fastlisaresponse 1.0.4__cp312-cp312-macosx_10_9_x86_64.whl → 1.0.6__cp312-cp312-macosx_10_9_x86_64.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of fastlisaresponse might be problematic. Click here for more details.

@@ -1 +1 @@
1
- __version__ = '1.0.4'
1
+ __version__ = '1.0.6'
@@ -219,6 +219,7 @@ class pyResponseTDI(object):
219
219
  orbits = EqualArmlengthOrbits()
220
220
 
221
221
  assert isinstance(orbits, Orbits)
222
+ assert orbits.use_gpu == self.use_gpu
222
223
 
223
224
  self._tdi_orbits = deepcopy(orbits)
224
225
 
@@ -644,6 +645,9 @@ class ResponseWrapper:
644
645
  the number of points, ``n``, from ``int(T/dt)`` to the ``n_overide``. This is used
645
646
  if there is an issue matching points between the waveform generator and the response
646
647
  model.
648
+ orbits (:class:`Orbits`, optional): Orbits class from LISA Analysis Tools. Works with LISA Orbits
649
+ outputs: `lisa-simulation.pages.in2p3.fr/orbits/ <https://lisa-simulation.pages.in2p3.fr/orbits/latest/>`_.
650
+ (default: :class:`EqualArmlengthOrbits`)
647
651
  **kwargs (dict, optional): Keyword arguments passed to :class:`pyResponseTDI`.
648
652
 
649
653
  """
@@ -71,9 +71,10 @@ def get_overlap(sig1, sig2, phase_maximize=False, use_gpu=False):
71
71
  np.dot(np.fft.rfft(sig1_i).conj(), np.fft.rfft(sig1_i))
72
72
  * np.dot(np.fft.rfft(sig2_i).conj(), np.fft.rfft(sig2_i))
73
73
  )
74
-
75
74
  overlap += overlap_i
76
75
 
76
+ overlap /= len(sig1)
77
+
77
78
  if phase_maximize:
78
79
  return np.abs(overlap)
79
80
 
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.1
2
2
  Name: fastlisaresponse
3
- Version: 1.0.4
3
+ Version: 1.0.6
4
4
  Home-page: https://github.com/mikekatz04/lisa-on-gpu
5
5
  Author: Michael Katz
6
6
  Author-email: mikekatz04@gmail.com
@@ -18,41 +18,18 @@ Description-Content-Type: text/markdown
18
18
 
19
19
  This code base provides a GPU-accelerated version of the generic time-domain LISA response function. The GPU-acceleration allows this code to be used directly in Parameter Estimation.
20
20
 
21
- Please see the [documentation](https://mikekatz04.github.io/lisa-on-gpu/) for further information on these modules. The code can be found on Github [here](https://github.com/mikekatz04/lisa-on-gpu). It can be found on # TODO fix [Zenodo](https://zenodo.org/record/3981654#.XzS_KRNKjlw).
21
+ Please see the [documentation](https://mikekatz04.github.io/lisa-on-gpu/) for further information on these modules. The code can be found on Github [here](https://github.com/mikekatz04/lisa-on-gpu). It can be found on [Zenodo](https://zenodo.org/record/3981654#.XzS_KRNKjlw).
22
22
 
23
23
  If you use all or any parts of this code, please cite [arXiv:2204.06633](https://arxiv.org/abs/2204.06633). See the [documentation](https://mikekatz04.github.io/lisa-on-gpu/) to properly cite specific modules.
24
24
 
25
- **Warning**: newest version (1.0.4) of code with `lisatools` orbits needs detailed testing before deployed for a paper.
26
25
 
27
26
  ## Getting Started
28
27
 
29
- Below is a quick set of instructions to get you started with `fastlisaresponse`.
30
-
31
- 0) [Install Anaconda](https://docs.anaconda.com/anaconda/install/) if you do not have it.
32
-
33
- 1) Create a virtual environment. **Note**: There is no available `conda` compiler for Windows. If you want to install for Windows, you will probably need to add libraries and include paths to the `setup.py` file.
34
-
35
- ```
36
- conda create -n lisa_env -c conda-forge gcc_linux-64 gxx_linux-64 numpy Cython scipy jupyter ipython h5py matplotlib python=3.9
37
- conda activate lisa_env
38
- ```
39
-
40
- If on MACOSX, substitute `gcc_linux-64` and `gxx_linus-64` with `clang_osx-64` and `clangxx_osx-64`.
41
-
42
- 2) Clone the repository.
43
-
44
- ```
45
- git clone https://github.com/mikekatz04/lisa-on-gpu.git
46
- cd lisa-on-gpu
28
+ Install with pip (CPU only for now):
47
29
  ```
48
-
49
- 3) Run install.
50
-
30
+ pip install fastlisaresponse
51
31
  ```
52
- python setup.py install
53
- ```
54
-
55
- 4) To import fastlisaresponse:
32
+ To import fastlisaresponse:
56
33
 
57
34
  ```
58
35
  from fastlisaresponse import ResponseWrapper
@@ -63,6 +40,8 @@ See [examples notebook](https://github.com/mikekatz04/lisa-on-gpu/blob/master/ex
63
40
 
64
41
  ### Prerequisites
65
42
 
43
+ Now (version 1.0.6) `fastlisaresponse` requires the newest version of [LISA Analysis Tools](github.com/mikekatz04/LISAanalysistools). You can run `pip install lisaanalysistools`.
44
+
66
45
  To install this software for CPU usage, you need Python >3.4 and NumPy. To run the examples, you will also need jupyter and matplotlib. We generally recommend installing everything, including gcc and g++ compilers, in the conda environment as is shown in the examples here. This generally helps avoid compilation and linking issues. If you use your own chosen compiler, you will need to make sure all necessary information is passed to the setup command (see below). You also may need to add information to the `setup.py` file.
67
46
 
68
47
  To install this software for use with NVIDIA GPUs (compute capability >2.0), you need the [CUDA toolkit](https://docs.nvidia.com/cuda/cuda-installation-guide-linux/index.html) and [CuPy](https://cupy.chainer.org/). The CUDA toolkit must have cuda version >8.0. Be sure to properly install CuPy within the correct CUDA toolkit version. Make sure the nvcc binary is on `$PATH` or set it as the `CUDAHOME` environment variable.
@@ -71,13 +50,20 @@ To install this software for use with NVIDIA GPUs (compute capability >2.0), you
71
50
  ### Installing
72
51
 
73
52
 
53
+ Install with pip (CPU only for now):
54
+ ```
55
+ pip install fastlisaresponse
56
+ ```
57
+
58
+ To install from source:
59
+
74
60
  0) [Install Anaconda](https://docs.anaconda.com/anaconda/install/) if you do not have it.
75
61
 
76
62
  1) Create a virtual environment.
77
63
 
78
64
  ```
79
- conda create -n lisa_env -c conda-forge gcc_linux-64 gxx_linux-64 numpy Cython scipy jupyter ipython h5py matplotlib python=3.9
80
- conda activate few_env
65
+ conda create -n lisa_resp_env -c conda-forge gcc_linux-64 gxx_linux-64 numpy Cython scipy jupyter ipython h5py matplotlib python=3.12
66
+ conda activate lisa_resp_env
81
67
  ```
82
68
 
83
69
  If on MACOSX, substitute `gcc_linux-64` and `gxx_linus-64` with `clang_osx-64` and `clangxx_osx-64`.
@@ -87,26 +73,29 @@ conda activate few_env
87
73
  2) Clone the repository.
88
74
 
89
75
  ```
90
- git clone https://github.com/BlackHolePerturbationToolkit/FastEMRIWaveforms.git
91
- cd FastEMRIWaveforms
76
+ git clone https://github.com/mikekatz04/lisa-on-gpu.git
77
+ cd lisa-on-gpu
92
78
  ```
93
79
 
94
- 3) If using GPUs, use pip to [install cupy](https://docs-cupy.chainer.org/en/stable/install.html). If you have cuda version 9.2, for example:
80
+ 3) If using GPUs, use pip to [install cupy](https://docs-cupy.chainer.org/en/stable/install.html).
95
81
 
96
82
  ```
97
- pip install cupy-cuda92
83
+ pip install cupy-12x
98
84
  ```
99
85
 
100
86
  4) Run install. Make sure CUDA is on your PATH.
101
87
 
102
88
  ```
103
- python setup.py install
89
+ python scripts/prebuild.py
90
+ pip install .
104
91
  ```
105
92
 
106
93
  ## Running the Tests
107
94
 
108
- Since the code package in minimal in size, the example notebook should be run to verify it is running correctly.
109
-
95
+ Run the example notebook or the tests using `unittest` from the main directory of the code:
96
+ ```
97
+ python -m unittest discover
98
+ ```
110
99
 
111
100
  ## Contributing
112
101
 
@@ -116,7 +105,7 @@ Please read [CONTRIBUTING.md](CONTRIBUTING.md) for details on our code of conduc
116
105
 
117
106
  We use [SemVer](http://semver.org/) for versioning. For the versions available, see the [tags on this repository](https://github.com/mikekatz04/lisa-on-gpu/tags).
118
107
 
119
- Current Version: 1.0.4
108
+ Current Version: 1.0.6
120
109
 
121
110
  ## Authors
122
111
 
@@ -0,0 +1,11 @@
1
+ pyresponse_cpu.cpython-312-darwin.so,sha256=c57KsIbWmFEKC4ojqWL-Qg2oUapg41micwnl20IDQbk,91896
2
+ fastlisaresponse/__init__.py,sha256=wwmiIBy9IuFwoc4jQyJVkJBhjB8B1XZjerTe_E8FkI8,53
3
+ fastlisaresponse/_version.py,sha256=zrUEHc9dmvLJ5ka5maZk9TTHoZ21dwKsENXeOSwXM3o,21
4
+ fastlisaresponse/pointer_adjust.py,sha256=TjcSehyffLxwgJnrAmcFlPvxXb3XPElMoHXLBOQN-PI,736
5
+ fastlisaresponse/response.py,sha256=WNxw1a4JXikePAss0KUMf4bIz86gFh370Klm0DAbUAs,28553
6
+ fastlisaresponse/utils/__init__.py,sha256=pf2NmWKs_uQNzlyA5iNO1gTRDISKNmIIsvOcKqQ3hgw,33
7
+ fastlisaresponse/utils/utility.py,sha256=NrJdBmEnLkLPk6Ile1TZg8jNLw6xERiSp58iGVlz01s,2709
8
+ fastlisaresponse-1.0.6.dist-info/METADATA,sha256=Ndiz0mRY9NAaVw3vwW-CyPWvQX4F1mPueTH0sI_yC40,4728
9
+ fastlisaresponse-1.0.6.dist-info/WHEEL,sha256=wTFHiv6xiwExbw_CBGcw1b3hAKzFq_QaWIv4Plh5P0w,110
10
+ fastlisaresponse-1.0.6.dist-info/top_level.txt,sha256=xbAh3KhbfqEkGUbhVISA5j-Qx62Bwy7szKCZGg5WZWA,32
11
+ fastlisaresponse-1.0.6.dist-info/RECORD,,
@@ -1,5 +1,5 @@
1
1
  Wheel-Version: 1.0
2
- Generator: bdist_wheel (0.43.0)
2
+ Generator: setuptools (72.1.0)
3
3
  Root-Is-Purelib: false
4
4
  Tag: cp312-cp312-macosx_10_9_x86_64
5
5
 
Binary file
@@ -1,12 +0,0 @@
1
- pyresponse_cpu.cpython-312-darwin.so,sha256=GHg6L719XKyia88di9NLlOD28HEpddvZlhGKZ48QXv0,91584
2
- fastlisaresponse/__init__.py,sha256=wwmiIBy9IuFwoc4jQyJVkJBhjB8B1XZjerTe_E8FkI8,53
3
- fastlisaresponse/_version.py,sha256=Oi2b5pm3sFbESQW0xgj8kqwDPX_Hxmx4gNILYpLzYqI,21
4
- fastlisaresponse/pointer_adjust.py,sha256=TjcSehyffLxwgJnrAmcFlPvxXb3XPElMoHXLBOQN-PI,736
5
- fastlisaresponse/response.py,sha256=3t_orbg4XIo5pgQ1YSyXacx3HIzV-Zd_5jbaYgG3qRw,28228
6
- fastlisaresponse/cutils/detector.cpython-312-darwin.so,sha256=jC7Tptn_1mZtkfkDGh1htxhbZd5JdamfjEbKejo9FHo,121952
7
- fastlisaresponse/utils/__init__.py,sha256=pf2NmWKs_uQNzlyA5iNO1gTRDISKNmIIsvOcKqQ3hgw,33
8
- fastlisaresponse/utils/utility.py,sha256=uhu827ZNwMHfccD9aLRNG_yIwcfK5a3aaAJ7RSRAun4,2684
9
- fastlisaresponse-1.0.4.dist-info/METADATA,sha256=pThAUvHPXy1N_6qmMphW1-1ZOZ8065MxDpyFoL9RjBM,5350
10
- fastlisaresponse-1.0.4.dist-info/WHEEL,sha256=KYtn_mzb_QwZSHwPlosUO3fDl70znfUFngLlrLVHeBY,111
11
- fastlisaresponse-1.0.4.dist-info/top_level.txt,sha256=xbAh3KhbfqEkGUbhVISA5j-Qx62Bwy7szKCZGg5WZWA,32
12
- fastlisaresponse-1.0.4.dist-info/RECORD,,