fast-agent-mcp 0.2.6__py3-none-any.whl → 0.2.8__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.4
2
2
  Name: fast-agent-mcp
3
- Version: 0.2.6
3
+ Version: 0.2.8
4
4
  Summary: Define, Prompt and Test MCP enabled Agents and Workflows
5
5
  Author-email: Shaun Smith <fastagent@llmindset.co.uk>, Sarmad Qadri <sarmad@lastmileai.dev>
6
6
  License: Apache License
@@ -260,8 +260,7 @@ The simple declarative syntax lets you concentrate on composing your Prompts and
260
260
 
261
261
  `fast-agent` is multi-modal, supporting Images and PDFs for both Anthropic and OpenAI endpoints via Prompts, Resources and MCP Tool Call results. The inclusion of passthrough and playback LLMs enable rapid development and test of Python glue-code for your applications.
262
262
 
263
- > [!TIP]
264
- > `fast-agent` is now MCP Native! Coming Soon - Full Documentation Site and Further MCP Examples.
263
+ > [!TIP] > `fast-agent` is now MCP Native! Coming Soon - Full Documentation Site and Further MCP Examples.
265
264
 
266
265
  ### Agent Application Development
267
266
 
@@ -525,7 +524,7 @@ agent["greeter"].send("Good Evening!") # Dictionary access is supported
525
524
  servers=["filesystem"], # list of MCP Servers for the agent
526
525
  model="o3-mini.high", # specify a model for the agent
527
526
  use_history=True, # agent maintains chat history
528
- request_params={"temperature": 0.7}, # additional parameters for the LLM (or RequestParams())
527
+ request_params=RequestParams(temperature= 0.7)), # additional parameters for the LLM (or RequestParams())
529
528
  human_input=True, # agent can request human input
530
529
  )
531
530
  ```
@@ -1,23 +1,23 @@
1
1
  mcp_agent/__init__.py,sha256=-AIoeL4c9UAp_P4U0z-uIWTTmQWdihOis5nbQ5L_eao,1664
2
2
  mcp_agent/app.py,sha256=jBmzYM_o50g8vhlTgkkf5TGiBWNbXWViYnd0WANbpzo,10276
3
- mcp_agent/config.py,sha256=V6TZlKOUelv5N75fypWKFVvkY5YsgpoHrdiSsKxOiM0,11725
3
+ mcp_agent/config.py,sha256=0GVtAMSiK1oPklHlH-3rbhjPfBx18JfEAn-W-HG5x6k,12167
4
4
  mcp_agent/console.py,sha256=Gjf2QLFumwG1Lav__c07X_kZxxEUSkzV-1_-YbAwcwo,813
5
5
  mcp_agent/context.py,sha256=pp_F1Q1jgAxGrRccSZJutn1JUxYfVue-St3S8tUyptM,7903
6
6
  mcp_agent/context_dependent.py,sha256=QXfhw3RaQCKfscEEBRGuZ3sdMWqkgShz2jJ1ivGGX1I,1455
7
7
  mcp_agent/event_progress.py,sha256=25iz0yyg-O4glMmtijcYpDdUmtUIKsCmR_8A52GgeC4,2716
8
- mcp_agent/mcp_server_registry.py,sha256=r24xX4BYXj4BbWbU37uwuW9e1mFOYgpb258OMb21SaY,9928
8
+ mcp_agent/mcp_server_registry.py,sha256=w0sq-5o_AVVGfwUBo0c_Ekbyjd3Tjg9bzi2r8UZry7o,9945
9
9
  mcp_agent/progress_display.py,sha256=GeJU9VUt6qKsFVymG688hCMVCsAygG9ifiiEb5IcbN4,361
10
10
  mcp_agent/agents/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
11
11
  mcp_agent/agents/agent.py,sha256=Tn2YKw_ytx9b8jC-65WYQmrnD43kYiZsLa4sVHxn9d4,3854
12
- mcp_agent/agents/base_agent.py,sha256=9IExAXyPpao4t7J_uF2pjSlbnlKp-229oiOykbE6KDI,23515
12
+ mcp_agent/agents/base_agent.py,sha256=dzyy4tDHJfRC4Sp-JqXeDwykk5SH55k89dUXQROIdQ4,23488
13
13
  mcp_agent/agents/workflow/__init__.py,sha256=HloteEW6kalvgR0XewpiFAqaQlMPlPJYg5p3K33IUzI,25
14
- mcp_agent/agents/workflow/chain_agent.py,sha256=EW10IgEnKJ3YfwLY61B1SQlYC-84jcXsrRmzpLQbngE,6384
14
+ mcp_agent/agents/workflow/chain_agent.py,sha256=efftXdHc5F-XY8jnz5npHbKHhqnzHh28WbU5yQ4yUn0,6105
15
15
  mcp_agent/agents/workflow/evaluator_optimizer.py,sha256=VWdzVIy_qSiVsDJO22ta3RB3drkvBfXk9HxBYMpsC5U,13300
16
16
  mcp_agent/agents/workflow/orchestrator_agent.py,sha256=30hFQyAmtjQTX6Li_zWWIHCpdNpfZkDo57YXXW5xIsI,21561
17
17
  mcp_agent/agents/workflow/orchestrator_models.py,sha256=5P_aXADVT4Et8qT4e1cb9RelmHX5dCRrzu8j8T41Kdg,7230
18
18
  mcp_agent/agents/workflow/orchestrator_prompts.py,sha256=EXKEI174sshkZyPPEnWbwwNafzSPuA39MXL7iqG9cWc,9106
19
19
  mcp_agent/agents/workflow/parallel_agent.py,sha256=SgIXJx2X_MSlLOv6WXYRezwjDYjU9f95eKQzTm5Y_lk,7087
20
- mcp_agent/agents/workflow/router_agent.py,sha256=WLv2ny_-6mAJ7tjU-6nUe2yVhW008vso5NU9tczNTn0,10666
20
+ mcp_agent/agents/workflow/router_agent.py,sha256=c4MU55U6q1DRayP0sDoyxdlnKX-N0LPbRv-MFlwbwrY,11165
21
21
  mcp_agent/cli/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
22
22
  mcp_agent/cli/__main__.py,sha256=AVZ7tQFhU_sDOGuUGJq8ujgKtcxsYJBJwHbVaaiRDlI,166
23
23
  mcp_agent/cli/main.py,sha256=PZdPJfsAJOm80vTu7j_XpMPhaDZOpqSe-ciU3YQsmA4,3149
@@ -30,11 +30,11 @@ mcp_agent/core/agent_app.py,sha256=5nQJNo8DocIRWiX4pVKAHUZF8s6HWpc-hJnfzl_1v1c,9
30
30
  mcp_agent/core/agent_types.py,sha256=LuWslu9YI6JRnAWwh_A1ZejK72-e839wH7tf2MHxSIU,1389
31
31
  mcp_agent/core/direct_decorators.py,sha256=Q6t3VpRPLCRzqJycPZIkKbbEJMVocxdScp5o2xn4gLU,14460
32
32
  mcp_agent/core/direct_factory.py,sha256=hYFCucZVAQ2wrfqIe9Qameoa-cCRaQ53R97EMHvUZAM,17572
33
- mcp_agent/core/enhanced_prompt.py,sha256=P9FAtc0rqIYQfUDkTNVXitFIZEtB3fdq_Nr0-st64Qg,17948
33
+ mcp_agent/core/enhanced_prompt.py,sha256=A0FJ_-dr1RLq3uzmFSxiOBxw5synW2BhA4QntQyYVwg,18792
34
34
  mcp_agent/core/error_handling.py,sha256=xoyS2kLe0eG0bj2eSJCJ2odIhGUve2SbDR7jP-A-uRw,624
35
35
  mcp_agent/core/exceptions.py,sha256=ENAD_qGG67foxy6vDkIvc-lgopIUQy6O7zvNPpPXaQg,2289
36
- mcp_agent/core/fastagent.py,sha256=HTy1OCAhpHIM-4cd37-dxvb97eZUELN-ICAEFgqmJMk,18503
37
- mcp_agent/core/interactive_prompt.py,sha256=zU53h8mmaJBnddYy2j57tH7jreQ9PUz7vLEo2gdDrio,17704
36
+ mcp_agent/core/fastagent.py,sha256=T2kyq32wBJCOj13Zy1G_XJjQZb1S4HVdx3OBzmEMHBg,18644
37
+ mcp_agent/core/interactive_prompt.py,sha256=y56K2ZIvj5hZZwtEDHezJCOlduRwAcj2fc4GqhKq9ZY,23357
38
38
  mcp_agent/core/mcp_content.py,sha256=2D7KHY9mG_vxoDwFLKvsPQV9VRIzHItM7V-jcEnACh8,8878
39
39
  mcp_agent/core/prompt.py,sha256=qnintOUGEoDPYLI9bu9G2OlgVMCe5ZPUZilgMzydXhc,7919
40
40
  mcp_agent/core/request_params.py,sha256=bEjWo86fqxdiWm2U5nPDd1uCUpcIQO9oiCinhB8lQN0,1185
@@ -50,20 +50,21 @@ mcp_agent/human_input/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3h
50
50
  mcp_agent/human_input/handler.py,sha256=s712Z5ssTCwjL9-VKoIdP5CtgMh43YvepynYisiWTTA,3144
51
51
  mcp_agent/human_input/types.py,sha256=RtWBOVzy8vnYoQrc36jRLn8z8N3C4pDPMBN5vF6qM5Y,1476
52
52
  mcp_agent/llm/__init__.py,sha256=d8zgwG-bRFuwiMNMYkywg_qytk4P8lawyld_meuUmHI,68
53
- mcp_agent/llm/augmented_llm.py,sha256=AFNA_v7cuxy9MSpCigv9FM9CEg27NsaUfeme4tiy1y8,18125
53
+ mcp_agent/llm/augmented_llm.py,sha256=YIB3I_taoglo_vSmZLQ50cv1qCSctaQlWVwjI-7WTkk,18304
54
54
  mcp_agent/llm/augmented_llm_passthrough.py,sha256=U0LssNWNVuZRuD9I7Wuvpo7vdDW4xtoPLirnYCgBGTY,6128
55
55
  mcp_agent/llm/augmented_llm_playback.py,sha256=YVR2adzjMf9Q5WfYBytryWMRqJ87a3kNBnjxhApsMcU,3413
56
56
  mcp_agent/llm/memory.py,sha256=UakoBCJBf59JBtB6uyZM0OZjlxDW_VHtSfDs08ibVEc,3312
57
- mcp_agent/llm/model_factory.py,sha256=WOm2IkZLhgFTplmgjVAzNzjpawm3D_aTVcGdgu1DReg,7606
57
+ mcp_agent/llm/model_factory.py,sha256=fj14NMYYg7yBxq7TsVuLIEYrK6rzPW1_p9O0Yegoq00,7844
58
58
  mcp_agent/llm/prompt_utils.py,sha256=yWQHykoK13QRF7evHUKxVF0SpVLN-Bsft0Yixzvn0g0,4825
59
59
  mcp_agent/llm/sampling_converter.py,sha256=C7wPBlmT0eD90XWabC22zkxsrVHKCrjwIwg6cG628cI,2926
60
60
  mcp_agent/llm/sampling_format_converter.py,sha256=xGz4odHpOcP7--eFaJaFtUR8eR9jxZS7MnLH6J7n0EU,1263
61
61
  mcp_agent/llm/providers/__init__.py,sha256=heVxtmuqFJOnjjxHz4bWSqTAxXoN1E8twC_gQ_yJpHk,265
62
62
  mcp_agent/llm/providers/anthropic_utils.py,sha256=vYDN5G5jKMhD2CQg8veJYab7tvvzYkDMq8M1g_hUAQg,3275
63
- mcp_agent/llm/providers/augmented_llm_anthropic.py,sha256=9JXyweks5Joes4ERtmi2wX8i7ZsXydKM7IkMq7s7dIU,15429
63
+ mcp_agent/llm/providers/augmented_llm_anthropic.py,sha256=CNKpTEvWqjOteACUx_Vha0uFpPt32C17JrkSXg_allM,14445
64
64
  mcp_agent/llm/providers/augmented_llm_deepseek.py,sha256=SdYDqZZ9hM9sBvW1FSItNn_ENEKQXGNKwVHGnjqjyAA,1927
65
65
  mcp_agent/llm/providers/augmented_llm_generic.py,sha256=IIgwPYsVGwDdL2mMYsc5seY3pVFblMwmnxoI5dbxras,1524
66
- mcp_agent/llm/providers/augmented_llm_openai.py,sha256=6ZUEOXW-cDENAizMPUKJhhklJyQf73IcyVqT9-3To80,18215
66
+ mcp_agent/llm/providers/augmented_llm_openai.py,sha256=Wso9GVgsq8y3sqlOzTk_iQqrkCOL3LyuG07nA1PWDng,17913
67
+ mcp_agent/llm/providers/augmented_llm_openrouter.py,sha256=AajWXFIgGEDjeEx8AWCTs3mZGTPaihdsrjEUiNAJkIM,3501
67
68
  mcp_agent/llm/providers/multipart_converter_anthropic.py,sha256=t5lHYGfFUacJldnrVtMNW-8gEMoto8Y7hJkDrnyZR-Y,16650
68
69
  mcp_agent/llm/providers/multipart_converter_openai.py,sha256=zCj0LBgd9FDG8aL_GeTrPo2ssloYnmC_Uj3ENWVUJAg,16753
69
70
  mcp_agent/llm/providers/openai_multipart.py,sha256=qKBn7d3jSabnJmVgWweVzqh8q9mBqr09fsPmP92niAQ,6899
@@ -81,11 +82,10 @@ mcp_agent/logging/transport.py,sha256=m8YsLLu5T8eof_ndpLQs4gHOzqqEL98xsVwBwDsBfx
81
82
  mcp_agent/mcp/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
82
83
  mcp_agent/mcp/gen_client.py,sha256=fAVwFVCgSamw4PwoWOV4wrK9TABx1S_zZv8BctRyF2k,3030
83
84
  mcp_agent/mcp/interfaces.py,sha256=vma7bbWbY3zp1RM6hMYxVO4aV6Vfaygm-nLwzK2jFKI,6748
84
- mcp_agent/mcp/logger_textio.py,sha256=OpnqMam9Pu0oVzYQWFMhrX1dRg2f5Fqb3qqPA6QAATM,2778
85
- mcp_agent/mcp/mcp_activity.py,sha256=CajXCFWZ2cKEX9s4-HfNVAj471ePTVs4NOkvmIh65tE,592
85
+ mcp_agent/mcp/logger_textio.py,sha256=vljC1BtNTCxBAda9ExqNB-FwVNUZIuJT3h1nWmCjMws,3172
86
86
  mcp_agent/mcp/mcp_agent_client_session.py,sha256=RMYNltc2pDIzxwEJSS5589RbvPO0KWV4Y3jSyAmhKf0,4181
87
87
  mcp_agent/mcp/mcp_aggregator.py,sha256=jaWbOvb3wioECohZ47CubyxfJ5QkfNSshu1hwhZksG4,40486
88
- mcp_agent/mcp/mcp_connection_manager.py,sha256=desQBreHbIcjY7AidcDO6pFomHOx9oOZPOWIcHAx1K0,13761
88
+ mcp_agent/mcp/mcp_connection_manager.py,sha256=AMIm2FBbIk7zHInb8X-kFSQFO5TKcoi9w8WU8nx8Ig0,13834
89
89
  mcp_agent/mcp/mime_utils.py,sha256=difepNR_gpb4MpMLkBRAoyhDk-AjXUHTiqKvT_VwS1o,1805
90
90
  mcp_agent/mcp/prompt_message_multipart.py,sha256=IpIndd75tAcCbJbfqjpAF0tOUUP1TQceDbWoxO5gvpo,3684
91
91
  mcp_agent/mcp/prompt_render.py,sha256=k3v4BZDThGE2gGiOYVQtA6x8WTEdOuXIEnRafANhN1U,2996
@@ -134,8 +134,8 @@ mcp_agent/resources/examples/workflows/orchestrator.py,sha256=rOGilFTliWWnZ3Jx5w
134
134
  mcp_agent/resources/examples/workflows/parallel.py,sha256=n0dFN26QvYd2wjgohcaUBflac2SzXYx-bCyxMSousJE,1884
135
135
  mcp_agent/resources/examples/workflows/router.py,sha256=E4x_-c3l4YW9w1i4ARcDtkdeqIdbWEGfsMzwLYpdbVc,1677
136
136
  mcp_agent/ui/console_display.py,sha256=TVGDtJ37hc6UG0ei9g7ZPZZfFNeS1MYozt-Mx8HsPCk,9752
137
- fast_agent_mcp-0.2.6.dist-info/METADATA,sha256=f1wgZfK_zZRytbHKacbUDGvP7JS0Qqjp2YemYm1td9Y,29839
138
- fast_agent_mcp-0.2.6.dist-info/WHEEL,sha256=qtCwoSJWgHk21S1Kb4ihdzI2rlJ1ZKaIurTj_ngOhyQ,87
139
- fast_agent_mcp-0.2.6.dist-info/entry_points.txt,sha256=qPM7vwtN1_KmP3dXehxgiCxUBHtqP7yfenZigztvY-w,226
140
- fast_agent_mcp-0.2.6.dist-info/licenses/LICENSE,sha256=cN3FxDURL9XuzE5mhK9L2paZo82LTfjwCYVT7e3j0e4,10939
141
- fast_agent_mcp-0.2.6.dist-info/RECORD,,
137
+ fast_agent_mcp-0.2.8.dist-info/METADATA,sha256=k7K-lDRpHTGxQ1hH17zLSapAx0DivjdSJaAqSNtuWeI,29849
138
+ fast_agent_mcp-0.2.8.dist-info/WHEEL,sha256=qtCwoSJWgHk21S1Kb4ihdzI2rlJ1ZKaIurTj_ngOhyQ,87
139
+ fast_agent_mcp-0.2.8.dist-info/entry_points.txt,sha256=qPM7vwtN1_KmP3dXehxgiCxUBHtqP7yfenZigztvY-w,226
140
+ fast_agent_mcp-0.2.8.dist-info/licenses/LICENSE,sha256=cN3FxDURL9XuzE5mhK9L2paZo82LTfjwCYVT7e3j0e4,10939
141
+ fast_agent_mcp-0.2.8.dist-info/RECORD,,
@@ -215,7 +215,7 @@ class BaseAgent(MCPAggregator, AgentProtocol):
215
215
 
216
216
  # Use the LLM to generate a response
217
217
  response = await self.generate([prompt], None)
218
- return response.first_text()
218
+ return response.all_text()
219
219
 
220
220
  def _normalize_message_input(
221
221
  self, message: Union[str, PromptMessage, PromptMessageMultipart]
@@ -625,15 +625,15 @@ class BaseAgent(MCPAggregator, AgentProtocol):
625
625
  @property
626
626
  def agent_type(self) -> str:
627
627
  """
628
- Return the type of this agent.
629
-
628
+ Return the type of this agent.
629
+
630
630
  This is used for display purposes in the interactive prompt and other UI elements.
631
-
631
+
632
632
  Returns:
633
633
  String representing the agent type
634
634
  """
635
635
  return self.config.agent_type
636
-
636
+
637
637
  @property
638
638
  def message_history(self) -> List[PromptMessageMultipart]:
639
639
  """
@@ -23,7 +23,8 @@ class ChainAgent(BaseAgent):
23
23
  A chain agent that processes requests through a series of specialized agents in sequence.
24
24
  Passes the output of each agent to the next agent in the chain.
25
25
  """
26
-
26
+
27
+ # TODO -- consider adding "repeat" mode
27
28
  @property
28
29
  def agent_type(self) -> str:
29
30
  """Return the type of this agent."""
@@ -70,20 +71,11 @@ class ChainAgent(BaseAgent):
70
71
  # # Get the original user message (last message in the list)
71
72
  user_message = multipart_messages[-1] if multipart_messages else None
72
73
 
73
- # # If no user message, return an error
74
- # if not user_message:
75
- # return PromptMessageMultipart(
76
- # role="assistant",
77
- # content=[TextContent(type="text", text="No input message provided.")],
78
- # )
79
-
80
- # Initialize messages with the input
81
-
82
74
  if not self.cumulative:
83
75
  response: PromptMessageMultipart = await self.agents[0].generate(multipart_messages)
84
76
  # Process the rest of the agents in the chain
85
77
  for agent in self.agents[1:]:
86
- next_message = Prompt.user(response.content[0].text)
78
+ next_message = Prompt.user(*response.content)
87
79
  response = await agent.generate([next_message])
88
80
 
89
81
  return response
@@ -53,12 +53,29 @@ You are a highly accurate request router that directs incoming requests to the m
53
53
  Your task is to analyze the request and determine the most appropriate agent from the options above.
54
54
 
55
55
  <fastagent:instruction>
56
- Respond in JSON format. ONLY include JSON (no explanation). NEVER include Code Fences:
56
+ Respond with JSON following the schema below:
57
57
  {{
58
- "agent": "<agent name>",
59
- "confidence": "<high, medium or low>",
60
- "reasoning": "<brief explanation>"
58
+ "type": "object",
59
+ "required": ["agent", "confidence", "reasoning"],
60
+ "properties": {{
61
+ "agent": {{
62
+ "type": "string",
63
+ "description": "The exact name of the selected agent"
64
+ }},
65
+ "confidence": {{
66
+ "type": "string",
67
+ "enum": ["high", "medium", "low"],
68
+ "description": "Your confidence level in this selection"
69
+ }},
70
+ "reasoning": {{
71
+ "type": "string",
72
+ "description": "Brief explanation for your selection"
73
+ }}
74
+ }}
61
75
  }}
76
+
77
+ Supply only the JSON with no preamble. Use "reasoning" field to describe actions. NEVER EMIT CODE FENCES.
78
+
62
79
  </fastagent:instruction>
63
80
  """
64
81
 
@@ -87,7 +104,7 @@ class RouterAgent(BaseAgent):
87
104
  A simplified router that uses an LLM to determine the best agent for a request,
88
105
  then dispatches the request to that agent and returns the response.
89
106
  """
90
-
107
+
91
108
  @property
92
109
  def agent_type(self) -> str:
93
110
  """Return the type of this agent."""
mcp_agent/config.py CHANGED
@@ -75,6 +75,9 @@ class MCPServerSettings(BaseModel):
75
75
  url: str | None = None
76
76
  """The URL for the server (e.g. for SSE transport)."""
77
77
 
78
+ headers: Dict[str, str] | None = None
79
+ """Headers dictionary for SSE connections"""
80
+
78
81
  auth: MCPServerAuthSettings | None = None
79
82
  """The authentication configuration for the server."""
80
83
 
@@ -84,9 +87,6 @@ class MCPServerSettings(BaseModel):
84
87
  env: Dict[str, str] | None = None
85
88
  """Environment variables to pass to the server process."""
86
89
 
87
- env: Dict[str, str] | None = None
88
- """Environment variables to pass to the server process."""
89
-
90
90
  sampling: MCPSamplingSettings | None = None
91
91
  """Sampling settings for this Client/Server pair"""
92
92
 
@@ -146,6 +146,17 @@ class GenericSettings(BaseModel):
146
146
  base_url: str | None = None
147
147
 
148
148
  model_config = ConfigDict(extra="allow", arbitrary_types_allowed=True)
149
+
150
+
151
+ class OpenRouterSettings(BaseModel):
152
+ """
153
+ Settings for using OpenRouter models via its OpenAI-compatible API.
154
+ """
155
+ api_key: str | None = None
156
+
157
+ base_url: str | None = None # Optional override, defaults handled in provider
158
+
159
+ model_config = ConfigDict(extra="allow", arbitrary_types_allowed=True)
149
160
 
150
161
 
151
162
  class TemporalSettings(BaseModel):
@@ -262,6 +273,9 @@ class Settings(BaseSettings):
262
273
  deepseek: DeepSeekSettings | None = None
263
274
  """Settings for using DeepSeek models in the fast-agent application"""
264
275
 
276
+ openrouter: OpenRouterSettings | None = None
277
+ """Settings for using OpenRouter models in the fast-agent application"""
278
+
265
279
  generic: GenericSettings | None = None
266
280
  """Settings for using Generic models in the fast-agent application"""
267
281
 
@@ -285,10 +285,17 @@ async def get_enhanced_input(
285
285
  elif cmd == "agents":
286
286
  return "LIST_AGENTS"
287
287
  elif cmd == "prompts":
288
- return "SELECT_PROMPT" # Directly launch prompt selection UI
288
+ # Return a dictionary with select_prompt action instead of a string
289
+ # This way it will match what the command handler expects
290
+ return {"select_prompt": True, "prompt_name": None}
289
291
  elif cmd == "prompt" and len(cmd_parts) > 1:
290
- # Direct prompt selection with name
291
- return f"SELECT_PROMPT:{cmd_parts[1].strip()}"
292
+ # Direct prompt selection with name or number
293
+ prompt_arg = cmd_parts[1].strip()
294
+ # Check if it's a number (use as index) or a name (use directly)
295
+ if prompt_arg.isdigit():
296
+ return {"select_prompt": True, "prompt_index": int(prompt_arg)}
297
+ else:
298
+ return f"SELECT_PROMPT:{prompt_arg}"
292
299
  elif cmd == "exit":
293
300
  return "EXIT"
294
301
  elif cmd.lower() == "stop":
@@ -420,13 +427,27 @@ async def get_argument_input(
420
427
  prompt_session.app.exit()
421
428
 
422
429
 
423
- async def handle_special_commands(command: str, agent_app=None):
424
- """Handle special input commands."""
430
+ async def handle_special_commands(command, agent_app=None):
431
+ """
432
+ Handle special input commands.
433
+
434
+ Args:
435
+ command: The command to handle, can be string or dictionary
436
+ agent_app: Optional agent app reference
437
+
438
+ Returns:
439
+ True if command was handled, False if not, or a dict with action info
440
+ """
425
441
  # Quick guard for empty or None commands
426
442
  if not command:
427
443
  return False
444
+
445
+ # If command is already a dictionary, it has been pre-processed
446
+ # Just return it directly (like when /prompts converts to select_prompt dict)
447
+ if isinstance(command, dict):
448
+ return command
428
449
 
429
- # Check for special commands
450
+ # Check for special string commands
430
451
  if command == "HELP":
431
452
  rich_print("\n[bold]Available Commands:[/bold]")
432
453
  rich_print(" /help - Show this help")
@@ -450,7 +471,7 @@ async def handle_special_commands(command: str, agent_app=None):
450
471
  print("\033c", end="")
451
472
  return True
452
473
 
453
- elif command.upper() == "EXIT":
474
+ elif isinstance(command, str) and command.upper() == "EXIT":
454
475
  raise PromptExitError("User requested to exit fast-agent session")
455
476
 
456
477
  elif command == "LIST_AGENTS":
@@ -462,8 +483,6 @@ async def handle_special_commands(command: str, agent_app=None):
462
483
  rich_print("[yellow]No agents available[/yellow]")
463
484
  return True
464
485
 
465
- # Removed LIST_PROMPTS handling as it's now covered by SELECT_PROMPT
466
-
467
486
  elif command == "SELECT_PROMPT" or (
468
487
  isinstance(command, str) and command.startswith("SELECT_PROMPT:")
469
488
  ):
@@ -235,6 +235,8 @@ class FastAgent:
235
235
  progress_display.stop()
236
236
 
237
237
  # Pre-flight validation
238
+ if 0 == len(self.agents):
239
+ raise AgentConfigError("No agents defined. Please define at least one agent.")
238
240
  validate_server_references(self.context, self.agents)
239
241
  validate_workflow_references(self.agents)
240
242
 
@@ -26,6 +26,7 @@ from mcp_agent.core.enhanced_prompt import (
26
26
  get_selection_input,
27
27
  handle_special_commands,
28
28
  )
29
+ from mcp_agent.mcp.mcp_aggregator import SEP # Import SEP once at the top
29
30
  from mcp_agent.progress_display import progress_display
30
31
 
31
32
 
@@ -96,7 +97,7 @@ class InteractivePrompt:
96
97
 
97
98
  # Handle special commands - pass "True" to enable agent switching
98
99
  command_result = await handle_special_commands(user_input, True)
99
-
100
+
100
101
  # Check if we should switch agents
101
102
  if isinstance(command_result, dict):
102
103
  if "switch_agent" in command_result:
@@ -107,6 +108,7 @@ class InteractivePrompt:
107
108
  else:
108
109
  rich_print(f"[red]Agent '{new_agent}' not found[/red]")
109
110
  continue
111
+ # Keep the existing list_prompts handler for backward compatibility
110
112
  elif "list_prompts" in command_result and list_prompts_func:
111
113
  # Use the list_prompts_func directly
112
114
  await self._list_prompts(list_prompts_func, agent)
@@ -114,7 +116,29 @@ class InteractivePrompt:
114
116
  elif "select_prompt" in command_result and (list_prompts_func and apply_prompt_func):
115
117
  # Handle prompt selection, using both list_prompts and apply_prompt
116
118
  prompt_name = command_result.get("prompt_name")
117
- await self._select_prompt(list_prompts_func, apply_prompt_func, agent, prompt_name)
119
+ prompt_index = command_result.get("prompt_index")
120
+
121
+ # If a specific index was provided (from /prompt <number>)
122
+ if prompt_index is not None:
123
+ # First get a list of all prompts to look up the index
124
+ all_prompts = await self._get_all_prompts(list_prompts_func, agent)
125
+ if not all_prompts:
126
+ rich_print("[yellow]No prompts available[/yellow]")
127
+ continue
128
+
129
+ # Check if the index is valid
130
+ if 1 <= prompt_index <= len(all_prompts):
131
+ # Get the prompt at the specified index (1-based to 0-based)
132
+ selected_prompt = all_prompts[prompt_index - 1]
133
+ # Use the already created namespaced_name to ensure consistency
134
+ await self._select_prompt(list_prompts_func, apply_prompt_func, agent, selected_prompt["namespaced_name"])
135
+ else:
136
+ rich_print(f"[red]Invalid prompt number: {prompt_index}. Valid range is 1-{len(all_prompts)}[/red]")
137
+ # Show the prompt list for convenience
138
+ await self._list_prompts(list_prompts_func, agent)
139
+ else:
140
+ # Use the name-based selection
141
+ await self._select_prompt(list_prompts_func, apply_prompt_func, agent, prompt_name)
118
142
  continue
119
143
 
120
144
  # Skip further processing if command was handled
@@ -131,42 +155,119 @@ class InteractivePrompt:
131
155
 
132
156
  return result
133
157
 
134
- async def _list_prompts(self, list_prompts_func, agent_name) -> None:
158
+ async def _get_all_prompts(self, list_prompts_func, agent_name):
135
159
  """
136
- List available prompts for an agent.
137
-
160
+ Get a list of all available prompts.
161
+
138
162
  Args:
139
163
  list_prompts_func: Function to get available prompts
140
164
  agent_name: Name of the agent
165
+
166
+ Returns:
167
+ List of prompt info dictionaries, sorted by server and name
141
168
  """
142
- from rich import print as rich_print
143
-
144
169
  try:
145
- # Directly call the list_prompts function for this agent
146
- rich_print(f"\n[bold]Fetching prompts for agent [cyan]{agent_name}[/cyan]...[/bold]")
147
-
148
- prompt_servers = await list_prompts_func(agent_name)
170
+ # Pass None instead of agent_name to get prompts from all servers
171
+ # the agent_name parameter should never be used as a server name
172
+ prompt_servers = await list_prompts_func(None)
173
+ all_prompts = []
149
174
 
150
175
  # Process the returned prompt servers
151
176
  if prompt_servers:
152
- found_prompts = False
177
+ # First collect all prompts
153
178
  for server_name, prompts_info in prompt_servers.items():
154
179
  if prompts_info and hasattr(prompts_info, "prompts") and prompts_info.prompts:
155
- rich_print(f"\n[bold cyan]{server_name}:[/bold cyan]")
156
180
  for prompt in prompts_info.prompts:
157
- rich_print(f" {prompt.name}")
158
- found_prompts = True
181
+ # Use the SEP constant for proper namespacing
182
+ all_prompts.append({
183
+ "server": server_name,
184
+ "name": prompt.name,
185
+ "namespaced_name": f"{server_name}{SEP}{prompt.name}",
186
+ "description": getattr(prompt, "description", "No description"),
187
+ "arg_count": len(getattr(prompt, "arguments", [])),
188
+ "arguments": getattr(prompt, "arguments", [])
189
+ })
159
190
  elif isinstance(prompts_info, list) and prompts_info:
160
- rich_print(f"\n[bold cyan]{server_name}:[/bold cyan]")
161
191
  for prompt in prompts_info:
162
192
  if isinstance(prompt, dict) and "name" in prompt:
163
- rich_print(f" {prompt['name']}")
193
+ all_prompts.append({
194
+ "server": server_name,
195
+ "name": prompt["name"],
196
+ "namespaced_name": f"{server_name}{SEP}{prompt['name']}",
197
+ "description": prompt.get("description", "No description"),
198
+ "arg_count": len(prompt.get("arguments", [])),
199
+ "arguments": prompt.get("arguments", [])
200
+ })
164
201
  else:
165
- rich_print(f" {prompt}")
166
- found_prompts = True
202
+ all_prompts.append({
203
+ "server": server_name,
204
+ "name": str(prompt),
205
+ "namespaced_name": f"{server_name}{SEP}{str(prompt)}",
206
+ "description": "No description",
207
+ "arg_count": 0,
208
+ "arguments": []
209
+ })
210
+
211
+ # Sort prompts by server and name for consistent ordering
212
+ all_prompts.sort(key=lambda p: (p["server"], p["name"]))
213
+
214
+ return all_prompts
215
+
216
+ except Exception as e:
217
+ import traceback
218
+
219
+ from rich import print as rich_print
220
+ rich_print(f"[red]Error getting prompts: {e}[/red]")
221
+ rich_print(f"[dim]{traceback.format_exc()}[/dim]")
222
+ return []
223
+
224
+ async def _list_prompts(self, list_prompts_func, agent_name) -> None:
225
+ """
226
+ List available prompts for an agent.
227
+
228
+ Args:
229
+ list_prompts_func: Function to get available prompts
230
+ agent_name: Name of the agent
231
+ """
232
+ from rich import print as rich_print
233
+ from rich.console import Console
234
+ from rich.table import Table
167
235
 
168
- if not found_prompts:
169
- rich_print("[yellow]No prompts available[/yellow]")
236
+ console = Console()
237
+
238
+ try:
239
+ # Directly call the list_prompts function for this agent
240
+ rich_print(f"\n[bold]Fetching prompts for agent [cyan]{agent_name}[/cyan]...[/bold]")
241
+
242
+ # Get all prompts using the helper function - pass None as server name
243
+ # to get prompts from all available servers
244
+ all_prompts = await self._get_all_prompts(list_prompts_func, None)
245
+
246
+ if all_prompts:
247
+ # Create a table for better display
248
+ table = Table(title="Available MCP Prompts")
249
+ table.add_column("#", justify="right", style="cyan")
250
+ table.add_column("Server", style="green")
251
+ table.add_column("Prompt Name", style="bright_blue")
252
+ table.add_column("Description")
253
+ table.add_column("Args", justify="center")
254
+
255
+ # Add prompts to table
256
+ for i, prompt in enumerate(all_prompts):
257
+ table.add_row(
258
+ str(i + 1),
259
+ prompt["server"],
260
+ prompt["name"],
261
+ prompt["description"],
262
+ str(prompt["arg_count"])
263
+ )
264
+
265
+ console.print(table)
266
+
267
+ # Add usage instructions
268
+ rich_print("\n[bold]Usage:[/bold]")
269
+ rich_print(" • Use [cyan]/prompt <number>[/cyan] to select a prompt by number")
270
+ rich_print(" • Or use [cyan]/prompts[/cyan] to open the prompt selection UI")
170
271
  else:
171
272
  rich_print("[yellow]No prompts available[/yellow]")
172
273
  except Exception as e:
@@ -192,7 +293,9 @@ class InteractivePrompt:
192
293
  try:
193
294
  # Get all available prompts directly from the list_prompts function
194
295
  rich_print(f"\n[bold]Fetching prompts for agent [cyan]{agent_name}[/cyan]...[/bold]")
195
- prompt_servers = await list_prompts_func(agent_name)
296
+ # IMPORTANT: list_prompts_func gets MCP server prompts, not agent prompts
297
+ # So we pass None to get prompts from all servers, not using agent_name as server name
298
+ prompt_servers = await list_prompts_func(None)
196
299
 
197
300
  if not prompt_servers:
198
301
  rich_print("[yellow]No prompts available for this agent[/yellow]")
@@ -242,8 +345,8 @@ class InteractivePrompt:
242
345
  else:
243
346
  optional_args.append(name)
244
347
 
245
- # Create namespaced version
246
- namespaced_name = f"{server_name}-{prompt_name}"
348
+ # Create namespaced version using the consistent separator
349
+ namespaced_name = f"{server_name}{SEP}{prompt_name}"
247
350
 
248
351
  # Add to collection
249
352
  all_prompts.append(
@@ -410,12 +513,13 @@ class InteractivePrompt:
410
513
  arg_values[arg_name] = arg_value
411
514
 
412
515
  # Apply the prompt
516
+ namespaced_name = selected_prompt["namespaced_name"]
413
517
  rich_print(
414
- f"\n[bold]Applying prompt [cyan]{selected_prompt['namespaced_name']}[/cyan]...[/bold]"
518
+ f"\n[bold]Applying prompt [cyan]{namespaced_name}[/cyan]...[/bold]"
415
519
  )
416
520
 
417
521
  # Call apply_prompt function with the prompt name and arguments
418
- await apply_prompt_func(selected_prompt["namespaced_name"], arg_values, agent_name)
522
+ await apply_prompt_func(namespaced_name, arg_values, agent_name)
419
523
 
420
524
  except Exception as e:
421
525
  import traceback
@@ -32,6 +32,7 @@ from mcp_agent.llm.sampling_format_converter import (
32
32
  ProviderFormatConverter,
33
33
  )
34
34
  from mcp_agent.logging.logger import get_logger
35
+ from mcp_agent.mcp.helpers.content_helpers import get_text
35
36
  from mcp_agent.mcp.interfaces import (
36
37
  AugmentedLLMProtocol,
37
38
  ModelT,
@@ -147,8 +148,11 @@ class AugmentedLLM(ContextDependent, AugmentedLLMProtocol, Generic[MessageParamT
147
148
  """Apply the prompt and return the result as a Pydantic model, or None if coercion fails"""
148
149
  try:
149
150
  result: PromptMessageMultipart = await self.generate(prompt, request_params)
150
- json_data = from_json(result.first_text().strip(), allow_partial=True)
151
+ final_generation = get_text(result.content[-1]) or ""
152
+ await self.show_assistant_message(final_generation)
153
+ json_data = from_json(final_generation, allow_partial=True)
151
154
  validated_model = model.model_validate(json_data)
155
+
152
156
  return cast("ModelT", validated_model), Prompt.assistant(json_data)
153
157
  except Exception as e:
154
158
  logger = get_logger(__name__)
@@ -11,6 +11,7 @@ from mcp_agent.llm.providers.augmented_llm_anthropic import AnthropicAugmentedLL
11
11
  from mcp_agent.llm.providers.augmented_llm_deepseek import DeepSeekAugmentedLLM
12
12
  from mcp_agent.llm.providers.augmented_llm_generic import GenericAugmentedLLM
13
13
  from mcp_agent.llm.providers.augmented_llm_openai import OpenAIAugmentedLLM
14
+ from mcp_agent.llm.providers.augmented_llm_openrouter import OpenRouterAugmentedLLM
14
15
  from mcp_agent.mcp.interfaces import AugmentedLLMProtocol
15
16
 
16
17
  # from mcp_agent.workflows.llm.augmented_llm_deepseek import DeekSeekAugmentedLLM
@@ -23,6 +24,7 @@ LLMClass = Union[
23
24
  Type[PassthroughLLM],
24
25
  Type[PlaybackLLM],
25
26
  Type[DeepSeekAugmentedLLM],
27
+ Type[OpenRouterAugmentedLLM],
26
28
  ]
27
29
 
28
30
 
@@ -34,6 +36,7 @@ class Provider(Enum):
34
36
  FAST_AGENT = auto()
35
37
  DEEPSEEK = auto()
36
38
  GENERIC = auto()
39
+ OPENROUTER = auto()
37
40
 
38
41
 
39
42
  class ReasoningEffort(Enum):
@@ -63,6 +66,7 @@ class ModelFactory:
63
66
  "fast-agent": Provider.FAST_AGENT,
64
67
  "deepseek": Provider.DEEPSEEK,
65
68
  "generic": Provider.GENERIC,
69
+ "openrouter": Provider.OPENROUTER,
66
70
  }
67
71
 
68
72
  # Mapping of effort strings to enum values
@@ -120,6 +124,7 @@ class ModelFactory:
120
124
  Provider.FAST_AGENT: PassthroughLLM,
121
125
  Provider.DEEPSEEK: DeepSeekAugmentedLLM,
122
126
  Provider.GENERIC: GenericAugmentedLLM,
127
+ Provider.OPENROUTER: OpenRouterAugmentedLLM,
123
128
  }
124
129
 
125
130
  # Mapping of special model names to their specific LLM classes
@@ -1,5 +1,7 @@
1
1
  import os
2
- from typing import TYPE_CHECKING, List, Type
2
+ from typing import TYPE_CHECKING, List
3
+
4
+ from mcp.types import EmbeddedResource, ImageContent, TextContent
3
5
 
4
6
  from mcp_agent.core.prompt import Prompt
5
7
  from mcp_agent.llm.providers.multipart_converter_anthropic import (
@@ -28,13 +30,11 @@ from mcp.types import (
28
30
  CallToolRequest,
29
31
  CallToolRequestParams,
30
32
  )
31
- from pydantic_core import from_json
32
33
  from rich.text import Text
33
34
 
34
35
  from mcp_agent.core.exceptions import ProviderKeyError
35
36
  from mcp_agent.llm.augmented_llm import (
36
37
  AugmentedLLM,
37
- ModelT,
38
38
  RequestParams,
39
39
  )
40
40
  from mcp_agent.logging.logger import get_logger
@@ -69,14 +69,15 @@ class AnthropicAugmentedLLM(AugmentedLLM[MessageParam, Message]):
69
69
  use_history=True,
70
70
  )
71
71
 
72
- def _base_url(self) -> str:
72
+ def _base_url(self) -> str | None:
73
+ assert self.context.config
73
74
  return self.context.config.anthropic.base_url if self.context.config.anthropic else None
74
75
 
75
76
  async def generate_internal(
76
77
  self,
77
78
  message_param,
78
79
  request_params: RequestParams | None = None,
79
- ):
80
+ ) -> list[TextContent | ImageContent | EmbeddedResource]:
80
81
  """
81
82
  Process a query using an LLM and available tools.
82
83
  Override this method to use a different LLM.
@@ -113,7 +114,7 @@ class AnthropicAugmentedLLM(AugmentedLLM[MessageParam, Message]):
113
114
  for tool in tool_list.tools
114
115
  ]
115
116
 
116
- responses: List[Message] = []
117
+ responses: List[TextContent | ImageContent | EmbeddedResource] = []
117
118
 
118
119
  model = self.default_request_params.model
119
120
 
@@ -175,7 +176,8 @@ class AnthropicAugmentedLLM(AugmentedLLM[MessageParam, Message]):
175
176
 
176
177
  response_as_message = self.convert_message_to_message_param(response)
177
178
  messages.append(response_as_message)
178
- responses.append(response)
179
+ if response.content[0].type == "text":
180
+ responses.append(TextContent(type="text", text=response.content[0].text))
179
181
 
180
182
  if response.stop_reason == "end_turn":
181
183
  message_text = ""
@@ -255,6 +257,7 @@ class AnthropicAugmentedLLM(AugmentedLLM[MessageParam, Message]):
255
257
 
256
258
  # Add each result to our collection
257
259
  tool_results.append((tool_use_id, result))
260
+ responses.extend(result.content)
258
261
 
259
262
  messages.append(AnthropicConverter.create_tool_results_message(tool_results))
260
263
 
@@ -295,41 +298,22 @@ class AnthropicAugmentedLLM(AugmentedLLM[MessageParam, Message]):
295
298
 
296
299
  return api_key
297
300
 
298
- async def generate_str(
301
+ async def generate_messages(
299
302
  self,
300
303
  message_param,
301
304
  request_params: RequestParams | None = None,
302
- ) -> str:
305
+ ) -> PromptMessageMultipart:
303
306
  """
304
307
  Process a query using an LLM and available tools.
305
308
  The default implementation uses Claude as the LLM.
306
309
  Override this method to use a different LLM.
307
310
 
308
311
  """
309
-
310
- responses: List[Message] = await self.generate_internal(
312
+ res = await self.generate_internal(
311
313
  message_param=message_param,
312
314
  request_params=request_params,
313
315
  )
314
-
315
- final_text: List[str] = []
316
-
317
- # Process all responses and collect all text content
318
- for response in responses:
319
- # Extract text content from each message
320
- message_text = ""
321
- for content in response.content:
322
- if content.type == "text":
323
- # Extract text from text blocks
324
- message_text += content.text
325
-
326
- # Only append non-empty text
327
- if message_text:
328
- final_text.append(message_text)
329
-
330
- # TODO -- make tool detail inclusion behaviour configurable
331
- # Join all collected text
332
- return "\n".join(final_text)
316
+ return Prompt.assistant(*res)
333
317
 
334
318
  async def _apply_prompt_provider_specific(
335
319
  self,
@@ -352,30 +336,12 @@ class AnthropicAugmentedLLM(AugmentedLLM[MessageParam, Message]):
352
336
  if last_message.role == "user":
353
337
  self.logger.debug("Last message in prompt is from user, generating assistant response")
354
338
  message_param = AnthropicConverter.convert_to_anthropic(last_message)
355
- return Prompt.assistant(await self.generate_str(message_param, request_params))
339
+ return await self.generate_messages(message_param, request_params)
356
340
  else:
357
341
  # For assistant messages: Return the last message content as text
358
342
  self.logger.debug("Last message in prompt is from assistant, returning it directly")
359
343
  return last_message
360
344
 
361
- async def generate_structured(
362
- self,
363
- message: str,
364
- response_model: Type[ModelT],
365
- request_params: RequestParams | None = None,
366
- ) -> ModelT:
367
- # TODO -- simiar to the OAI version, we should create a tool call for the expected schema
368
- response = await self.generate_str(
369
- message=message,
370
- request_params=request_params,
371
- )
372
- # Don't try to parse if we got no response
373
- if not response:
374
- self.logger.error("No response from generate_str")
375
- return None
376
-
377
- return response_model.model_validate(from_json(response, allow_partial=True))
378
-
379
345
  @classmethod
380
346
  def convert_message_to_message_param(cls, message: Message, **kwargs) -> MessageParam:
381
347
  """Convert a response object to an input parameter object to allow LLM calls to be chained."""
@@ -5,6 +5,9 @@ from mcp.types import (
5
5
  CallToolRequest,
6
6
  CallToolRequestParams,
7
7
  CallToolResult,
8
+ EmbeddedResource,
9
+ ImageContent,
10
+ TextContent,
8
11
  )
9
12
  from openai import AuthenticationError, OpenAI
10
13
 
@@ -115,7 +118,7 @@ class OpenAIAugmentedLLM(AugmentedLLM[ChatCompletionMessageParam, ChatCompletion
115
118
  self,
116
119
  message,
117
120
  request_params: RequestParams | None = None,
118
- ) -> List[ChatCompletionMessage]:
121
+ ) -> List[TextContent | ImageContent | EmbeddedResource]:
119
122
  """
120
123
  Process a query using an LLM and available tools.
121
124
  The default implementation uses OpenAI's ChatCompletion as the LLM.
@@ -164,7 +167,7 @@ class OpenAIAugmentedLLM(AugmentedLLM[ChatCompletionMessageParam, ChatCompletion
164
167
  if not available_tools:
165
168
  available_tools = None # deepseek does not allow empty array
166
169
 
167
- responses: List[ChatCompletionMessage] = []
170
+ responses: List[TextContent | ImageContent | EmbeddedResource] = []
168
171
  model = self.default_request_params.model
169
172
 
170
173
  # we do NOT send stop sequences as this causes errors with mutlimodal processing
@@ -218,7 +221,9 @@ class OpenAIAugmentedLLM(AugmentedLLM[ChatCompletionMessageParam, ChatCompletion
218
221
 
219
222
  choice = response.choices[0]
220
223
  message = choice.message
221
- responses.append(message)
224
+ # prep for image/audio gen models
225
+ if message.content:
226
+ responses.append(TextContent(type="text", text=message.content))
222
227
 
223
228
  converted_message = self.convert_message_to_message_param(message, name=self.name)
224
229
  messages.append(converted_message)
@@ -258,7 +263,7 @@ class OpenAIAugmentedLLM(AugmentedLLM[ChatCompletionMessageParam, ChatCompletion
258
263
  self.show_oai_tool_result(str(result))
259
264
 
260
265
  tool_results.append((tool_call.id, result))
261
-
266
+ responses.extend(result.content)
262
267
  messages.extend(OpenAIConverter.convert_function_results_to_openai(tool_results))
263
268
 
264
269
  self.logger.debug(
@@ -310,39 +315,6 @@ class OpenAIAugmentedLLM(AugmentedLLM[ChatCompletionMessageParam, ChatCompletion
310
315
 
311
316
  return responses
312
317
 
313
- async def generate_str(
314
- self,
315
- message,
316
- request_params: RequestParams | None = None,
317
- ) -> str:
318
- """
319
- Process a query using an LLM and available tools.
320
- The default implementation uses OpenAI's ChatCompletion as the LLM.
321
- Override this method to use a different LLM.
322
-
323
- Special commands:
324
- - "***SAVE_HISTORY <filename.md>" - Saves the conversation history to the specified file
325
- in MCP prompt format with user/assistant delimiters.
326
- """
327
-
328
- responses = await self.generate_internal(
329
- message=message,
330
- request_params=request_params,
331
- )
332
-
333
- final_text: List[str] = []
334
-
335
- for response in responses:
336
- content = response.content
337
- if not content:
338
- continue
339
-
340
- if isinstance(content, str):
341
- final_text.append(content)
342
- continue
343
-
344
- return "\n".join(final_text)
345
-
346
318
  async def _apply_prompt_provider_specific(
347
319
  self,
348
320
  multipart_messages: List["PromptMessageMultipart"],
@@ -366,7 +338,13 @@ class OpenAIAugmentedLLM(AugmentedLLM[ChatCompletionMessageParam, ChatCompletion
366
338
  # For user messages: Generate response to the last one
367
339
  self.logger.debug("Last message in prompt is from user, generating assistant response")
368
340
  message_param = OpenAIConverter.convert_to_openai(last_message)
369
- return Prompt.assistant(await self.generate_str(message_param, request_params))
341
+ responses: List[
342
+ TextContent | ImageContent | EmbeddedResource
343
+ ] = await self.generate_internal(
344
+ message_param,
345
+ request_params,
346
+ )
347
+ return Prompt.assistant(*responses)
370
348
  else:
371
349
  # For assistant messages: Return the last message content as text
372
350
  self.logger.debug("Last message in prompt is from assistant, returning it directly")
@@ -411,7 +389,8 @@ class OpenAIAugmentedLLM(AugmentedLLM[ChatCompletionMessageParam, ChatCompletion
411
389
  role="system", content=self.instruction
412
390
  )
413
391
  messages.insert(0, system_msg)
414
-
392
+ model_name = self.default_request_params.model
393
+ self.show_user_message(prompt[-1].first_text(), model_name, self.chat_turn())
415
394
  # Use the beta parse feature
416
395
  try:
417
396
  openai_client = OpenAI(api_key=self._api_key(), base_url=self._base_url())
@@ -429,8 +408,8 @@ class OpenAIAugmentedLLM(AugmentedLLM[ChatCompletionMessageParam, ChatCompletion
429
408
 
430
409
  if response and isinstance(response[0], BaseException):
431
410
  raise response[0]
432
-
433
411
  parsed_result = response[0].choices[0].message
412
+ await self.show_assistant_message(parsed_result.content)
434
413
  logger.debug("Successfully used OpenAI beta parse feature for structured output")
435
414
  return parsed_result.parsed, Prompt.assistant(parsed_result.content)
436
415
 
@@ -0,0 +1,78 @@
1
+ import os
2
+
3
+ from mcp_agent.core.exceptions import ProviderKeyError
4
+ from mcp_agent.core.request_params import RequestParams
5
+ from mcp_agent.llm.providers.augmented_llm_openai import OpenAIAugmentedLLM
6
+
7
+ OPENROUTER_BASE_URL = "https://openrouter.ai/api/v1"
8
+ # No single default model for OpenRouter, users must specify full path
9
+ DEFAULT_OPENROUTER_MODEL = None
10
+
11
+
12
+ class OpenRouterAugmentedLLM(OpenAIAugmentedLLM):
13
+ """Augmented LLM provider for OpenRouter, using an OpenAI-compatible API."""
14
+ def __init__(self, *args, **kwargs) -> None:
15
+ kwargs["provider_name"] = "OpenRouter" # Set provider name
16
+ super().__init__(*args, **kwargs)
17
+
18
+ def _initialize_default_params(self, kwargs: dict) -> RequestParams:
19
+ """Initialize OpenRouter-specific default parameters."""
20
+ # OpenRouter model names include the provider, e.g., "google/gemini-flash-1.5"
21
+ # The model should be passed in the 'model' kwarg during factory creation.
22
+ chosen_model = kwargs.get("model", DEFAULT_OPENROUTER_MODEL)
23
+ if not chosen_model:
24
+ # Unlike Deepseek, OpenRouter *requires* a model path in the identifier.
25
+ # The factory should extract this before calling the constructor.
26
+ # We rely on the model being passed correctly via kwargs.
27
+ # If it's still None here, it indicates an issue upstream (factory or user input).
28
+ # However, the base class _get_model handles the error if model is None.
29
+ pass
30
+
31
+
32
+ return RequestParams(
33
+ model=chosen_model, # Will be validated by base class
34
+ systemPrompt=self.instruction,
35
+ parallel_tool_calls=True, # Default based on OpenAI provider
36
+ max_iterations=10, # Default based on OpenAI provider
37
+ use_history=True, # Default based on OpenAI provider
38
+ )
39
+
40
+ def _api_key(self) -> str:
41
+ """Retrieve the OpenRouter API key from config or environment variables."""
42
+ config = self.context.config
43
+ api_key = None
44
+
45
+ # Check config file first
46
+ if config and hasattr(config, 'openrouter') and config.openrouter:
47
+ api_key = getattr(config.openrouter, 'api_key', None)
48
+ if api_key == "<your-openrouter-api-key-here>" or not api_key:
49
+ api_key = None
50
+
51
+ # Fallback to environment variable
52
+ if api_key is None:
53
+ api_key = os.getenv("OPENROUTER_API_KEY")
54
+
55
+ if not api_key:
56
+ raise ProviderKeyError(
57
+ "OpenRouter API key not configured",
58
+ "The OpenRouter API key is required but not set.\n"
59
+ "Add it to your configuration file under openrouter.api_key\n"
60
+ "Or set the OPENROUTER_API_KEY environment variable.",
61
+ )
62
+ return api_key
63
+
64
+ def _base_url(self) -> str:
65
+ """Retrieve the OpenRouter base URL from config or use the default."""
66
+ base_url = OPENROUTER_BASE_URL # Default
67
+ config = self.context.config
68
+
69
+ # Check config file for override
70
+ if config and hasattr(config, 'openrouter') and config.openrouter:
71
+ config_base_url = getattr(config.openrouter, 'base_url', None)
72
+ if config_base_url:
73
+ base_url = config_base_url
74
+
75
+ return base_url
76
+
77
+ # Other methods like _get_model, _send_request etc., are inherited from OpenAIAugmentedLLM
78
+ # We may override them later if OpenRouter deviates significantly or offers unique features.
@@ -3,7 +3,7 @@ Utilities for MCP stdio client integration with our logging system.
3
3
  """
4
4
 
5
5
  import io
6
- import sys
6
+ import os
7
7
  from typing import TextIO
8
8
 
9
9
  from mcp_agent.logging.logger import get_logger
@@ -78,10 +78,21 @@ class LoggerTextIO(TextIO):
78
78
 
79
79
  def fileno(self) -> int:
80
80
  """
81
- Return a file descriptor for this stream.
82
- We use sys.stderr's fileno since TextIO is expected to return a real file descriptor.
81
+ Return a file descriptor for /dev/null.
82
+ This prevents output from showing on the terminal
83
+ while still allowing our write() method to capture it for logging.
83
84
  """
84
- return sys.stderr.fileno()
85
+ if not hasattr(self, '_devnull_fd'):
86
+ self._devnull_fd = os.open(os.devnull, os.O_WRONLY)
87
+ return self._devnull_fd
88
+
89
+ def __del__(self):
90
+ """Clean up the devnull file descriptor."""
91
+ if hasattr(self, '_devnull_fd'):
92
+ try:
93
+ os.close(self._devnull_fd)
94
+ except (OSError, AttributeError):
95
+ pass
85
96
 
86
97
 
87
98
  def get_stderr_handler(server_name: str) -> TextIO:
@@ -3,6 +3,7 @@ Manages the lifecycle of multiple MCP server connections.
3
3
  """
4
4
 
5
5
  import asyncio
6
+ import traceback
6
7
  from datetime import timedelta
7
8
  from typing import (
8
9
  TYPE_CHECKING,
@@ -179,7 +180,7 @@ async def _server_lifecycle_task(server_conn: ServerConnection) -> None:
179
180
  },
180
181
  )
181
182
  server_conn._error_occurred = True
182
- server_conn._error_message = str(exc)
183
+ server_conn._error_message = traceback.format_exception(exc)
183
184
  # If there's an error, we should also set the event so that
184
185
  # 'get_server' won't hang
185
186
  server_conn._initialized_event.set()
@@ -270,7 +271,7 @@ class MCPConnectionManager(ContextDependent):
270
271
  logger.debug(f"{server_name}: Creating stdio client with custom error handler")
271
272
  return stdio_client(server_params, errlog=error_handler)
272
273
  elif config.transport == "sse":
273
- return sse_client(config.url)
274
+ return sse_client(config.url, config.headers)
274
275
  else:
275
276
  raise ValueError(f"Unsupported transport: {config.transport}")
276
277
 
@@ -328,7 +329,8 @@ class MCPConnectionManager(ContextDependent):
328
329
  if not server_conn.is_healthy():
329
330
  error_msg = server_conn._error_message or "Unknown error"
330
331
  raise ServerInitializationError(
331
- f"MCP Server: '{server_name}': Failed to initialize with error: '{error_msg}'. Check fastagent.config.yaml"
332
+ f"MCP Server: '{server_name}': Failed to initialize - see details. Check fastagent.config.yaml?",
333
+ error_msg,
332
334
  )
333
335
 
334
336
  return server_conn
@@ -152,7 +152,7 @@ class ServerRegistry:
152
152
  raise ValueError(f"URL is required for SSE transport: {server_name}")
153
153
 
154
154
  # Use sse_client to get the read and write streams
155
- async with sse_client(config.url) as (read_stream, write_stream):
155
+ async with sse_client(config.url, config.headers) as (read_stream, write_stream):
156
156
  session = client_session_factory(
157
157
  read_stream,
158
158
  write_stream,
@@ -260,6 +260,7 @@ class ServerRegistry:
260
260
  Returns:
261
261
  MCPServerSettings: The server configuration.
262
262
  """
263
+
263
264
  server_config = self.registry.get(server_name)
264
265
  if server_config is None:
265
266
  logger.warning(f"Server '{server_name}' not found in registry.")
@@ -1,18 +0,0 @@
1
- # import functools
2
- # from temporalio import activity
3
- # from typing import Dict, Any, List, Callable, Awaitable
4
- # from .gen_client import gen_client
5
-
6
-
7
- # def mcp_activity(server_name: str, mcp_call: Callable):
8
- # def decorator(func):
9
- # @activity.defn
10
- # @functools.wraps(func)
11
- # async def wrapper(*activity_args, **activity_kwargs):
12
- # params = await func(*activity_args, **activity_kwargs)
13
- # async with gen_client(server_name) as client:
14
- # return await mcp_call(client, params)
15
-
16
- # return wrapper
17
-
18
- # return decorator