fbgemm-gpu-hstu-nightly 2025.6.12__cp310-cp310-manylinux_2_28_x86_64.whl → 2025.6.14__cp310-cp310-manylinux_2_28_x86_64.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
@@ -6,6 +6,6 @@
6
6
  # This source code is licensed under the BSD-style license found in the
7
7
  # LICENSE file in the root directory of this source tree.
8
8
 
9
- __version__: str = "2025.6.12"
9
+ __version__: str = "2025.6.14"
10
10
  __target__: str = "hstu"
11
11
  __variant__: str = "cuda"
fbgemm_gpu/sparse_ops.py CHANGED
@@ -420,6 +420,7 @@ def int_nbit_split_embedding_codegen_lookup_function_meta(
420
420
  kINT8QparamsBytes = 8
421
421
 
422
422
  if pooling_mode == PoolingMode.NONE:
423
+ kINT8QparamsBytes = 4
423
424
  D = max(
424
425
  [
425
426
  max_int2_D,
@@ -435,7 +436,7 @@ def int_nbit_split_embedding_codegen_lookup_function_meta(
435
436
  torch._check(D > 0)
436
437
  adjusted_D = D
437
438
  if SparseType.from_int(output_dtype_int) == SparseType.INT8:
438
- adjusted_D += T * kINT8QparamsBytes
439
+ adjusted_D += kINT8QparamsBytes
439
440
  output = dev_weights.new_empty([total_L, adjusted_D], dtype=output_dtype)
440
441
  return output
441
442
 
@@ -33,6 +33,17 @@ class EmbeddingLocation(enum.IntEnum):
33
33
  HOST = 3
34
34
  MTIA = 4
35
35
 
36
+ @classmethod
37
+ # pyre-ignore[3]
38
+ def str_values(cls):
39
+ return [
40
+ "device",
41
+ "managed",
42
+ "managed_caching",
43
+ "host",
44
+ "mtia",
45
+ ]
46
+
36
47
  @classmethod
37
48
  # pyre-ignore[3]
38
49
  def from_str(cls, key: str):
@@ -99,9 +99,7 @@ class EmbeddingOpsCommonConfigLoader:
99
99
  click.option(
100
100
  "--emb-location",
101
101
  default="device",
102
- type=click.Choice(
103
- ["device", "managed", "managed_caching"], case_sensitive=False
104
- ),
102
+ type=click.Choice(EmbeddingLocation.str_values(), case_sensitive=False),
105
103
  help="Memory location of the embeddings",
106
104
  ),
107
105
  click.option(
@@ -2804,7 +2804,12 @@ class SSDTableBatchedEmbeddingBags(nn.Module):
2804
2804
  """
2805
2805
  Create a rocksdb hard link snapshot to provide cross procs access to the underlying data
2806
2806
  """
2807
- self.ssd_db.create_rocksdb_hard_link_snapshot(self.step)
2807
+ if self.backend_type == BackendType.SSD:
2808
+ self.ssd_db.create_rocksdb_hard_link_snapshot(self.step)
2809
+ else:
2810
+ logging.warning(
2811
+ "create_rocksdb_hard_link_snapshot is only supported for SSD backend"
2812
+ )
2808
2813
 
2809
2814
  def prepare_inputs(
2810
2815
  self,
@@ -9,7 +9,7 @@
9
9
  from __future__ import annotations
10
10
 
11
11
  import functools
12
- from typing import Optional, Union
12
+ from typing import List, Optional, Union
13
13
 
14
14
  import torch
15
15
 
@@ -249,6 +249,9 @@ class PartiallyMaterializedTensor:
249
249
 
250
250
  return torch.equal(tensor1.full_tensor(), tensor2.full_tensor())
251
251
 
252
+ def get_kvtensor_serializable_metadata(self) -> List[str]:
253
+ return self._wrapped.get_kvtensor_serializable_metadata()
254
+
252
255
  def __hash__(self):
253
256
  return id(self)
254
257
 
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.4
2
2
  Name: fbgemm_gpu_hstu_nightly
3
- Version: 2025.6.12
3
+ Version: 2025.6.14
4
4
  Home-page: https://github.com/pytorch/fbgemm
5
5
  Author: FBGEMM Team
6
6
  Author-email: packages@pytorch.org
@@ -9,13 +9,13 @@ fbgemm_gpu/permute_pooled_embedding_modules_split.py,sha256=cUrEbRIvLFW_3Zmh07Qk
9
9
  fbgemm_gpu/quantize_comm.py,sha256=YUzk8F1MZckbkseEoDJ4rOKiglGCGtrPdR1IKGD6Mk4,11177
10
10
  fbgemm_gpu/quantize_utils.py,sha256=hb8G_1xzRwYmwFp8VJrmoaolNxCwqcFwkwnyStk1C0w,7394
11
11
  fbgemm_gpu/runtime_monitor.py,sha256=HM_0cxMO7uuAq8sCiv2lmGgp1jKGzba2qhuUcGyRMog,7425
12
- fbgemm_gpu/sparse_ops.py,sha256=84x_hobQofY29Vzlz0eJxe126Ba-O5oSEQREMpRgOtE,47168
12
+ fbgemm_gpu/sparse_ops.py,sha256=xNoRMp6QNMz8Lq_5LE9IprQtUip3gkTVbyPgJ1AiWSI,47194
13
13
  fbgemm_gpu/split_embedding_configs.py,sha256=DcZ7SV4AmhlN9QPDaJBqzigR-c1zM_bZI3Fh4PYuab4,7266
14
14
  fbgemm_gpu/split_embedding_inference_converter.py,sha256=ilVVowkTiY0WDpOYorj917Tqsez4KWNBdTXuz2bWbp8,7063
15
15
  fbgemm_gpu/split_embedding_optimizer_ops.py,sha256=wXuGazClBMk62yL_r9udUIKaPgQP7SlkSb5ugB75wrQ,711
16
16
  fbgemm_gpu/split_embedding_utils.py,sha256=Gb40ZKeATxIKEKI3aVQMgDDBanNpKMc53Z43mnzdR_I,851
17
17
  fbgemm_gpu/split_table_batched_embeddings_ops.py,sha256=_MIp6uHYHLn4GxGdrGsfddfSsZ2Z9mjsYIrih3ncI1I,2339
18
- fbgemm_gpu/split_table_batched_embeddings_ops_common.py,sha256=jRCuFRUPchgqL9Z9RTEIjZGl9R6YJe1RlU_Su7AgCMw,8030
18
+ fbgemm_gpu/split_table_batched_embeddings_ops_common.py,sha256=qglNRKKuHkrKiTw90ACjZpMzcjHKXKV7ME3a8QHfQt4,8237
19
19
  fbgemm_gpu/split_table_batched_embeddings_ops_inference.py,sha256=bUDWa6IR0vGLDThgB3nmD1yfYa8_HD34B0dtLnd7thw,81692
20
20
  fbgemm_gpu/split_table_batched_embeddings_ops_training.py,sha256=YCLPSW9CXrRwMN5KEU6x0ESbutdhzKTaNOO8oN5kX7I,163875
21
21
  fbgemm_gpu/split_table_batched_embeddings_ops_training_common.py,sha256=ktC10-nakOBpcmJNCOGQsxuBCP8XTwXJ2WeEgIg91tc,5455
@@ -32,10 +32,10 @@ fbgemm_gpu/docs/merge_pooled_embedding_ops.py,sha256=oJLgSgZQmhsyGLbTmZTxNgQrk65
32
32
  fbgemm_gpu/docs/permute_pooled_embedding_ops.py,sha256=tZUqLVXlk5O6VAKKDA-OEMx2fCu5QPOOeoAPZA9_nLY,4454
33
33
  fbgemm_gpu/docs/quantize_ops.py,sha256=xTtOaVK1P02ymreE_i21YiyYDZCqhoZY9eWp_mEIRlo,1297
34
34
  fbgemm_gpu/docs/sparse_ops.py,sha256=NTcTm0q9h8W2B8PKPoic2fHsAaCbCYunSa_EYK0LtHQ,21382
35
- fbgemm_gpu/docs/version.py,sha256=XOS_m9ZE4Pr3zwz272OUxVj3s034QJ5xDrpkMLk-x5s,315
35
+ fbgemm_gpu/docs/version.py,sha256=LK5E-TYZjZc9TFmB0M0k8KZYtBxvhQwYFL31OtDqIOU,315
36
36
  fbgemm_gpu/experimental/hstu/__init__.py,sha256=KNisP6qDMwgjgxkGlqUZRNjJ_8o8R-cTmm3HxF7pSqI,1564
37
37
  fbgemm_gpu/experimental/hstu/cuda_hstu_attention.py,sha256=5425GRjJuzpXQC-TowgQOCFjZmOwv_EK0lKbURhHBTQ,9920
38
- fbgemm_gpu/experimental/hstu/fbgemm_gpu_experimental_hstu.so,sha256=Ykro0hs9HwqkRXJrWPDjNPn4vzexnNP6ehIKyzC3naY,352287576
38
+ fbgemm_gpu/experimental/hstu/fbgemm_gpu_experimental_hstu.so,sha256=Byu1Kwf8AcaUaY31IKYMUnfI6ncK0ZhDYBqxOhopmow,352287576
39
39
  fbgemm_gpu/quantize/__init__.py,sha256=pftciXHE7csekDFkl7Ui1AWglVMMnSrOO04mREnUdb0,921
40
40
  fbgemm_gpu/quantize/quantize_ops.py,sha256=25AIOv9n2UoxamMUaI6EK1Ur4gSHxbZIReHBtgOjjCs,2228
41
41
  fbgemm_gpu/sll/__init__.py,sha256=rgXh35-OFUE54E9gGBq3NGxouGvgMv2ccY2bWUTxONY,4191
@@ -61,7 +61,7 @@ fbgemm_gpu/tbe/bench/__init__.py,sha256=Uhk3IzAs9f_2kVYcMuFP3KiwwkqqYxaZFivPaBIN
61
61
  fbgemm_gpu/tbe/bench/bench_config.py,sha256=GYxVotMi-JK7AEm96sOfB2uOlmRtXpOTr-tkPEB1Q48,4241
62
62
  fbgemm_gpu/tbe/bench/bench_runs.py,sha256=hmoldOLh2UsjPAeb0zdfm5aTbs_0iEnlCxsXCHuzAMg,18343
63
63
  fbgemm_gpu/tbe/bench/eeg_cli.py,sha256=T8Wa1PeRyFZ0Ge-SErHQEYDY8LvHVoCV_qQlE_6kER0,3600
64
- fbgemm_gpu/tbe/bench/embedding_ops_common_config.py,sha256=yBk0zaZJ5b3ffPG91SoqD088shrLYdyCFGfn6DsXK9A,5021
64
+ fbgemm_gpu/tbe/bench/embedding_ops_common_config.py,sha256=mdG3JZwgclp6DiVwQSKl5jrirLSId4OuM64knj9TkEk,4973
65
65
  fbgemm_gpu/tbe/bench/eval_compression.py,sha256=bINVERk42VJDSdenQHKWApmRMrW8rhkevOgE0hDR-S8,3499
66
66
  fbgemm_gpu/tbe/bench/reporter.py,sha256=ZK5RFolUmZEcsEaife270_iOdXAQD5EjTUkuxctnAbY,804
67
67
  fbgemm_gpu/tbe/bench/tbe_data_config.py,sha256=uvepBrbzERALBB-RPZVGFra4a8ALCqsOe9X6iWpqAyU,9413
@@ -73,9 +73,9 @@ fbgemm_gpu/tbe/cache/split_embeddings_cache_ops.py,sha256=mQkCl0xN8xUu5bjEWcOOFN
73
73
  fbgemm_gpu/tbe/ssd/__init__.py,sha256=wzfMT10cp_dqK2lrebC449hOdexBnizcf_98lA1NyHs,483
74
74
  fbgemm_gpu/tbe/ssd/common.py,sha256=1J8K7sTQswgCYWaVwF-ZdCJj7mNN6O9GI70AaZWzJGE,1044
75
75
  fbgemm_gpu/tbe/ssd/inference.py,sha256=DTjwj3f6JaUMcecWoRNkZpRgXDJ-eE3grtixYwKb5DI,22829
76
- fbgemm_gpu/tbe/ssd/training.py,sha256=gCvMY8fGP2JNosMyzW7uiQUuUsDIdUULB_PG51wOpRk,131519
76
+ fbgemm_gpu/tbe/ssd/training.py,sha256=Dx-rJqjrD1A4U4MEVaP3OJl3CZz0VRSTWcukx5557Jw,131715
77
77
  fbgemm_gpu/tbe/ssd/utils/__init__.py,sha256=5DgmR2HA6NtmYh2ddkUgpDsZ6a7hF0DPedA1gMpdh18,250
78
- fbgemm_gpu/tbe/ssd/utils/partially_materialized_tensor.py,sha256=V18ZQxdYJNSi6qLqhFaxXj3IxpcPgan3GsoXrosoZ1Q,7510
78
+ fbgemm_gpu/tbe/ssd/utils/partially_materialized_tensor.py,sha256=uwwEdUiaVlnWZ_rQax2z28VYROfivdMqIdWLy8IZ6cE,7646
79
79
  fbgemm_gpu/tbe/stats/__init__.py,sha256=on29iDtq7cVNh90JR9aeFNG-K9DDoYq0JryzoplL49I,322
80
80
  fbgemm_gpu/tbe/stats/bench_params_reporter.py,sha256=7XIWVObJOxSVUG73xsd_lVSuCFUQkMEGSWW--BoyCH0,7358
81
81
  fbgemm_gpu/tbe/utils/__init__.py,sha256=rlXFm-kTByFZO4SS5C5zMzANRiQmM1NT__eWBayncYg,549
@@ -93,7 +93,7 @@ fbgemm_gpu/utils/__init__.py,sha256=JQQNdcTTaEU6ptK-OW-ZQBwTFxEZZpWOtBXWwEZm39o,
93
93
  fbgemm_gpu/utils/filestore.py,sha256=Zshw1dA03m9aHMMAtETdq4bgOLocyLhzlkAUoG8VkdM,4743
94
94
  fbgemm_gpu/utils/loader.py,sha256=1hCEhNvkflniH46fGcrguLeP1z-6uyOu2QFwqKU5CIM,990
95
95
  fbgemm_gpu/utils/torch_library.py,sha256=dQcHv1qgpu5QYlJjxjd6oeHjtxnmmXzx3PL6vjCmxL4,4199
96
- fbgemm_gpu_hstu_nightly-2025.6.12.dist-info/METADATA,sha256=ayz07_xnYRnh1FYOD4_6vcF3Pn4Ngw8hmoQhOBEfOz8,2794
97
- fbgemm_gpu_hstu_nightly-2025.6.12.dist-info/WHEEL,sha256=k9CVMKlTmOLLXq_OyiiJFbPd6UKfogV4yIUezgPmplE,108
98
- fbgemm_gpu_hstu_nightly-2025.6.12.dist-info/top_level.txt,sha256=2tlbTWLkPjhqvLF_6BbqKzkcPluSE-oPRVjI8axK76I,11
99
- fbgemm_gpu_hstu_nightly-2025.6.12.dist-info/RECORD,,
96
+ fbgemm_gpu_hstu_nightly-2025.6.14.dist-info/METADATA,sha256=8j-rn3gGFwyI1nr2yksN6x6fTPAhHZ_oXvyn5keeM1k,2794
97
+ fbgemm_gpu_hstu_nightly-2025.6.14.dist-info/WHEEL,sha256=k9CVMKlTmOLLXq_OyiiJFbPd6UKfogV4yIUezgPmplE,108
98
+ fbgemm_gpu_hstu_nightly-2025.6.14.dist-info/top_level.txt,sha256=2tlbTWLkPjhqvLF_6BbqKzkcPluSE-oPRVjI8axK76I,11
99
+ fbgemm_gpu_hstu_nightly-2025.6.14.dist-info/RECORD,,