstu_nightly-2025.6.15.dist-info}/RECORD
RENAMED
|
@@ -15,7 +15,7 @@ fbgemm_gpu/split_embedding_inference_converter.py,sha256=ilVVowkTiY0WDpOYorj917T
|
|
|
15
15
|
fbgemm_gpu/split_embedding_optimizer_ops.py,sha256=wXuGazClBMk62yL_r9udUIKaPgQP7SlkSb5ugB75wrQ,711
|
|
16
16
|
fbgemm_gpu/split_embedding_utils.py,sha256=Gb40ZKeATxIKEKI3aVQMgDDBanNpKMc53Z43mnzdR_I,851
|
|
17
17
|
fbgemm_gpu/split_table_batched_embeddings_ops.py,sha256=_MIp6uHYHLn4GxGdrGsfddfSsZ2Z9mjsYIrih3ncI1I,2339
|
|
18
|
-
fbgemm_gpu/split_table_batched_embeddings_ops_common.py,sha256=
|
|
18
|
+
fbgemm_gpu/split_table_batched_embeddings_ops_common.py,sha256=qglNRKKuHkrKiTw90ACjZpMzcjHKXKV7ME3a8QHfQt4,8237
|
|
19
19
|
fbgemm_gpu/split_table_batched_embeddings_ops_inference.py,sha256=bUDWa6IR0vGLDThgB3nmD1yfYa8_HD34B0dtLnd7thw,81692
|
|
20
20
|
fbgemm_gpu/split_table_batched_embeddings_ops_training.py,sha256=YCLPSW9CXrRwMN5KEU6x0ESbutdhzKTaNOO8oN5kX7I,163875
|
|
21
21
|
fbgemm_gpu/split_table_batched_embeddings_ops_training_common.py,sha256=ktC10-nakOBpcmJNCOGQsxuBCP8XTwXJ2WeEgIg91tc,5455
|
|
@@ -32,10 +32,10 @@ fbgemm_gpu/docs/merge_pooled_embedding_ops.py,sha256=oJLgSgZQmhsyGLbTmZTxNgQrk65
|
|
|
32
32
|
fbgemm_gpu/docs/permute_pooled_embedding_ops.py,sha256=tZUqLVXlk5O6VAKKDA-OEMx2fCu5QPOOeoAPZA9_nLY,4454
|
|
33
33
|
fbgemm_gpu/docs/quantize_ops.py,sha256=xTtOaVK1P02ymreE_i21YiyYDZCqhoZY9eWp_mEIRlo,1297
|
|
34
34
|
fbgemm_gpu/docs/sparse_ops.py,sha256=NTcTm0q9h8W2B8PKPoic2fHsAaCbCYunSa_EYK0LtHQ,21382
|
|
35
|
-
fbgemm_gpu/docs/version.py,sha256=
|
|
35
|
+
fbgemm_gpu/docs/version.py,sha256=Wfdofi1dDfFLcvCYRMDlfYaAgz8J7SIMZPIBXTmCxcA,315
|
|
36
36
|
fbgemm_gpu/experimental/hstu/__init__.py,sha256=KNisP6qDMwgjgxkGlqUZRNjJ_8o8R-cTmm3HxF7pSqI,1564
|
|
37
37
|
fbgemm_gpu/experimental/hstu/cuda_hstu_attention.py,sha256=5425GRjJuzpXQC-TowgQOCFjZmOwv_EK0lKbURhHBTQ,9920
|
|
38
|
-
fbgemm_gpu/experimental/hstu/fbgemm_gpu_experimental_hstu.so,sha256=
|
|
38
|
+
fbgemm_gpu/experimental/hstu/fbgemm_gpu_experimental_hstu.so,sha256=AdQzuwtVkIlxjhXCuWHjla0czOJXEuqM6CAWbiBmocU,352696288
|
|
39
39
|
fbgemm_gpu/quantize/__init__.py,sha256=pftciXHE7csekDFkl7Ui1AWglVMMnSrOO04mREnUdb0,921
|
|
40
40
|
fbgemm_gpu/quantize/quantize_ops.py,sha256=25AIOv9n2UoxamMUaI6EK1Ur4gSHxbZIReHBtgOjjCs,2228
|
|
41
41
|
fbgemm_gpu/sll/__init__.py,sha256=rgXh35-OFUE54E9gGBq3NGxouGvgMv2ccY2bWUTxONY,4191
|
|
@@ -61,7 +61,7 @@ fbgemm_gpu/tbe/bench/__init__.py,sha256=Uhk3IzAs9f_2kVYcMuFP3KiwwkqqYxaZFivPaBIN
|
|
|
61
61
|
fbgemm_gpu/tbe/bench/bench_config.py,sha256=GYxVotMi-JK7AEm96sOfB2uOlmRtXpOTr-tkPEB1Q48,4241
|
|
62
62
|
fbgemm_gpu/tbe/bench/bench_runs.py,sha256=hmoldOLh2UsjPAeb0zdfm5aTbs_0iEnlCxsXCHuzAMg,18343
|
|
63
63
|
fbgemm_gpu/tbe/bench/eeg_cli.py,sha256=T8Wa1PeRyFZ0Ge-SErHQEYDY8LvHVoCV_qQlE_6kER0,3600
|
|
64
|
-
fbgemm_gpu/tbe/bench/embedding_ops_common_config.py,sha256=
|
|
64
|
+
fbgemm_gpu/tbe/bench/embedding_ops_common_config.py,sha256=mdG3JZwgclp6DiVwQSKl5jrirLSId4OuM64knj9TkEk,4973
|
|
65
65
|
fbgemm_gpu/tbe/bench/eval_compression.py,sha256=bINVERk42VJDSdenQHKWApmRMrW8rhkevOgE0hDR-S8,3499
|
|
66
66
|
fbgemm_gpu/tbe/bench/reporter.py,sha256=ZK5RFolUmZEcsEaife270_iOdXAQD5EjTUkuxctnAbY,804
|
|
67
67
|
fbgemm_gpu/tbe/bench/tbe_data_config.py,sha256=uvepBrbzERALBB-RPZVGFra4a8ALCqsOe9X6iWpqAyU,9413
|
|
@@ -73,9 +73,9 @@ fbgemm_gpu/tbe/cache/split_embeddings_cache_ops.py,sha256=mQkCl0xN8xUu5bjEWcOOFN
|
|
|
73
73
|
fbgemm_gpu/tbe/ssd/__init__.py,sha256=wzfMT10cp_dqK2lrebC449hOdexBnizcf_98lA1NyHs,483
|
|
74
74
|
fbgemm_gpu/tbe/ssd/common.py,sha256=1J8K7sTQswgCYWaVwF-ZdCJj7mNN6O9GI70AaZWzJGE,1044
|
|
75
75
|
fbgemm_gpu/tbe/ssd/inference.py,sha256=DTjwj3f6JaUMcecWoRNkZpRgXDJ-eE3grtixYwKb5DI,22829
|
|
76
|
-
fbgemm_gpu/tbe/ssd/training.py,sha256=
|
|
76
|
+
fbgemm_gpu/tbe/ssd/training.py,sha256=Dx-rJqjrD1A4U4MEVaP3OJl3CZz0VRSTWcukx5557Jw,131715
|
|
77
77
|
fbgemm_gpu/tbe/ssd/utils/__init__.py,sha256=5DgmR2HA6NtmYh2ddkUgpDsZ6a7hF0DPedA1gMpdh18,250
|
|
78
|
-
fbgemm_gpu/tbe/ssd/utils/partially_materialized_tensor.py,sha256=
|
|
78
|
+
fbgemm_gpu/tbe/ssd/utils/partially_materialized_tensor.py,sha256=uwwEdUiaVlnWZ_rQax2z28VYROfivdMqIdWLy8IZ6cE,7646
|
|
79
79
|
fbgemm_gpu/tbe/stats/__init__.py,sha256=on29iDtq7cVNh90JR9aeFNG-K9DDoYq0JryzoplL49I,322
|
|
80
80
|
fbgemm_gpu/tbe/stats/bench_params_reporter.py,sha256=7XIWVObJOxSVUG73xsd_lVSuCFUQkMEGSWW--BoyCH0,7358
|
|
81
81
|
fbgemm_gpu/tbe/utils/__init__.py,sha256=rlXFm-kTByFZO4SS5C5zMzANRiQmM1NT__eWBayncYg,549
|
|
@@ -93,7 +93,7 @@ fbgemm_gpu/utils/__init__.py,sha256=JQQNdcTTaEU6ptK-OW-ZQBwTFxEZZpWOtBXWwEZm39o,
|
|
|
93
93
|
fbgemm_gpu/utils/filestore.py,sha256=Zshw1dA03m9aHMMAtETdq4bgOLocyLhzlkAUoG8VkdM,4743
|
|
94
94
|
fbgemm_gpu/utils/loader.py,sha256=1hCEhNvkflniH46fGcrguLeP1z-6uyOu2QFwqKU5CIM,990
|
|
95
95
|
fbgemm_gpu/utils/torch_library.py,sha256=dQcHv1qgpu5QYlJjxjd6oeHjtxnmmXzx3PL6vjCmxL4,4199
|
|
96
|
-
fbgemm_gpu_hstu_nightly-2025.6.
|
|
97
|
-
fbgemm_gpu_hstu_nightly-2025.6.
|
|
98
|
-
fbgemm_gpu_hstu_nightly-2025.6.
|
|
99
|
-
fbgemm_gpu_hstu_nightly-2025.6.
|
|
96
|
+
fbgemm_gpu_hstu_nightly-2025.6.15.dist-info/METADATA,sha256=SxliCSqrubFUeLb4Kc97w7fTVCFw0mTOAK4PtWGAw6U,2794
|
|
97
|
+
fbgemm_gpu_hstu_nightly-2025.6.15.dist-info/WHEEL,sha256=vUT1hK8fT5m5CAs5kDyQ_ABrvCmtd0TCp5-4vN9tR5A,108
|
|
98
|
+
fbgemm_gpu_hstu_nightly-2025.6.15.dist-info/top_level.txt,sha256=2tlbTWLkPjhqvLF_6BbqKzkcPluSE-oPRVjI8axK76I,11
|
|
99
|
+
fbgemm_gpu_hstu_nightly-2025.6.15.dist-info/RECORD,,
|
{fbgemm_gpu_hstu_nightly-2025.6.13.dist-info → fbgemm_gpu_hstu_nightly-2025.6.15.dist-info}/WHEEL
RENAMED
|
File without changes
|
|
File without changes
|