fastlisaresponse 1.0.9__cp312-cp312-macosx_11_0_arm64.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of fastlisaresponse might be problematic. Click here for more details.

@@ -0,0 +1 @@
1
+ from .utility import get_overlap
@@ -0,0 +1,82 @@
1
+ import numpy as np
2
+
3
+ try:
4
+ import cupy as cp
5
+ from pyresponse import get_response_wrap as get_response_wrap_gpu
6
+ from pyresponse import get_tdi_delays_wrap as get_tdi_delays_wrap_gpu
7
+
8
+ gpu = True
9
+
10
+ except (ImportError, ModuleNotFoundError) as e:
11
+ import numpy as xp
12
+
13
+ gpu = False
14
+
15
+
16
+ def get_overlap(sig1, sig2, phase_maximize=False, use_gpu=False):
17
+ """Calculate the mismatch across TDI channels
18
+
19
+ Calculates the overlap between two sets of TDI observables in the time
20
+ domain. The overlap is complex allowing for the addition of overlap
21
+ over all channels. It can be phase maximized as well.
22
+
23
+ This function has GPU capabilities.
24
+
25
+ Args:
26
+ sig1 (list or xp.ndarray): TDI observables for first signal. Must be ``list`` of
27
+ ``xp.ndarray`` or a single ``xp.ndarray``. Must have same length as ``sig2`` in terms
28
+ of number of channels and length of the indivudal channels.
29
+ sig2 (list or xp.ndarray): TDI observables for second signal. Must be ``list`` of
30
+ ``xp.ndarray`` or a single ``xp.ndarray``. Must have same length as ``sig1`` in terms
31
+ of number of channels and length of the individual channels.
32
+ phase_maximize (bool, optional): If ``True``, maximize over the phase in the overlap.
33
+ This is equivalent to getting the magnitude of the phasor that is the complex
34
+ overlap. (Defaut: ``False``)
35
+ use_gpu (bool, optional): If ``True``, use the GPU. This sets ``xp=cupy``. If ``False,
36
+ use the CPU and set ``xp=numpy``.
37
+
38
+ Returns:
39
+ double: Overlap as a real value.
40
+
41
+ """
42
+
43
+ # choose right array library
44
+ if use_gpu:
45
+ xp = cp
46
+ else:
47
+ xp = np
48
+
49
+ # check inputs
50
+ if not isinstance(sig1, list):
51
+ if not isinstance(sig1, xp.ndarray):
52
+ raise ValueError("sig1 must be list of or single xp.ndarray.")
53
+
54
+ elif sig1.ndim < 2:
55
+ sig1 = [sig1]
56
+
57
+ if not isinstance(sig2, list):
58
+ if not isinstance(sig2, xp.ndarray):
59
+ raise ValueError("sig1 must be list of or single xp.ndarray.")
60
+
61
+ elif sig1.ndim < 2:
62
+ sig2 = [sig2]
63
+
64
+ assert len(sig1) == len(sig2)
65
+ assert len(sig1[0]) == len(sig2[0])
66
+
67
+ # complex overlap
68
+ overlap = 0.0 + 1j * 0.0
69
+ for sig1_i, sig2_i in zip(sig1, sig2):
70
+ overlap_i = np.dot(np.fft.rfft(sig1_i).conj(), np.fft.rfft(sig2_i)) / np.sqrt(
71
+ np.dot(np.fft.rfft(sig1_i).conj(), np.fft.rfft(sig1_i))
72
+ * np.dot(np.fft.rfft(sig2_i).conj(), np.fft.rfft(sig2_i))
73
+ )
74
+ overlap += overlap_i
75
+
76
+ overlap /= len(sig1)
77
+
78
+ if phase_maximize:
79
+ return np.abs(overlap)
80
+
81
+ else:
82
+ return overlap.real
@@ -0,0 +1,127 @@
1
+ Metadata-Version: 2.1
2
+ Name: fastlisaresponse
3
+ Version: 1.0.9
4
+ Home-page: https://github.com/mikekatz04/lisa-on-gpu
5
+ Author: Michael Katz
6
+ Author-email: mikekatz04@gmail.com
7
+ Classifier: Programming Language :: Python :: 3
8
+ Classifier: License :: OSI Approved :: GNU General Public License (GPL)
9
+ Classifier: Environment :: GPU :: NVIDIA CUDA
10
+ Classifier: Natural Language :: English
11
+ Classifier: Programming Language :: C++
12
+ Classifier: Programming Language :: Cython
13
+ Classifier: Programming Language :: Python :: 3.12
14
+ Requires-Python: >=3.6
15
+ Description-Content-Type: text/markdown
16
+
17
+ # fastlisaresponse: Generic LISA response function for GPUs
18
+
19
+ This code base provides a GPU-accelerated version of the generic time-domain LISA response function. The GPU-acceleration allows this code to be used directly in Parameter Estimation.
20
+
21
+ Please see the [documentation](https://mikekatz04.github.io/lisa-on-gpu/) for further information on these modules. The code can be found on Github [here](https://github.com/mikekatz04/lisa-on-gpu). It can be found on [Zenodo](https://zenodo.org/record/3981654#.XzS_KRNKjlw).
22
+
23
+ If you use all or any parts of this code, please cite [arXiv:2204.06633](https://arxiv.org/abs/2204.06633). See the [documentation](https://mikekatz04.github.io/lisa-on-gpu/) to properly cite specific modules.
24
+
25
+
26
+ ## Getting Started
27
+
28
+ Install with pip (CPU only for now):
29
+ ```
30
+ pip install fastlisaresponse
31
+ ```
32
+ To import fastlisaresponse:
33
+
34
+ ```
35
+ from fastlisaresponse import ResponseWrapper
36
+ ```
37
+
38
+ See [examples notebook](https://github.com/mikekatz04/lisa-on-gpu/blob/master/examples/fast_LISA_response_tutorial.ipynb).
39
+
40
+
41
+ ### Prerequisites
42
+
43
+ Now (version 1.0.9) `fastlisaresponse` requires the newest version of [LISA Analysis Tools](github.com/mikekatz04/LISAanalysistools). You can run `pip install lisaanalysistools`.
44
+
45
+ To install this software for CPU usage, you need Python >3.4 and NumPy. To run the examples, you will also need jupyter and matplotlib. We generally recommend installing everything, including gcc and g++ compilers, in the conda environment as is shown in the examples here. This generally helps avoid compilation and linking issues. If you use your own chosen compiler, you will need to make sure all necessary information is passed to the setup command (see below). You also may need to add information to the `setup.py` file.
46
+
47
+ To install this software for use with NVIDIA GPUs (compute capability >2.0), you need the [CUDA toolkit](https://docs.nvidia.com/cuda/cuda-installation-guide-linux/index.html) and [CuPy](https://cupy.chainer.org/). The CUDA toolkit must have cuda version >8.0. Be sure to properly install CuPy within the correct CUDA toolkit version. Make sure the nvcc binary is on `$PATH` or set it as the `CUDAHOME` environment variable.
48
+
49
+
50
+ ### Installing
51
+
52
+
53
+ Install with pip (CPU only for now):
54
+ ```
55
+ pip install fastlisaresponse
56
+ ```
57
+
58
+ To install from source:
59
+
60
+ 0) [Install Anaconda](https://docs.anaconda.com/anaconda/install/) if you do not have it.
61
+
62
+ 1) Create a virtual environment.
63
+
64
+ ```
65
+ conda create -n lisa_resp_env -c conda-forge gcc_linux-64 gxx_linux-64 numpy Cython scipy jupyter ipython h5py matplotlib python=3.12
66
+ conda activate lisa_resp_env
67
+ ```
68
+
69
+ If on MACOSX, substitute `gcc_linux-64` and `gxx_linus-64` with `clang_osx-64` and `clangxx_osx-64`.
70
+
71
+ If you want a faster install, you can install the python packages (numpy, Cython, scipy, tqdm, jupyter, ipython, h5py, requests, matplotlib) with pip.
72
+
73
+ 2) Clone the repository.
74
+
75
+ ```
76
+ git clone https://github.com/mikekatz04/lisa-on-gpu.git
77
+ cd lisa-on-gpu
78
+ ```
79
+
80
+ 3) If using GPUs, use pip to [install cupy](https://docs-cupy.chainer.org/en/stable/install.html).
81
+
82
+ ```
83
+ pip install cupy-12x
84
+ ```
85
+
86
+ 4) Run install. Make sure CUDA is on your PATH.
87
+
88
+ ```
89
+ python scripts/prebuild.py
90
+ pip install .
91
+ ```
92
+
93
+ ## Running the Tests
94
+
95
+ Run the example notebook or the tests using `unittest` from the main directory of the code:
96
+ ```
97
+ python -m unittest discover
98
+ ```
99
+
100
+ ## Contributing
101
+
102
+ Please read [CONTRIBUTING.md](CONTRIBUTING.md) for details on our code of conduct, and the process for submitting pull requests to us.
103
+
104
+ ## Versioning
105
+
106
+ We use [SemVer](http://semver.org/) for versioning. For the versions available, see the [tags on this repository](https://github.com/mikekatz04/lisa-on-gpu/tags).
107
+
108
+ Current Version: 1.0.9
109
+
110
+ ## Authors
111
+
112
+ * **Michael Katz**
113
+ * Jean-Baptiste Bayle
114
+ * Alvin J. K. Chua
115
+ * Michele Vallisneri
116
+
117
+ ### Contibutors
118
+
119
+ * Maybe you!
120
+
121
+ ## License
122
+
123
+ This project is licensed under the GNU License - see the [LICENSE.md](LICENSE.md) file for details.
124
+
125
+ ## Acknowledgments
126
+
127
+ * It was also supported in part through the computational resources and staff contributions provided for the Quest/Grail high performance computing facility at Northwestern University.
@@ -0,0 +1,17 @@
1
+ fastlisaresponse/__init__.py,sha256=wwmiIBy9IuFwoc4jQyJVkJBhjB8B1XZjerTe_E8FkI8,53
2
+ fastlisaresponse/_version.py,sha256=q2ACMkQx0Hm5xKo2YKJFBE7rTruciTSIN6AvWWL9nB8,22
3
+ fastlisaresponse/pointer_adjust.py,sha256=TjcSehyffLxwgJnrAmcFlPvxXb3XPElMoHXLBOQN-PI,736
4
+ fastlisaresponse/response.py,sha256=_dHVDuSTbUhxnUW_gmweAJ0M-jLgPZMvZpVQmkx2eiE,28665
5
+ fastlisaresponse/cutils/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
6
+ fastlisaresponse/cutils/pyresponse_cpu.cpython-312-darwin.so,sha256=lO19JH-noRl8llH7by9hkryurZ9RKsHBLKz0LMM5CCk,126136
7
+ fastlisaresponse/cutils/include/LISAResponse.hh,sha256=mbWEq31Q98PR7XCzhb6SqmygJrXGcQK_fs3sHbmZNe8,1024
8
+ fastlisaresponse/cutils/include/cuda_complex.hpp,sha256=qjBjBf5ctvcKYtMPO2ngqTi6qgq6xsnalFwaZG_NLTw,37562
9
+ fastlisaresponse/cutils/src/LISAResponse.cpp,sha256=AfIdBpwTVtwtpL0Rf2p6WB_XG4YZhII6_z66ldedtuE,29994
10
+ fastlisaresponse/cutils/src/LISAResponse.cu,sha256=AfIdBpwTVtwtpL0Rf2p6WB_XG4YZhII6_z66ldedtuE,29994
11
+ fastlisaresponse/cutils/src/responselisa.pyx,sha256=RexvhiGcb2fK_i1YIQMQxGZLKfJYukn59Hd3wOkZqHw,3075
12
+ fastlisaresponse/utils/__init__.py,sha256=pf2NmWKs_uQNzlyA5iNO1gTRDISKNmIIsvOcKqQ3hgw,33
13
+ fastlisaresponse/utils/utility.py,sha256=NrJdBmEnLkLPk6Ile1TZg8jNLw6xERiSp58iGVlz01s,2709
14
+ fastlisaresponse-1.0.9.dist-info/METADATA,sha256=tuXk6U6D0TM0nR--57ONepNeRKzRX_LdiBYR2gf9M38,4727
15
+ fastlisaresponse-1.0.9.dist-info/WHEEL,sha256=7Wd-yga4fjSiXpUH443rsPZpiZ4h8-uNrXJrYRW_e14,109
16
+ fastlisaresponse-1.0.9.dist-info/top_level.txt,sha256=J4M7Xx_52RqYZrLf99ryAbQjq8GbVjgZdhxekkYw8lg,17
17
+ fastlisaresponse-1.0.9.dist-info/RECORD,,
@@ -0,0 +1,5 @@
1
+ Wheel-Version: 1.0
2
+ Generator: setuptools (75.6.0)
3
+ Root-Is-Purelib: false
4
+ Tag: cp312-cp312-macosx_11_0_arm64
5
+
@@ -0,0 +1 @@
1
+ fastlisaresponse