fbgemm-gpu-genai-nightly 2025.10.28__cp312-cp312-manylinux_2_28_x86_64.whl → 2025.10.31__cp312-cp312-manylinux_2_28_x86_64.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of fbgemm-gpu-genai-nightly might be problematic. Click here for more details.

fbgemm_gpu/asmjit.so CHANGED
Binary file
@@ -1,6 +1,6 @@
1
1
 
2
2
  {
3
- "version": "2025.10.28",
3
+ "version": "2025.10.31",
4
4
  "target": "genai",
5
5
  "variant": "cuda"
6
6
  }
fbgemm_gpu/fbgemm.so CHANGED
Binary file
@@ -240,6 +240,19 @@ class KVZCHParams(NamedTuple):
240
240
  ), "backend_return_whole_row can only be enabled when enable_optimizer_offloading is enabled"
241
241
 
242
242
 
243
+ class KVZCHEvictionTBEConfig(NamedTuple):
244
+ # Eviction trigger model for kvzch table: 0: disabled, 1: iteration, 2: mem_util, 3: manual, 4: id count, 5: free_mem
245
+ kvzch_eviction_trigger_mode: int = 2 # mem_util
246
+ # Minimum free memory (in GB) required before triggering eviction when using free_mem trigger mode.
247
+ eviction_free_mem_threshold_gb: int = 200 # 200GB
248
+ # Number of batches between checks for free memory threshold when using free_mem trigger mode.
249
+ eviction_free_mem_check_interval_batch: int = 1000
250
+ # The width of each feature score bucket used for threshold calculation in feature score-based eviction.
251
+ threshold_calculation_bucket_stride: float = 0.2
252
+ # Total number of feature score buckets used for threshold calculation in feature score-based eviction.
253
+ threshold_calculation_bucket_num: Optional[int] = 1000000 # 1M
254
+
255
+
243
256
  class BackendType(enum.IntEnum):
244
257
  SSD = 0
245
258
  DRAM = 1
@@ -1556,7 +1556,7 @@ class SplitTableBatchedEmbeddingBagsCodegen(nn.Module):
1556
1556
  table_name_set = set(table_names)
1557
1557
  if len(table_name_set) == 1:
1558
1558
  return next(iter(table_name_set))
1559
- return f"<{len(table_name_set)} tables>"
1559
+ return f"<{len(table_name_set)} tables>: {table_name_set}"
1560
1560
 
1561
1561
  @staticmethod
1562
1562
  def get_prefetch_passes(
@@ -2089,7 +2089,7 @@ class SSDTableBatchedEmbeddingBags(nn.Module):
2089
2089
  torch.tensor(
2090
2090
  [weights.shape[0]], device="cpu", dtype=torch.long
2091
2091
  ),
2092
- weights.cpu().view(torch.float32).view(-1, 2),
2092
+ weights.cpu(),
2093
2093
  )
2094
2094
 
2095
2095
  # Generate row addresses (pointing to either L1 or the current
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.4
2
2
  Name: fbgemm_gpu_genai_nightly
3
- Version: 2025.10.28
3
+ Version: 2025.10.31
4
4
  Home-page: https://github.com/pytorch/fbgemm
5
5
  Author: FBGEMM Team
6
6
  Author-email: packages@pytorch.org
@@ -1,8 +1,8 @@
1
1
  fbgemm_gpu/__init__.py,sha256=A3DuseilQ-sEtBpeZsG0LOqN5Cl3e5DHI_YgCZEMhnE,6283
2
- fbgemm_gpu/asmjit.so,sha256=yDq47YobRro7Tvd4IaPNyQUf1YaA8iLyfcwnUdh0Coo,484232
2
+ fbgemm_gpu/asmjit.so,sha256=tp-5cN7HUYo7cjvR_kl_vfPBSEv78-IQxdvHN-nXFAM,501728
3
3
  fbgemm_gpu/batched_unary_embeddings_ops.py,sha256=GYeJ9pg-Wc9FokXVci_npDsL6UV18-pJXID2xzrJ9O8,2904
4
4
  fbgemm_gpu/enums.py,sha256=37ewGSfO1x7sO31ZkRiqV1yKuklfHXT5qZIxzeeGogo,755
5
- fbgemm_gpu/fbgemm.so,sha256=DEQ1gRPSFaPAUbupt2byc0F7ZpHYo1yagdZ1Se9Gq1A,5807256
5
+ fbgemm_gpu/fbgemm.so,sha256=B9y6MDLC6Ou7Bw_pT07Xfw5g5Q4j2yn9Xsp96QVpgEU,5646712
6
6
  fbgemm_gpu/metrics.py,sha256=TsurFLJf0nJvPDN7urWb4LMQlf5RgdWPTTTDO7S4wtI,5663
7
7
  fbgemm_gpu/permute_pooled_embedding_modules.py,sha256=vOXMYclaGnwSt0St_SOAlAe18kz6WjMyTeHnC9jLhcE,5130
8
8
  fbgemm_gpu/permute_pooled_embedding_modules_split.py,sha256=f3VJvH_kw9Ltd_DXtaf_PJPHmlmEWrQgzQ7MDkhh5Nw,2746
@@ -15,9 +15,9 @@ fbgemm_gpu/split_embedding_inference_converter.py,sha256=AghGW22MgMsdHzdwdPMPYDj
15
15
  fbgemm_gpu/split_embedding_optimizer_ops.py,sha256=wXuGazClBMk62yL_r9udUIKaPgQP7SlkSb5ugB75wrQ,711
16
16
  fbgemm_gpu/split_embedding_utils.py,sha256=Gb40ZKeATxIKEKI3aVQMgDDBanNpKMc53Z43mnzdR_I,851
17
17
  fbgemm_gpu/split_table_batched_embeddings_ops.py,sha256=_MIp6uHYHLn4GxGdrGsfddfSsZ2Z9mjsYIrih3ncI1I,2339
18
- fbgemm_gpu/split_table_batched_embeddings_ops_common.py,sha256=76ME0692CC691xpjiOsY3Xxy-LD_XKs8w9vq1gcm9tM,16440
18
+ fbgemm_gpu/split_table_batched_embeddings_ops_common.py,sha256=Y7q0HbxTehMAYaow-A0MOAjsgyyB4PB31VGP4S_MDKc,17310
19
19
  fbgemm_gpu/split_table_batched_embeddings_ops_inference.py,sha256=dGC85xjQiRUrequBibSf9oMAVHT5Q49zsVo2zW4n_88,81679
20
- fbgemm_gpu/split_table_batched_embeddings_ops_training.py,sha256=f0sXfvkE0Wx0Rd3qTT4XmCbBK0wYgWGzhPncZEv-p48,180420
20
+ fbgemm_gpu/split_table_batched_embeddings_ops_training.py,sha256=sM4xXXU6p_clbPIRLO7UI5fnIcan8dt2FhL6KURZTQw,180438
21
21
  fbgemm_gpu/split_table_batched_embeddings_ops_training_common.py,sha256=e3O9ElaWBGvG7TdT3Ok_8cB06jhskXuyCQ0t40dzsEY,5449
22
22
  fbgemm_gpu/ssd_split_table_batched_embeddings_ops.py,sha256=7qGkO8FARku38mFYl4Bc4qL8dS1wrfyorS9l1m5ZAVA,718
23
23
  fbgemm_gpu/tbe_input_multiplexer.py,sha256=TQjwkJ2JkOaQsMYuRdk9RbNa9759EPEtx8bYclChtZY,3063
@@ -32,9 +32,9 @@ fbgemm_gpu/docs/merge_pooled_embedding_ops.py,sha256=oJLgSgZQmhsyGLbTmZTxNgQrk65
32
32
  fbgemm_gpu/docs/permute_pooled_embedding_ops.py,sha256=tZUqLVXlk5O6VAKKDA-OEMx2fCu5QPOOeoAPZA9_nLY,4454
33
33
  fbgemm_gpu/docs/quantize_ops.py,sha256=xTtOaVK1P02ymreE_i21YiyYDZCqhoZY9eWp_mEIRlo,1297
34
34
  fbgemm_gpu/docs/sparse_ops.py,sha256=gSLUFdnu8lle_6gLewFkM20wL3ek2jKLvDGMKR6POaY,27292
35
- fbgemm_gpu/docs/target.genai.json.py,sha256=8qUPmreVJ1_8egLGQELc4MkLwuD8aXPlYC2OfOCPJ3g,79
35
+ fbgemm_gpu/docs/target.genai.json.py,sha256=lnTGpquMN5G34NLn02Vfksm8F1T2UsoJ7fOnDUg1f9w,79
36
36
  fbgemm_gpu/experimental/example/__init__.py,sha256=OvJHZgWnycL1gWKyCXFJCTKuys3KAqx4iadjx3R-tBQ,723
37
- fbgemm_gpu/experimental/example/fbgemm_gpu_experimental_example_py.so,sha256=K70etfWeSleFOhfxXvSmpZMYBn_xmpvSxgdcGenvaKo,232488
37
+ fbgemm_gpu/experimental/example/fbgemm_gpu_experimental_example_py.so,sha256=d5yEUZZmFfjLNZmSi2vd-JlxouPL7OP_kNE_p3zbcvo,243904
38
38
  fbgemm_gpu/experimental/example/utils.py,sha256=Je__VkMlBMLOhh7NXOocOdvaa2gz9kl9Dkqeu25tpFA,562
39
39
  fbgemm_gpu/experimental/gemm/triton_gemm/__init__.py,sha256=1CqUfzlYyXTvU-BNaUq4RZpLV-2lKAVCAHeJzSIZFWw,419
40
40
  fbgemm_gpu/experimental/gemm/triton_gemm/fp4_quantize.py,sha256=2RjIDSzUXtoFoC2ryp-C-j5H83mbSjPwvsvTrThfrqE,215658
@@ -43,7 +43,7 @@ fbgemm_gpu/experimental/gemm/triton_gemm/grouped_gemm.py,sha256=rbjxTMefjQWgJrWK
43
43
  fbgemm_gpu/experimental/gemm/triton_gemm/matmul_perf_model.py,sha256=SltbY_dsit5e7B8lDIB_VYPrEq0t9kckthj9mQaVNfA,7571
44
44
  fbgemm_gpu/experimental/gemm/triton_gemm/utils.py,sha256=rULXIpVaaRS3GKUZ1RHcWUrUyy0xMVREwS1SFShGgcw,4302
45
45
  fbgemm_gpu/experimental/gen_ai/__init__.py,sha256=r3NlNCXuIh0pfKwKU5v14y6AZkpoIkKWbtzxSprgeKA,1713
46
- fbgemm_gpu/experimental/gen_ai/fbgemm_gpu_experimental_gen_ai.so,sha256=f1pv2D7fQM-XxvuDGUtLPN2ZTTbQIMNN7GE0AYaHF4g,74306608
46
+ fbgemm_gpu/experimental/gen_ai/fbgemm_gpu_experimental_gen_ai.so,sha256=pcOjuee-OJQJmo4z9Iw0QXYcSEh9RunalMpfZhwD-pQ,74888976
47
47
  fbgemm_gpu/experimental/gen_ai/quantize.py,sha256=KAljWSdN-1_c5DWfT-3MDxWLMULK49Yu36t6TmQI9Tw,12599
48
48
  fbgemm_gpu/experimental/gen_ai/attention/cutlass_blackwell_fmha/__init__.py,sha256=ntFgFs0foi6NQx8eqs5I3fCjzKSI0spXfEWiMhlcT00,897
49
49
  fbgemm_gpu/experimental/gen_ai/attention/cutlass_blackwell_fmha/cutlass_blackwell_fmha_custom_op.py,sha256=FADVTYzS2u8fA-3iChS5CbtWd0mWF8F3lnXcwr_7vDw,7821
@@ -99,7 +99,7 @@ fbgemm_gpu/tbe/cache/split_embeddings_cache_ops.py,sha256=vZHj7KIe1DoJDy5eft29Xt
99
99
  fbgemm_gpu/tbe/ssd/__init__.py,sha256=wzfMT10cp_dqK2lrebC449hOdexBnizcf_98lA1NyHs,483
100
100
  fbgemm_gpu/tbe/ssd/common.py,sha256=1J8K7sTQswgCYWaVwF-ZdCJj7mNN6O9GI70AaZWzJGE,1044
101
101
  fbgemm_gpu/tbe/ssd/inference.py,sha256=B_uX66ajGA9YKGlFa5TmGWs7b-b1RFigzwxmENZ9Oio,22816
102
- fbgemm_gpu/tbe/ssd/training.py,sha256=t_8AfKlajVNFAnn3hPST2e82P0dPxzXAsioxMBJ8jrY,199948
102
+ fbgemm_gpu/tbe/ssd/training.py,sha256=mKi5nC1p6p0ZFG0XBWDqzNDkxE-v2PzFnVI0SY7w9v4,199916
103
103
  fbgemm_gpu/tbe/ssd/utils/__init__.py,sha256=5DgmR2HA6NtmYh2ddkUgpDsZ6a7hF0DPedA1gMpdh18,250
104
104
  fbgemm_gpu/tbe/ssd/utils/partially_materialized_tensor.py,sha256=SFg2-29b-i49LWm-FlaWUkTz2XzXbicYi_AzVj4jKNE,7601
105
105
  fbgemm_gpu/tbe/stats/__init__.py,sha256=on29iDtq7cVNh90JR9aeFNG-K9DDoYq0JryzoplL49I,322
@@ -121,7 +121,7 @@ fbgemm_gpu/utils/loader.py,sha256=1hCEhNvkflniH46fGcrguLeP1z-6uyOu2QFwqKU5CIM,99
121
121
  fbgemm_gpu/utils/torch_library.py,sha256=ywsAHjbuwesj50LjEu99WkAH17FlaVgePZ9OmFg6YE4,4193
122
122
  list_versions/__init__.py,sha256=UmTeqCk-UJWFtlZQWvZao3xvui2w9E3X_JdOXVjRaNw,315
123
123
  list_versions/cli_run.py,sha256=CChZoXQ-tiKaWboXAYlPVJ5w8K5zAKiKcncA087I1sc,4508
124
- fbgemm_gpu_genai_nightly-2025.10.28.dist-info/METADATA,sha256=06TbYlUoKnFZX6E1ZpX2rcQaq4tSOj0kJxNOSQ2yO8M,2656
125
- fbgemm_gpu_genai_nightly-2025.10.28.dist-info/WHEEL,sha256=vUT1hK8fT5m5CAs5kDyQ_ABrvCmtd0TCp5-4vN9tR5A,108
126
- fbgemm_gpu_genai_nightly-2025.10.28.dist-info/top_level.txt,sha256=_2s1Aa08r_eDn0JP4FjOhzK09Q8bVlEI7q8pMep51UY,25
127
- fbgemm_gpu_genai_nightly-2025.10.28.dist-info/RECORD,,
124
+ fbgemm_gpu_genai_nightly-2025.10.31.dist-info/METADATA,sha256=vJe0nced-mx3C1Ti6JrR_9TXc-GSQHsDteKtvodR8jg,2656
125
+ fbgemm_gpu_genai_nightly-2025.10.31.dist-info/WHEEL,sha256=vUT1hK8fT5m5CAs5kDyQ_ABrvCmtd0TCp5-4vN9tR5A,108
126
+ fbgemm_gpu_genai_nightly-2025.10.31.dist-info/top_level.txt,sha256=_2s1Aa08r_eDn0JP4FjOhzK09Q8bVlEI7q8pMep51UY,25
127
+ fbgemm_gpu_genai_nightly-2025.10.31.dist-info/RECORD,,