fast-sentence-segment 0.1.9__py3-none-any.whl → 1.2.0__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- fast_sentence_segment/__init__.py +18 -18
- fast_sentence_segment/bp/__init__.py +1 -1
- fast_sentence_segment/bp/segmenter.py +65 -68
- fast_sentence_segment/cli.py +56 -0
- fast_sentence_segment/core/__init__.py +4 -0
- fast_sentence_segment/core/base_object.py +18 -0
- fast_sentence_segment/core/stopwatch.py +38 -0
- fast_sentence_segment/dmo/__init__.py +10 -6
- fast_sentence_segment/dmo/abbreviation_merger.py +146 -0
- fast_sentence_segment/dmo/abbreviation_splitter.py +95 -0
- fast_sentence_segment/dmo/abbreviations.py +96 -0
- fast_sentence_segment/dmo/bullet_point_cleaner.py +55 -55
- fast_sentence_segment/dmo/ellipsis_normalizer.py +45 -0
- fast_sentence_segment/dmo/newlines_to_periods.py +57 -57
- fast_sentence_segment/dmo/numbered_list_normalizer.py +47 -53
- fast_sentence_segment/dmo/post_process_sentences.py +48 -48
- fast_sentence_segment/dmo/question_exclamation_splitter.py +59 -0
- fast_sentence_segment/dmo/spacy_doc_segmenter.py +101 -101
- fast_sentence_segment/dmo/title_name_merger.py +152 -0
- fast_sentence_segment/svc/__init__.py +2 -2
- fast_sentence_segment/svc/perform_paragraph_segmentation.py +50 -50
- fast_sentence_segment/svc/perform_sentence_segmentation.py +165 -129
- fast_sentence_segment-1.2.0.dist-info/METADATA +189 -0
- fast_sentence_segment-1.2.0.dist-info/RECORD +27 -0
- {fast_sentence_segment-0.1.9.dist-info → fast_sentence_segment-1.2.0.dist-info}/WHEEL +1 -1
- fast_sentence_segment-1.2.0.dist-info/entry_points.txt +3 -0
- fast_sentence_segment-1.2.0.dist-info/licenses/LICENSE +21 -0
- fast_sentence_segment/dmo/delimiters_to_periods.py +0 -37
- fast_sentence_segment-0.1.9.dist-info/METADATA +0 -54
- fast_sentence_segment-0.1.9.dist-info/RECORD +0 -16
|
@@ -1,129 +1,165 @@
|
|
|
1
|
-
#!/usr/bin/env python
|
|
2
|
-
# -*- coding: UTF-8 -*-
|
|
3
|
-
""" Sentence Segmentation """
|
|
4
|
-
|
|
5
|
-
|
|
6
|
-
import spacy
|
|
7
|
-
|
|
8
|
-
from
|
|
9
|
-
|
|
10
|
-
from fast_sentence_segment.dmo import
|
|
11
|
-
from fast_sentence_segment.dmo import
|
|
12
|
-
from fast_sentence_segment.dmo import
|
|
13
|
-
from fast_sentence_segment.dmo import
|
|
14
|
-
from fast_sentence_segment.dmo import
|
|
15
|
-
from fast_sentence_segment.dmo import
|
|
16
|
-
|
|
17
|
-
|
|
18
|
-
|
|
19
|
-
|
|
20
|
-
|
|
21
|
-
|
|
22
|
-
|
|
23
|
-
|
|
24
|
-
|
|
25
|
-
|
|
26
|
-
|
|
27
|
-
|
|
28
|
-
|
|
29
|
-
|
|
30
|
-
|
|
31
|
-
|
|
32
|
-
|
|
33
|
-
|
|
34
|
-
|
|
35
|
-
|
|
36
|
-
|
|
37
|
-
|
|
38
|
-
|
|
39
|
-
|
|
40
|
-
|
|
41
|
-
|
|
42
|
-
|
|
43
|
-
|
|
44
|
-
self
|
|
45
|
-
|
|
46
|
-
|
|
47
|
-
|
|
48
|
-
|
|
49
|
-
|
|
50
|
-
|
|
51
|
-
|
|
52
|
-
|
|
53
|
-
|
|
54
|
-
|
|
55
|
-
|
|
56
|
-
|
|
57
|
-
|
|
58
|
-
|
|
59
|
-
|
|
60
|
-
|
|
61
|
-
|
|
62
|
-
|
|
63
|
-
|
|
64
|
-
|
|
65
|
-
|
|
66
|
-
|
|
67
|
-
|
|
68
|
-
|
|
69
|
-
|
|
70
|
-
|
|
71
|
-
|
|
72
|
-
|
|
73
|
-
|
|
74
|
-
|
|
75
|
-
|
|
76
|
-
input_text=input_text)
|
|
77
|
-
|
|
78
|
-
|
|
79
|
-
|
|
80
|
-
|
|
81
|
-
|
|
82
|
-
|
|
83
|
-
|
|
84
|
-
|
|
85
|
-
|
|
86
|
-
|
|
87
|
-
|
|
88
|
-
|
|
89
|
-
|
|
90
|
-
|
|
91
|
-
|
|
92
|
-
|
|
93
|
-
|
|
94
|
-
|
|
95
|
-
|
|
96
|
-
|
|
97
|
-
|
|
98
|
-
|
|
99
|
-
|
|
100
|
-
|
|
101
|
-
|
|
102
|
-
|
|
103
|
-
|
|
104
|
-
|
|
105
|
-
|
|
106
|
-
|
|
107
|
-
|
|
108
|
-
|
|
109
|
-
|
|
110
|
-
|
|
111
|
-
|
|
112
|
-
|
|
113
|
-
|
|
114
|
-
|
|
115
|
-
|
|
116
|
-
|
|
117
|
-
|
|
118
|
-
|
|
119
|
-
|
|
120
|
-
|
|
121
|
-
|
|
122
|
-
|
|
123
|
-
|
|
124
|
-
|
|
125
|
-
|
|
126
|
-
|
|
127
|
-
|
|
128
|
-
|
|
129
|
-
|
|
1
|
+
#!/usr/bin/env python
|
|
2
|
+
# -*- coding: UTF-8 -*-
|
|
3
|
+
""" Sentence Segmentation """
|
|
4
|
+
|
|
5
|
+
|
|
6
|
+
import spacy
|
|
7
|
+
|
|
8
|
+
from fast_sentence_segment.core import BaseObject
|
|
9
|
+
|
|
10
|
+
from fast_sentence_segment.dmo import AbbreviationMerger
|
|
11
|
+
from fast_sentence_segment.dmo import AbbreviationSplitter
|
|
12
|
+
from fast_sentence_segment.dmo import TitleNameMerger
|
|
13
|
+
from fast_sentence_segment.dmo import EllipsisNormalizer
|
|
14
|
+
from fast_sentence_segment.dmo import NewlinesToPeriods
|
|
15
|
+
from fast_sentence_segment.dmo import BulletPointCleaner
|
|
16
|
+
from fast_sentence_segment.dmo import NumberedListNormalizer
|
|
17
|
+
from fast_sentence_segment.dmo import QuestionExclamationSplitter
|
|
18
|
+
from fast_sentence_segment.dmo import SpacyDocSegmenter
|
|
19
|
+
from fast_sentence_segment.dmo import PostProcessStructure
|
|
20
|
+
|
|
21
|
+
|
|
22
|
+
class PerformSentenceSegmentation(BaseObject):
|
|
23
|
+
""" Sentence Segmentation """
|
|
24
|
+
|
|
25
|
+
__nlp = None
|
|
26
|
+
|
|
27
|
+
def __init__(self):
|
|
28
|
+
""" Change Log
|
|
29
|
+
|
|
30
|
+
Created:
|
|
31
|
+
30-Sept-2021
|
|
32
|
+
craigtrim@gmail.com
|
|
33
|
+
Updated:
|
|
34
|
+
19-Oct-2022
|
|
35
|
+
craigtrim@gmail.com
|
|
36
|
+
* add numbered-list normalization
|
|
37
|
+
https://github.com/craigtrim/fast-sentence-segment/issues/1
|
|
38
|
+
Updated:
|
|
39
|
+
27-Dec-2024
|
|
40
|
+
craigtrim@gmail.com
|
|
41
|
+
* add abbreviation-aware sentence splitting
|
|
42
|
+
https://github.com/craigtrim/fast-sentence-segment/issues/3
|
|
43
|
+
"""
|
|
44
|
+
BaseObject.__init__(self, __name__)
|
|
45
|
+
if not self.__nlp:
|
|
46
|
+
self.__nlp = spacy.load("en_core_web_sm")
|
|
47
|
+
|
|
48
|
+
self._newlines_to_periods = NewlinesToPeriods.process
|
|
49
|
+
self._normalize_numbered_lists = NumberedListNormalizer().process
|
|
50
|
+
self._normalize_ellipses = EllipsisNormalizer().process
|
|
51
|
+
self._clean_bullet_points = BulletPointCleaner.process
|
|
52
|
+
self._spacy_segmenter = SpacyDocSegmenter(self.__nlp).process
|
|
53
|
+
self._abbreviation_merger = AbbreviationMerger().process
|
|
54
|
+
self._abbreviation_splitter = AbbreviationSplitter().process
|
|
55
|
+
self._question_exclamation_splitter = QuestionExclamationSplitter().process
|
|
56
|
+
self._title_name_merger = TitleNameMerger().process
|
|
57
|
+
self._post_process = PostProcessStructure().process
|
|
58
|
+
|
|
59
|
+
def _denormalize(self, text: str) -> str:
|
|
60
|
+
""" Restore normalized placeholders to original form """
|
|
61
|
+
text = self._normalize_numbered_lists(text, denormalize=True)
|
|
62
|
+
text = self._normalize_ellipses(text, denormalize=True)
|
|
63
|
+
return text
|
|
64
|
+
|
|
65
|
+
@staticmethod
|
|
66
|
+
def _has_sentence_punct(text: str) -> bool:
|
|
67
|
+
""" Check if text has sentence-ending punctuation """
|
|
68
|
+
return "." in text or "?" in text or "!" in text
|
|
69
|
+
|
|
70
|
+
@staticmethod
|
|
71
|
+
def _clean_punctuation(input_text: str) -> str:
|
|
72
|
+
""" Purpose:
|
|
73
|
+
Clean punctuation oddities; this is likely highly overfitted (for now)
|
|
74
|
+
"""
|
|
75
|
+
if ", Inc" in input_text:
|
|
76
|
+
input_text = input_text.replace(", Inc", " Inc")
|
|
77
|
+
|
|
78
|
+
return input_text
|
|
79
|
+
|
|
80
|
+
@staticmethod
|
|
81
|
+
def _clean_spacing(a_sentence: str) -> str:
|
|
82
|
+
|
|
83
|
+
# eliminate triple-space
|
|
84
|
+
a_sentence = a_sentence.replace(' ', ' ')
|
|
85
|
+
|
|
86
|
+
# treat double-space as delimiter
|
|
87
|
+
a_sentence = a_sentence.replace(' ', '. ')
|
|
88
|
+
|
|
89
|
+
return a_sentence
|
|
90
|
+
|
|
91
|
+
def _process(self,
|
|
92
|
+
input_text: str) -> list:
|
|
93
|
+
|
|
94
|
+
# Normalize tabs to spaces
|
|
95
|
+
input_text = input_text.replace('\t', ' ')
|
|
96
|
+
|
|
97
|
+
input_text = self._normalize_numbered_lists(input_text)
|
|
98
|
+
input_text = self._normalize_ellipses(input_text)
|
|
99
|
+
|
|
100
|
+
input_text = self._newlines_to_periods(input_text)
|
|
101
|
+
|
|
102
|
+
input_text = self._clean_spacing(input_text)
|
|
103
|
+
if not self._has_sentence_punct(input_text):
|
|
104
|
+
return [self._denormalize(input_text)]
|
|
105
|
+
|
|
106
|
+
input_text = self._clean_bullet_points(input_text)
|
|
107
|
+
if not self._has_sentence_punct(input_text):
|
|
108
|
+
return [self._denormalize(input_text)]
|
|
109
|
+
|
|
110
|
+
input_text = self._clean_punctuation(input_text)
|
|
111
|
+
if not self._has_sentence_punct(input_text):
|
|
112
|
+
return [self._denormalize(input_text)]
|
|
113
|
+
|
|
114
|
+
sentences = self._spacy_segmenter(input_text)
|
|
115
|
+
if not self._has_sentence_punct(input_text):
|
|
116
|
+
return [self._denormalize(input_text)]
|
|
117
|
+
|
|
118
|
+
# Merge sentences incorrectly split at abbreviations (issue #3)
|
|
119
|
+
sentences = self._abbreviation_merger(sentences)
|
|
120
|
+
|
|
121
|
+
# Merge title + single-word name splits (e.g., "Dr." + "Who?" -> "Dr. Who?")
|
|
122
|
+
sentences = self._title_name_merger(sentences)
|
|
123
|
+
|
|
124
|
+
# Split sentences at abbreviation boundaries (issue #3)
|
|
125
|
+
sentences = self._abbreviation_splitter(sentences)
|
|
126
|
+
|
|
127
|
+
# Split sentences at ? and ! boundaries (issue #3)
|
|
128
|
+
sentences = self._question_exclamation_splitter(sentences)
|
|
129
|
+
|
|
130
|
+
sentences = self._post_process(sentences)
|
|
131
|
+
|
|
132
|
+
sentences = [
|
|
133
|
+
self._normalize_numbered_lists(x, denormalize=True)
|
|
134
|
+
for x in sentences
|
|
135
|
+
]
|
|
136
|
+
sentences = [
|
|
137
|
+
self._normalize_ellipses(x, denormalize=True)
|
|
138
|
+
for x in sentences
|
|
139
|
+
]
|
|
140
|
+
|
|
141
|
+
return sentences
|
|
142
|
+
|
|
143
|
+
def process(self,
|
|
144
|
+
input_text: str) -> list:
|
|
145
|
+
"""Perform Sentence Segmentation
|
|
146
|
+
|
|
147
|
+
Args:
|
|
148
|
+
input_text (str): An input string of any length or type
|
|
149
|
+
|
|
150
|
+
Raises:
|
|
151
|
+
ValueError: input must be a string
|
|
152
|
+
|
|
153
|
+
Returns:
|
|
154
|
+
list: a list of sentences
|
|
155
|
+
each list item is an input string of any length, but is a semantic sentence
|
|
156
|
+
"""
|
|
157
|
+
|
|
158
|
+
if input_text is None or not len(input_text):
|
|
159
|
+
raise ValueError("Empty Input")
|
|
160
|
+
|
|
161
|
+
if not isinstance(input_text, str):
|
|
162
|
+
self.logger.warning(f"Invalid Input Text: {input_text}")
|
|
163
|
+
return []
|
|
164
|
+
|
|
165
|
+
return self._process(input_text)
|
|
@@ -0,0 +1,189 @@
|
|
|
1
|
+
Metadata-Version: 2.4
|
|
2
|
+
Name: fast-sentence-segment
|
|
3
|
+
Version: 1.2.0
|
|
4
|
+
Summary: Fast and Efficient Sentence Segmentation
|
|
5
|
+
License: MIT
|
|
6
|
+
License-File: LICENSE
|
|
7
|
+
Keywords: nlp,text,preprocess,segment
|
|
8
|
+
Author: Craig Trim
|
|
9
|
+
Author-email: craigtrim@gmail.com
|
|
10
|
+
Maintainer: Craig Trim
|
|
11
|
+
Maintainer-email: craigtrim@gmail.com
|
|
12
|
+
Requires-Python: >=3.9,<4.0
|
|
13
|
+
Classifier: Development Status :: 4 - Beta
|
|
14
|
+
Classifier: License :: OSI Approved :: MIT License
|
|
15
|
+
Classifier: Programming Language :: Python :: 3
|
|
16
|
+
Classifier: Programming Language :: Python :: 3.9
|
|
17
|
+
Classifier: Programming Language :: Python :: 3.10
|
|
18
|
+
Classifier: Programming Language :: Python :: 3.11
|
|
19
|
+
Classifier: Programming Language :: Python :: 3.12
|
|
20
|
+
Classifier: Programming Language :: Python :: 3.13
|
|
21
|
+
Classifier: Programming Language :: Python :: 3.14
|
|
22
|
+
Classifier: Topic :: Software Development :: Libraries :: Python Modules
|
|
23
|
+
Requires-Dist: spacy (>=3.8.0,<4.0.0)
|
|
24
|
+
Project-URL: Bug Tracker, https://github.com/craigtrim/fast-sentence-segment/issues
|
|
25
|
+
Project-URL: Repository, https://github.com/craigtrim/fast-sentence-segment
|
|
26
|
+
Description-Content-Type: text/markdown
|
|
27
|
+
|
|
28
|
+
# Fast Sentence Segmentation
|
|
29
|
+
|
|
30
|
+
[](https://pypi.org/project/fast-sentence-segment/)
|
|
31
|
+
[](https://pypi.org/project/fast-sentence-segment/)
|
|
32
|
+
[](https://opensource.org/licenses/MIT)
|
|
33
|
+
[](https://spacy.io/)
|
|
34
|
+
|
|
35
|
+
Fast and efficient sentence segmentation using spaCy with surgical post-processing fixes. Handles complex edge cases like abbreviations (Dr., Mr., etc.), ellipses, quoted text, and multi-paragraph documents.
|
|
36
|
+
|
|
37
|
+
## Why This Library?
|
|
38
|
+
|
|
39
|
+
1. **Keep it local**: LLM API calls cost money and send your data to third parties. Run sentence segmentation entirely on your machine.
|
|
40
|
+
2. **spaCy perfected**: spaCy is a great local model, but it makes mistakes. This library fixes most of spaCy's shortcomings.
|
|
41
|
+
|
|
42
|
+
## Features
|
|
43
|
+
|
|
44
|
+
- **Paragraph-aware segmentation**: Returns sentences grouped by paragraph
|
|
45
|
+
- **Abbreviation handling**: Correctly handles "Dr.", "Mr.", "etc.", "p.m.", "a.m." without false splits
|
|
46
|
+
- **Ellipsis preservation**: Keeps `...` intact while detecting sentence boundaries
|
|
47
|
+
- **Question/exclamation splitting**: Properly splits on `?` and `!` followed by capital letters
|
|
48
|
+
- **Cached processing**: LRU cache for repeated text processing
|
|
49
|
+
- **Flexible output**: Nested lists (by paragraph) or flattened list of sentences
|
|
50
|
+
- **Bullet point & numbered list normalization**: Cleans common list formats
|
|
51
|
+
- **CLI tool**: Command-line interface for quick segmentation
|
|
52
|
+
|
|
53
|
+
## Installation
|
|
54
|
+
|
|
55
|
+
```bash
|
|
56
|
+
pip install fast-sentence-segment
|
|
57
|
+
```
|
|
58
|
+
|
|
59
|
+
After installation, download the spaCy model:
|
|
60
|
+
|
|
61
|
+
```bash
|
|
62
|
+
python -m spacy download en_core_web_sm
|
|
63
|
+
```
|
|
64
|
+
|
|
65
|
+
## Quick Start
|
|
66
|
+
|
|
67
|
+
```python
|
|
68
|
+
from fast_sentence_segment import segment_text
|
|
69
|
+
|
|
70
|
+
text = "Here is a Dr. who says something. And then again, what else? I don't know. Do you?"
|
|
71
|
+
|
|
72
|
+
results = segment_text(text)
|
|
73
|
+
# Returns: [['Here is a Dr. who says something.', 'And then again, what else?', "I don't know.", 'Do you?']]
|
|
74
|
+
```
|
|
75
|
+
|
|
76
|
+
## Usage
|
|
77
|
+
|
|
78
|
+
### Basic Segmentation
|
|
79
|
+
|
|
80
|
+
The `segment_text` function returns a list of lists, where each inner list represents a paragraph containing its sentences:
|
|
81
|
+
|
|
82
|
+
```python
|
|
83
|
+
from fast_sentence_segment import segment_text
|
|
84
|
+
|
|
85
|
+
text = """First paragraph here. It has two sentences.
|
|
86
|
+
|
|
87
|
+
Second paragraph starts here. This one also has multiple sentences. And a third."""
|
|
88
|
+
|
|
89
|
+
results = segment_text(text)
|
|
90
|
+
# Returns:
|
|
91
|
+
# [
|
|
92
|
+
# ['First paragraph here.', 'It has two sentences.'],
|
|
93
|
+
# ['Second paragraph starts here.', 'This one also has multiple sentences.', 'And a third.']
|
|
94
|
+
# ]
|
|
95
|
+
```
|
|
96
|
+
|
|
97
|
+
### Flattened Output
|
|
98
|
+
|
|
99
|
+
If you don't need paragraph boundaries, use the `flatten` parameter:
|
|
100
|
+
|
|
101
|
+
```python
|
|
102
|
+
results = segment_text(text, flatten=True)
|
|
103
|
+
# Returns: ['First paragraph here.', 'It has two sentences.', 'Second paragraph starts here.', ...]
|
|
104
|
+
```
|
|
105
|
+
|
|
106
|
+
### Direct Segmenter Access
|
|
107
|
+
|
|
108
|
+
For more control, use the `Segmenter` class directly:
|
|
109
|
+
|
|
110
|
+
```python
|
|
111
|
+
from fast_sentence_segment import Segmenter
|
|
112
|
+
|
|
113
|
+
segmenter = Segmenter()
|
|
114
|
+
results = segmenter.input_text("Your text here.")
|
|
115
|
+
```
|
|
116
|
+
|
|
117
|
+
### Command Line Interface
|
|
118
|
+
|
|
119
|
+
Segment text directly from the terminal:
|
|
120
|
+
|
|
121
|
+
```bash
|
|
122
|
+
# Direct text input
|
|
123
|
+
segment "Hello world. How are you? I am fine."
|
|
124
|
+
|
|
125
|
+
# Numbered output
|
|
126
|
+
segment -n "First sentence. Second sentence."
|
|
127
|
+
|
|
128
|
+
# From stdin
|
|
129
|
+
echo "Some text here. Another sentence." | segment
|
|
130
|
+
|
|
131
|
+
# From file
|
|
132
|
+
segment -f document.txt
|
|
133
|
+
```
|
|
134
|
+
|
|
135
|
+
## API Reference
|
|
136
|
+
|
|
137
|
+
| Function | Parameters | Returns | Description |
|
|
138
|
+
|----------|------------|---------|-------------|
|
|
139
|
+
| `segment_text()` | `input_text: str`, `flatten: bool = False` | `list` | Main entry point for segmentation |
|
|
140
|
+
| `Segmenter.input_text()` | `input_text: str` | `list[list[str]]` | Cached paragraph-aware segmentation |
|
|
141
|
+
|
|
142
|
+
### CLI Options
|
|
143
|
+
|
|
144
|
+
| Option | Description |
|
|
145
|
+
|--------|-------------|
|
|
146
|
+
| `text` | Text to segment (positional argument) |
|
|
147
|
+
| `-f, --file` | Read text from file |
|
|
148
|
+
| `-n, --numbered` | Number output lines |
|
|
149
|
+
|
|
150
|
+
## Why Nested Lists?
|
|
151
|
+
|
|
152
|
+
The segmentation process preserves document structure by segmenting into both paragraphs and sentences. Each outer list represents a paragraph, and each inner list contains that paragraph's sentences. This is useful for:
|
|
153
|
+
|
|
154
|
+
- Document structure analysis
|
|
155
|
+
- Paragraph-level processing
|
|
156
|
+
- Maintaining original text organization
|
|
157
|
+
|
|
158
|
+
Use `flatten=True` when you only need sentences without paragraph context.
|
|
159
|
+
|
|
160
|
+
## Requirements
|
|
161
|
+
|
|
162
|
+
- Python 3.9+
|
|
163
|
+
- spaCy 3.8+
|
|
164
|
+
- en_core_web_sm spaCy model
|
|
165
|
+
|
|
166
|
+
## How It Works
|
|
167
|
+
|
|
168
|
+
This library uses spaCy for initial sentence segmentation, then applies surgical post-processing fixes for cases where spaCy's default behavior is incorrect:
|
|
169
|
+
|
|
170
|
+
1. **Pre-processing**: Normalize numbered lists, preserve ellipses with placeholders
|
|
171
|
+
2. **spaCy segmentation**: Use spaCy's sentence boundary detection
|
|
172
|
+
3. **Post-processing**: Split on abbreviation boundaries, handle `?`/`!` + capital patterns
|
|
173
|
+
4. **Denormalization**: Restore placeholders to original text
|
|
174
|
+
|
|
175
|
+
## License
|
|
176
|
+
|
|
177
|
+
MIT License - see [LICENSE](LICENSE) for details.
|
|
178
|
+
|
|
179
|
+
## Contributing
|
|
180
|
+
|
|
181
|
+
Contributions are welcome! Please feel free to submit a Pull Request.
|
|
182
|
+
|
|
183
|
+
1. Fork the repository
|
|
184
|
+
2. Create your feature branch (`git checkout -b feature/amazing-feature`)
|
|
185
|
+
3. Run tests (`make test`)
|
|
186
|
+
4. Commit your changes
|
|
187
|
+
5. Push to the branch
|
|
188
|
+
6. Open a Pull Request
|
|
189
|
+
|
|
@@ -0,0 +1,27 @@
|
|
|
1
|
+
fast_sentence_segment/__init__.py,sha256=HTONyC0JLVWTAHyvJO6rMINmxymbfMpARtGeRw5iIsQ,359
|
|
2
|
+
fast_sentence_segment/bp/__init__.py,sha256=j2-WfQ9WwVuXeGSjvV6XLVwEdvau8sdAQe4Pa4DrYi8,33
|
|
3
|
+
fast_sentence_segment/bp/segmenter.py,sha256=UW6DguPgA56h-pPYRsfJhjIzBe40j6NdjkwYxamASyA,1928
|
|
4
|
+
fast_sentence_segment/cli.py,sha256=X2dMLkfc2dtheig62wKC75AohfW0Y9oTU0ORhGUFkbQ,1250
|
|
5
|
+
fast_sentence_segment/core/__init__.py,sha256=uoBersYyVStJ5a8zJpQz1GDGaloEdAv2jGHw1292hRM,108
|
|
6
|
+
fast_sentence_segment/core/base_object.py,sha256=AYr7yzusIwawjbKdvcv4yTEnhmx6M583kDZzhzPOmq4,635
|
|
7
|
+
fast_sentence_segment/core/stopwatch.py,sha256=hE6hMz2q6rduaKi58KZmiAL-lRtyh_wWCANhl4KLkRQ,879
|
|
8
|
+
fast_sentence_segment/dmo/__init__.py,sha256=E70tkpdHu86KP2dwBX5Dy5D7eNiU6fzucrfDJOY1ui4,551
|
|
9
|
+
fast_sentence_segment/dmo/abbreviation_merger.py,sha256=tCXM6yCfMryJvMIVWIxP_EocoibZi8vohFzJ5tvMYr0,4432
|
|
10
|
+
fast_sentence_segment/dmo/abbreviation_splitter.py,sha256=03mSyJcLooNyIjXx6mPlrnjmKgZW-uhUIqG4U-MbIGw,2981
|
|
11
|
+
fast_sentence_segment/dmo/abbreviations.py,sha256=7mpEoOnw5MH8URYmmpxaYs3Wc2eqy4pC0hAnYfYSdck,1639
|
|
12
|
+
fast_sentence_segment/dmo/bullet_point_cleaner.py,sha256=WOZQRWXiiyRi8rOuEIw36EmkaXmATHL9_Dxb2rderw4,1606
|
|
13
|
+
fast_sentence_segment/dmo/ellipsis_normalizer.py,sha256=lHs9dLFfKJe-2vFNe17Hik90g3_kXX347OzGP_IOT08,1521
|
|
14
|
+
fast_sentence_segment/dmo/newlines_to_periods.py,sha256=PUrXreqZWiITINfoJL5xRRlXJH6noH0cdXtW1EqAh8I,1517
|
|
15
|
+
fast_sentence_segment/dmo/numbered_list_normalizer.py,sha256=q0sOCW8Jkn2vTXlUcVhmDvYES3yvJx1oUVl_8y7eL4E,1672
|
|
16
|
+
fast_sentence_segment/dmo/post_process_sentences.py,sha256=5jxG3TmFjxIExMPLhnCB5JT1lXQvFU9r4qQGoATGrWk,916
|
|
17
|
+
fast_sentence_segment/dmo/question_exclamation_splitter.py,sha256=cRsWRu8zb6wOWG-BjMahHfz4YGutKiV9lW7dE-q3tgc,2006
|
|
18
|
+
fast_sentence_segment/dmo/spacy_doc_segmenter.py,sha256=0icAkSQwAUQo3VYqQ2PUjW6-MOU5RNCGPX3-fB5YfCc,2554
|
|
19
|
+
fast_sentence_segment/dmo/title_name_merger.py,sha256=zbG04_VjwM8TtT8LhavvmZqIZL_2xgT2OTxWkK_Zt1s,5133
|
|
20
|
+
fast_sentence_segment/svc/__init__.py,sha256=9B12mXxBnlalH4OAm1AMLwUMa-RLi2ilv7qhqv26q7g,144
|
|
21
|
+
fast_sentence_segment/svc/perform_paragraph_segmentation.py,sha256=zLKw9rSzb0NNfx4MyEeoGrHwhxTtH5oDrYcAL2LMVHY,1378
|
|
22
|
+
fast_sentence_segment/svc/perform_sentence_segmentation.py,sha256=dqGxFsJoP6ox_MJwtB85R9avEbBAR4x9YKaRaQ5fAXo,5723
|
|
23
|
+
fast_sentence_segment-1.2.0.dist-info/METADATA,sha256=05V3aFKHCD9JaYN8va_vIuMtaoAbGmKgFAOUDJWfM80,6405
|
|
24
|
+
fast_sentence_segment-1.2.0.dist-info/WHEEL,sha256=zp0Cn7JsFoX2ATtOhtaFYIiE2rmFAD4OcMhtUki8W3U,88
|
|
25
|
+
fast_sentence_segment-1.2.0.dist-info/entry_points.txt,sha256=mDiRuKOZlOeqmtH1eZwqGEGM6KUh0RTzwyETGMpxSDI,58
|
|
26
|
+
fast_sentence_segment-1.2.0.dist-info/licenses/LICENSE,sha256=vou5JCLAT5nHcsUv-AkjUYAihYfN9mwPDXxV2DHyHBo,1067
|
|
27
|
+
fast_sentence_segment-1.2.0.dist-info/RECORD,,
|
|
@@ -0,0 +1,21 @@
|
|
|
1
|
+
MIT License
|
|
2
|
+
|
|
3
|
+
Copyright (c) 2025 Craig Trim
|
|
4
|
+
|
|
5
|
+
Permission is hereby granted, free of charge, to any person obtaining a copy
|
|
6
|
+
of this software and associated documentation files (the "Software"), to deal
|
|
7
|
+
in the Software without restriction, including without limitation the rights
|
|
8
|
+
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
|
9
|
+
copies of the Software, and to permit persons to whom the Software is
|
|
10
|
+
furnished to do so, subject to the following conditions:
|
|
11
|
+
|
|
12
|
+
The above copyright notice and this permission notice shall be included in all
|
|
13
|
+
copies or substantial portions of the Software.
|
|
14
|
+
|
|
15
|
+
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
|
16
|
+
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
|
17
|
+
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
|
18
|
+
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
|
19
|
+
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
|
20
|
+
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
|
|
21
|
+
SOFTWARE.
|
|
@@ -1,37 +0,0 @@
|
|
|
1
|
-
#!/usr/bin/env python
|
|
2
|
-
# -*- coding: UTF-8 -*-
|
|
3
|
-
""" Convert Delimiters into Periods """
|
|
4
|
-
|
|
5
|
-
|
|
6
|
-
from baseblock import BaseObject
|
|
7
|
-
|
|
8
|
-
|
|
9
|
-
class DelimitersToPeriods(BaseObject):
|
|
10
|
-
""" Convert Delimiters into Periods """
|
|
11
|
-
|
|
12
|
-
def __init__(self):
|
|
13
|
-
"""
|
|
14
|
-
Created:
|
|
15
|
-
30-Sept-2021
|
|
16
|
-
"""
|
|
17
|
-
BaseObject.__init__(self, __name__)
|
|
18
|
-
|
|
19
|
-
@staticmethod
|
|
20
|
-
def process(input_text: str,
|
|
21
|
-
delimiter: str):
|
|
22
|
-
"""
|
|
23
|
-
Purpose:
|
|
24
|
-
Take a CSV list and transform to sentences
|
|
25
|
-
:param input_text:
|
|
26
|
-
:return:
|
|
27
|
-
"""
|
|
28
|
-
total_len = len(input_text)
|
|
29
|
-
total_delims = input_text.count(delimiter)
|
|
30
|
-
|
|
31
|
-
if total_delims == 0:
|
|
32
|
-
return input_text
|
|
33
|
-
|
|
34
|
-
if total_delims / total_len > 0.04:
|
|
35
|
-
return input_text.replace(delimiter, '.')
|
|
36
|
-
|
|
37
|
-
return input_text
|
|
@@ -1,54 +0,0 @@
|
|
|
1
|
-
Metadata-Version: 2.1
|
|
2
|
-
Name: fast-sentence-segment
|
|
3
|
-
Version: 0.1.9
|
|
4
|
-
Summary: Fast and Efficient Sentence Segmentation
|
|
5
|
-
Home-page: https://github.com/craigtrim/fast-sentence-segment
|
|
6
|
-
License: None
|
|
7
|
-
Keywords: nlp,text,preprocess,segment
|
|
8
|
-
Author: Craig Trim
|
|
9
|
-
Author-email: craigtrim@gmail.com
|
|
10
|
-
Maintainer: Craig Trim
|
|
11
|
-
Maintainer-email: craigtrim@gmail.com
|
|
12
|
-
Requires-Python: >=3.8.5,<4.0.0
|
|
13
|
-
Classifier: Development Status :: 4 - Beta
|
|
14
|
-
Classifier: License :: Other/Proprietary License
|
|
15
|
-
Classifier: Programming Language :: Python :: 3
|
|
16
|
-
Classifier: Programming Language :: Python :: 3.10
|
|
17
|
-
Classifier: Programming Language :: Python :: 3.9
|
|
18
|
-
Classifier: Topic :: Software Development :: Libraries :: Python Modules
|
|
19
|
-
Requires-Dist: baseblock
|
|
20
|
-
Requires-Dist: spacy (==3.5.0)
|
|
21
|
-
Project-URL: Bug Tracker, https://github.com/craigtrim/fast-sentence-segment/issues
|
|
22
|
-
Project-URL: Repository, https://github.com/craigtrim/fast-sentence-segment
|
|
23
|
-
Description-Content-Type: text/markdown
|
|
24
|
-
|
|
25
|
-
# Fast Sentence Segmentation (fast-sentence-segment)
|
|
26
|
-
Fast and Efficient Sentence Segmentation
|
|
27
|
-
|
|
28
|
-
Usage
|
|
29
|
-
```python
|
|
30
|
-
from fast_sentence_segment import segment_text
|
|
31
|
-
|
|
32
|
-
results = segment_text(
|
|
33
|
-
'here is a dr. who says something. and then again, what else? i dont know. Do you?')
|
|
34
|
-
|
|
35
|
-
assert results == [
|
|
36
|
-
[
|
|
37
|
-
'here is a dr. who says something.',
|
|
38
|
-
'and then again, what else?',
|
|
39
|
-
'i dont know.',
|
|
40
|
-
'Do you?'
|
|
41
|
-
]
|
|
42
|
-
]
|
|
43
|
-
```
|
|
44
|
-
|
|
45
|
-
Why use a double-scripted list?
|
|
46
|
-
|
|
47
|
-
The segementation process will segment into paragraphs and sentences. A paragraph is composed of 1..* sentences, hence each list of lists is equivalent to a paragraph.
|
|
48
|
-
|
|
49
|
-
This usage
|
|
50
|
-
```python
|
|
51
|
-
results = segment_text(input_text, flatten=True)
|
|
52
|
-
```
|
|
53
|
-
Will return a list of strings, regardless of paragraph delimitation.
|
|
54
|
-
|
|
@@ -1,16 +0,0 @@
|
|
|
1
|
-
fast_sentence_segment/__init__.py,sha256=otzCTZrivtWR5GbQ_-eCfYgwKhyNCL2XGM17YNI1YWo,377
|
|
2
|
-
fast_sentence_segment/bp/__init__.py,sha256=M0y9HPbk6hrB1yiG7Fd8G8UGoO05IRZzOgInMBe883g,34
|
|
3
|
-
fast_sentence_segment/bp/segmenter.py,sha256=h0xnNUkeoz_AyDXCocUozCx8X40FmWgm8xJsN3DoCYg,1966
|
|
4
|
-
fast_sentence_segment/dmo/__init__.py,sha256=sVkdjzjCV_8BAMZBiuuAYs_1MUSpdo7YxC2ThRnBhPI,334
|
|
5
|
-
fast_sentence_segment/dmo/bullet_point_cleaner.py,sha256=K6hsLttTq3xxLJnQijxYQUAGISoDuUKiGQM7oiQgEBU,1644
|
|
6
|
-
fast_sentence_segment/dmo/delimiters_to_periods.py,sha256=CJrxKnADZhMnXlOXLSuLupq9aGvp_ir4LyKTQE4SByU,877
|
|
7
|
-
fast_sentence_segment/dmo/newlines_to_periods.py,sha256=EnafiZ1TQvqZXXHNEmvCveuUtolIUc8oaCOFHAb0nnw,1557
|
|
8
|
-
fast_sentence_segment/dmo/numbered_list_normalizer.py,sha256=ljbEyabjjA1IWYD17ryu4_UKaa0WEfpE9LCa-laaplo,1585
|
|
9
|
-
fast_sentence_segment/dmo/post_process_sentences.py,sha256=vyKF89guI_EO_qkY0Uh4JeVbJr_SwEQYfBKAwhiSTKU,947
|
|
10
|
-
fast_sentence_segment/dmo/spacy_doc_segmenter.py,sha256=HAVYyTjzmuC0zcG36rJ48Ueq7tXfTplB-y5vb3p64CE,2638
|
|
11
|
-
fast_sentence_segment/svc/__init__.py,sha256=4nQTjRMoSu1n_2p8o1I7xyhOe8_kGZJ3TghgzVLGAos,146
|
|
12
|
-
fast_sentence_segment/svc/perform_paragraph_segmentation.py,sha256=mYlXvwz0JTbIUSfZeD49fG7nFe5V6eIKOIL9HqQDyII,1403
|
|
13
|
-
fast_sentence_segment/svc/perform_sentence_segmentation.py,sha256=Q6KBt83iQ662L6EgyTsfWBk-aOqcltRt0Y9MhYhqJsI,3943
|
|
14
|
-
fast_sentence_segment-0.1.9.dist-info/WHEEL,sha256=y3eDiaFVSNTPbgzfNn0nYn5tEn1cX6WrdetDlQM4xWw,83
|
|
15
|
-
fast_sentence_segment-0.1.9.dist-info/METADATA,sha256=Uc1zNsXLHGdtfcklI4g0gj0pkLv_0PSOQoXObLuuxjk,1733
|
|
16
|
-
fast_sentence_segment-0.1.9.dist-info/RECORD,,
|