fast-agent-mcp 0.2.5__py3-none-any.whl → 0.2.6__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.4
2
2
  Name: fast-agent-mcp
3
- Version: 0.2.5
3
+ Version: 0.2.6
4
4
  Summary: Define, Prompt and Test MCP enabled Agents and Workflows
5
5
  Author-email: Shaun Smith <fastagent@llmindset.co.uk>, Sarmad Qadri <sarmad@lastmileai.dev>
6
6
  License: Apache License
@@ -8,33 +8,33 @@ mcp_agent/event_progress.py,sha256=25iz0yyg-O4glMmtijcYpDdUmtUIKsCmR_8A52GgeC4,2
8
8
  mcp_agent/mcp_server_registry.py,sha256=r24xX4BYXj4BbWbU37uwuW9e1mFOYgpb258OMb21SaY,9928
9
9
  mcp_agent/progress_display.py,sha256=GeJU9VUt6qKsFVymG688hCMVCsAygG9ifiiEb5IcbN4,361
10
10
  mcp_agent/agents/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
11
- mcp_agent/agents/agent.py,sha256=NKz8HTCdjIBDSJwl6EHU2NDnZcAtYiaYH3YnbVGrc3Q,3882
12
- mcp_agent/agents/base_agent.py,sha256=mhLgsS_pST1LeBZmnBo9ldEthcKV9LZdBSdt5PkafCk,23184
11
+ mcp_agent/agents/agent.py,sha256=Tn2YKw_ytx9b8jC-65WYQmrnD43kYiZsLa4sVHxn9d4,3854
12
+ mcp_agent/agents/base_agent.py,sha256=9IExAXyPpao4t7J_uF2pjSlbnlKp-229oiOykbE6KDI,23515
13
13
  mcp_agent/agents/workflow/__init__.py,sha256=HloteEW6kalvgR0XewpiFAqaQlMPlPJYg5p3K33IUzI,25
14
- mcp_agent/agents/workflow/chain_agent.py,sha256=ff5ksaJiAm007MMl8QO4pBTTIgQLcf9GLZpRtYkfBJQ,6201
15
- mcp_agent/agents/workflow/evaluator_optimizer.py,sha256=ArM2CySsTY0gSPndox1DdjecRdNtWIj-Qm9ApUWkygw,13103
16
- mcp_agent/agents/workflow/orchestrator_agent.py,sha256=nf7_Rq3XOiLfLsZ7MHVKAMkhaWJIz5NkWe2xYFH3yqc,21409
14
+ mcp_agent/agents/workflow/chain_agent.py,sha256=EW10IgEnKJ3YfwLY61B1SQlYC-84jcXsrRmzpLQbngE,6384
15
+ mcp_agent/agents/workflow/evaluator_optimizer.py,sha256=VWdzVIy_qSiVsDJO22ta3RB3drkvBfXk9HxBYMpsC5U,13300
16
+ mcp_agent/agents/workflow/orchestrator_agent.py,sha256=30hFQyAmtjQTX6Li_zWWIHCpdNpfZkDo57YXXW5xIsI,21561
17
17
  mcp_agent/agents/workflow/orchestrator_models.py,sha256=5P_aXADVT4Et8qT4e1cb9RelmHX5dCRrzu8j8T41Kdg,7230
18
18
  mcp_agent/agents/workflow/orchestrator_prompts.py,sha256=EXKEI174sshkZyPPEnWbwwNafzSPuA39MXL7iqG9cWc,9106
19
- mcp_agent/agents/workflow/parallel_agent.py,sha256=denkFKrvZJZ4c3Cja9cx-EOUhd-mDO30UIU48WGMnEM,6901
20
- mcp_agent/agents/workflow/router_agent.py,sha256=iOIPhMP9-w-lho50obx1rvGphI_-7Hdr9E9ohlKmtJk,10484
19
+ mcp_agent/agents/workflow/parallel_agent.py,sha256=SgIXJx2X_MSlLOv6WXYRezwjDYjU9f95eKQzTm5Y_lk,7087
20
+ mcp_agent/agents/workflow/router_agent.py,sha256=WLv2ny_-6mAJ7tjU-6nUe2yVhW008vso5NU9tczNTn0,10666
21
21
  mcp_agent/cli/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
22
22
  mcp_agent/cli/__main__.py,sha256=AVZ7tQFhU_sDOGuUGJq8ujgKtcxsYJBJwHbVaaiRDlI,166
23
23
  mcp_agent/cli/main.py,sha256=PZdPJfsAJOm80vTu7j_XpMPhaDZOpqSe-ciU3YQsmA4,3149
24
24
  mcp_agent/cli/terminal.py,sha256=GRwD-RGW7saIz2IOWZn5vD6JjiArscELBThm1GTFkuI,1065
25
25
  mcp_agent/cli/commands/bootstrap.py,sha256=Pv3LQUQLK_5-8nbOQ6iibJI7awgD04P9xh6-VpU15pw,11571
26
26
  mcp_agent/cli/commands/config.py,sha256=jU2gl4d5YESrdUboh3u6mxf7CxVT-_DT_sK8Vuh3ajw,231
27
- mcp_agent/cli/commands/setup.py,sha256=iXsKrf31Szv4Umbk9JfR5as9HcivFJchhE1KKzHxyIo,6345
27
+ mcp_agent/cli/commands/setup.py,sha256=CsmfIvKFfOhU1bOkm1cTqNseQdn3qdlfXN4BALwQ3Ik,6345
28
28
  mcp_agent/core/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
29
- mcp_agent/core/agent_app.py,sha256=9c7V-gZKudl-6u2BB__aLEvC4iemJeWpyoI8fGpXsXk,10145
30
- mcp_agent/core/agent_types.py,sha256=Qyhvzy2CcD7wMaxavuMUOQnD_rg5LZ1RT3DwXVYaM1Q,1345
31
- mcp_agent/core/direct_decorators.py,sha256=_kS0C9UbwRQ54z58vfUapFXXyJrm1XRVyLMuB7bL0b8,14471
32
- mcp_agent/core/direct_factory.py,sha256=oMozbr6kK37vWtAIvzCKtlX1i7KTez3hLdQfeXCWUjM,17580
29
+ mcp_agent/core/agent_app.py,sha256=5nQJNo8DocIRWiX4pVKAHUZF8s6HWpc-hJnfzl_1v1c,9697
30
+ mcp_agent/core/agent_types.py,sha256=LuWslu9YI6JRnAWwh_A1ZejK72-e839wH7tf2MHxSIU,1389
31
+ mcp_agent/core/direct_decorators.py,sha256=Q6t3VpRPLCRzqJycPZIkKbbEJMVocxdScp5o2xn4gLU,14460
32
+ mcp_agent/core/direct_factory.py,sha256=hYFCucZVAQ2wrfqIe9Qameoa-cCRaQ53R97EMHvUZAM,17572
33
33
  mcp_agent/core/enhanced_prompt.py,sha256=P9FAtc0rqIYQfUDkTNVXitFIZEtB3fdq_Nr0-st64Qg,17948
34
34
  mcp_agent/core/error_handling.py,sha256=xoyS2kLe0eG0bj2eSJCJ2odIhGUve2SbDR7jP-A-uRw,624
35
35
  mcp_agent/core/exceptions.py,sha256=ENAD_qGG67foxy6vDkIvc-lgopIUQy6O7zvNPpPXaQg,2289
36
36
  mcp_agent/core/fastagent.py,sha256=HTy1OCAhpHIM-4cd37-dxvb97eZUELN-ICAEFgqmJMk,18503
37
- mcp_agent/core/interactive_prompt.py,sha256=04yoeOX2JLatr2tuOFfnb84GMwFUIBnBC7y1M_gqOM8,17692
37
+ mcp_agent/core/interactive_prompt.py,sha256=zU53h8mmaJBnddYy2j57tH7jreQ9PUz7vLEo2gdDrio,17704
38
38
  mcp_agent/core/mcp_content.py,sha256=2D7KHY9mG_vxoDwFLKvsPQV9VRIzHItM7V-jcEnACh8,8878
39
39
  mcp_agent/core/prompt.py,sha256=qnintOUGEoDPYLI9bu9G2OlgVMCe5ZPUZilgMzydXhc,7919
40
40
  mcp_agent/core/request_params.py,sha256=bEjWo86fqxdiWm2U5nPDd1uCUpcIQO9oiCinhB8lQN0,1185
@@ -50,7 +50,7 @@ mcp_agent/human_input/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3h
50
50
  mcp_agent/human_input/handler.py,sha256=s712Z5ssTCwjL9-VKoIdP5CtgMh43YvepynYisiWTTA,3144
51
51
  mcp_agent/human_input/types.py,sha256=RtWBOVzy8vnYoQrc36jRLn8z8N3C4pDPMBN5vF6qM5Y,1476
52
52
  mcp_agent/llm/__init__.py,sha256=d8zgwG-bRFuwiMNMYkywg_qytk4P8lawyld_meuUmHI,68
53
- mcp_agent/llm/augmented_llm.py,sha256=K7sfUaJrFqupEbq7xi7hDjyAC4UMXQBYQxza5TFJ6VA,18117
53
+ mcp_agent/llm/augmented_llm.py,sha256=AFNA_v7cuxy9MSpCigv9FM9CEg27NsaUfeme4tiy1y8,18125
54
54
  mcp_agent/llm/augmented_llm_passthrough.py,sha256=U0LssNWNVuZRuD9I7Wuvpo7vdDW4xtoPLirnYCgBGTY,6128
55
55
  mcp_agent/llm/augmented_llm_playback.py,sha256=YVR2adzjMf9Q5WfYBytryWMRqJ87a3kNBnjxhApsMcU,3413
56
56
  mcp_agent/llm/memory.py,sha256=UakoBCJBf59JBtB6uyZM0OZjlxDW_VHtSfDs08ibVEc,3312
@@ -80,7 +80,7 @@ mcp_agent/logging/tracing.py,sha256=d5lSXakzzi5PtQpUkVkOnYaGX8NduGPq__S7vx-Ln8U,
80
80
  mcp_agent/logging/transport.py,sha256=m8YsLLu5T8eof_ndpLQs4gHOzqqEL98xsVwBwDsBfxI,17335
81
81
  mcp_agent/mcp/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
82
82
  mcp_agent/mcp/gen_client.py,sha256=fAVwFVCgSamw4PwoWOV4wrK9TABx1S_zZv8BctRyF2k,3030
83
- mcp_agent/mcp/interfaces.py,sha256=8fsQj8r7sMrIyrJHHbUIEP86SVLyXPpEI36KZq1abc0,6644
83
+ mcp_agent/mcp/interfaces.py,sha256=vma7bbWbY3zp1RM6hMYxVO4aV6Vfaygm-nLwzK2jFKI,6748
84
84
  mcp_agent/mcp/logger_textio.py,sha256=OpnqMam9Pu0oVzYQWFMhrX1dRg2f5Fqb3qqPA6QAATM,2778
85
85
  mcp_agent/mcp/mcp_activity.py,sha256=CajXCFWZ2cKEX9s4-HfNVAj471ePTVs4NOkvmIh65tE,592
86
86
  mcp_agent/mcp/mcp_agent_client_session.py,sha256=RMYNltc2pDIzxwEJSS5589RbvPO0KWV4Y3jSyAmhKf0,4181
@@ -102,7 +102,7 @@ mcp_agent/mcp/prompts/prompt_load.py,sha256=VkcY6dD1jRCu-OB5AtSO8YwVATjEoYCkyAIG
102
102
  mcp_agent/mcp/prompts/prompt_server.py,sha256=tXtQd4EnH86MmdAvHlXm4oOS1dWLSCW5PvoA7uU1TvA,16493
103
103
  mcp_agent/mcp/prompts/prompt_template.py,sha256=EejiqGkau8OizORNyKTUwUjrPof5V-hH1H_MBQoQfXw,15732
104
104
  mcp_agent/mcp_server/__init__.py,sha256=zBU51ITHIEPScd9nRafnhEddsWqXRPAAvHhkrbRI2_4,155
105
- mcp_agent/mcp_server/agent_server.py,sha256=5jEHJcoKHKRhMAwn3HArqiqtiiLcFZvantABoEHSw8k,6470
105
+ mcp_agent/mcp_server/agent_server.py,sha256=LVZNML2_ysK7nVVLDou8pQuQWiEsMFZLryn_KihmkUQ,6431
106
106
  mcp_agent/resources/examples/data-analysis/analysis-campaign.py,sha256=QdNdo0-7LR4Uzw61hEU_jVKmWyk6A9YpGo81kMwVobM,7267
107
107
  mcp_agent/resources/examples/data-analysis/analysis.py,sha256=M9z8Q4YC5OGuqSa5uefYmmfmctqMn-WqCSfg5LI407o,2609
108
108
  mcp_agent/resources/examples/data-analysis/fastagent.config.yaml,sha256=ini94PHyJCfgpjcjHKMMbGuHs6LIj46F1NwY0ll5HVk,1609
@@ -134,8 +134,8 @@ mcp_agent/resources/examples/workflows/orchestrator.py,sha256=rOGilFTliWWnZ3Jx5w
134
134
  mcp_agent/resources/examples/workflows/parallel.py,sha256=n0dFN26QvYd2wjgohcaUBflac2SzXYx-bCyxMSousJE,1884
135
135
  mcp_agent/resources/examples/workflows/router.py,sha256=E4x_-c3l4YW9w1i4ARcDtkdeqIdbWEGfsMzwLYpdbVc,1677
136
136
  mcp_agent/ui/console_display.py,sha256=TVGDtJ37hc6UG0ei9g7ZPZZfFNeS1MYozt-Mx8HsPCk,9752
137
- fast_agent_mcp-0.2.5.dist-info/METADATA,sha256=oL4nXJVnNJOv5M5KccLqjAY7jZsygvnIY2-1ZdXb1SI,29839
138
- fast_agent_mcp-0.2.5.dist-info/WHEEL,sha256=qtCwoSJWgHk21S1Kb4ihdzI2rlJ1ZKaIurTj_ngOhyQ,87
139
- fast_agent_mcp-0.2.5.dist-info/entry_points.txt,sha256=qPM7vwtN1_KmP3dXehxgiCxUBHtqP7yfenZigztvY-w,226
140
- fast_agent_mcp-0.2.5.dist-info/licenses/LICENSE,sha256=cN3FxDURL9XuzE5mhK9L2paZo82LTfjwCYVT7e3j0e4,10939
141
- fast_agent_mcp-0.2.5.dist-info/RECORD,,
137
+ fast_agent_mcp-0.2.6.dist-info/METADATA,sha256=f1wgZfK_zZRytbHKacbUDGvP7JS0Qqjp2YemYm1td9Y,29839
138
+ fast_agent_mcp-0.2.6.dist-info/WHEEL,sha256=qtCwoSJWgHk21S1Kb4ihdzI2rlJ1ZKaIurTj_ngOhyQ,87
139
+ fast_agent_mcp-0.2.6.dist-info/entry_points.txt,sha256=qPM7vwtN1_KmP3dXehxgiCxUBHtqP7yfenZigztvY-w,226
140
+ fast_agent_mcp-0.2.6.dist-info/licenses/LICENSE,sha256=cN3FxDURL9XuzE5mhK9L2paZo82LTfjwCYVT7e3j0e4,10939
141
+ fast_agent_mcp-0.2.6.dist-info/RECORD,,
mcp_agent/agents/agent.py CHANGED
@@ -66,7 +66,7 @@ class Agent(BaseAgent):
66
66
  agent_name_str = str(self.name)
67
67
 
68
68
  # Create agent_types dictionary with just this agent
69
- agent_types = {agent_name_str: getattr(self.config, "agent_type", "Agent")}
69
+ agent_types = {agent_name_str: self.agent_type}
70
70
 
71
71
  # Create the interactive prompt
72
72
  prompt = InteractivePrompt(agent_types=agent_types)
@@ -622,6 +622,18 @@ class BaseAgent(MCPAggregator, AgentProtocol):
622
622
  response = await self.generate(prompts, request_params)
623
623
  return response.first_text()
624
624
 
625
+ @property
626
+ def agent_type(self) -> str:
627
+ """
628
+ Return the type of this agent.
629
+
630
+ This is used for display purposes in the interactive prompt and other UI elements.
631
+
632
+ Returns:
633
+ String representing the agent type
634
+ """
635
+ return self.config.agent_type
636
+
625
637
  @property
626
638
  def message_history(self) -> List[PromptMessageMultipart]:
627
639
  """
@@ -9,8 +9,9 @@ from typing import Any, List, Optional, Tuple, Type
9
9
 
10
10
  from mcp.types import TextContent
11
11
 
12
- from mcp_agent.agents.agent import Agent, AgentConfig
12
+ from mcp_agent.agents.agent import Agent
13
13
  from mcp_agent.agents.base_agent import BaseAgent
14
+ from mcp_agent.core.agent_types import AgentConfig, AgentType
14
15
  from mcp_agent.core.prompt import Prompt
15
16
  from mcp_agent.core.request_params import RequestParams
16
17
  from mcp_agent.mcp.interfaces import ModelT
@@ -22,6 +23,11 @@ class ChainAgent(BaseAgent):
22
23
  A chain agent that processes requests through a series of specialized agents in sequence.
23
24
  Passes the output of each agent to the next agent in the chain.
24
25
  """
26
+
27
+ @property
28
+ def agent_type(self) -> str:
29
+ """Return the type of this agent."""
30
+ return AgentType.CHAIN.value
25
31
 
26
32
  def __init__(
27
33
  self,
@@ -14,6 +14,7 @@ from pydantic import BaseModel, Field
14
14
 
15
15
  from mcp_agent.agents.agent import Agent
16
16
  from mcp_agent.agents.base_agent import BaseAgent
17
+ from mcp_agent.core.agent_types import AgentType
17
18
  from mcp_agent.core.exceptions import AgentConfigError
18
19
  from mcp_agent.core.prompt import Prompt
19
20
  from mcp_agent.core.request_params import RequestParams
@@ -63,6 +64,11 @@ class EvaluatorOptimizerAgent(BaseAgent):
63
64
  for refinement, continuing until a quality threshold is reached or a maximum
64
65
  number of refinement cycles is completed.
65
66
  """
67
+
68
+ @property
69
+ def agent_type(self) -> str:
70
+ """Return the type of this agent."""
71
+ return AgentType.EVALUATOR_OPTIMIZER.value
66
72
 
67
73
  def __init__(
68
74
  self,
@@ -27,7 +27,7 @@ from mcp_agent.agents.workflow.orchestrator_prompts import (
27
27
  SYNTHESIZE_PLAN_PROMPT_TEMPLATE,
28
28
  TASK_PROMPT_TEMPLATE,
29
29
  )
30
- from mcp_agent.core.agent_types import AgentConfig
30
+ from mcp_agent.core.agent_types import AgentConfig, AgentType
31
31
  from mcp_agent.core.exceptions import AgentConfigError
32
32
  from mcp_agent.core.prompt import Prompt
33
33
  from mcp_agent.core.request_params import RequestParams
@@ -46,6 +46,11 @@ class OrchestratorAgent(BaseAgent):
46
46
  to specialized worker agents, synthesizing their results into a cohesive output.
47
47
  Supports both full planning and iterative planning modes.
48
48
  """
49
+
50
+ @property
51
+ def agent_type(self) -> str:
52
+ """Return the type of this agent."""
53
+ return AgentType.ORCHESTRATOR.value
49
54
 
50
55
  def __init__(
51
56
  self,
@@ -3,8 +3,9 @@ from typing import Any, List, Optional, Tuple
3
3
 
4
4
  from mcp.types import TextContent
5
5
 
6
- from mcp_agent.agents.agent import Agent, AgentConfig
6
+ from mcp_agent.agents.agent import Agent
7
7
  from mcp_agent.agents.base_agent import BaseAgent
8
+ from mcp_agent.core.agent_types import AgentConfig, AgentType
8
9
  from mcp_agent.core.request_params import RequestParams
9
10
  from mcp_agent.mcp.interfaces import ModelT
10
11
  from mcp_agent.mcp.prompt_message_multipart import PromptMessageMultipart
@@ -17,6 +18,11 @@ class ParallelAgent(BaseAgent):
17
18
  This workflow performs both the fan-out and fan-in operations using LLMs.
18
19
  From the user's perspective, an input is specified and the output is returned.
19
20
  """
21
+
22
+ @property
23
+ def agent_type(self) -> str:
24
+ """Return the type of this agent."""
25
+ return AgentType.PARALLEL.value
20
26
 
21
27
  def __init__(
22
28
  self,
@@ -12,7 +12,7 @@ from pydantic import BaseModel
12
12
 
13
13
  from mcp_agent.agents.agent import Agent
14
14
  from mcp_agent.agents.base_agent import BaseAgent
15
- from mcp_agent.core.agent_types import AgentConfig
15
+ from mcp_agent.core.agent_types import AgentConfig, AgentType
16
16
  from mcp_agent.core.exceptions import AgentConfigError
17
17
  from mcp_agent.core.prompt import Prompt
18
18
  from mcp_agent.core.request_params import RequestParams
@@ -53,7 +53,7 @@ You are a highly accurate request router that directs incoming requests to the m
53
53
  Your task is to analyze the request and determine the most appropriate agent from the options above.
54
54
 
55
55
  <fastagent:instruction>
56
- Respond in JSON format. NEVER include Code Fences:
56
+ Respond in JSON format. ONLY include JSON (no explanation). NEVER include Code Fences:
57
57
  {{
58
58
  "agent": "<agent name>",
59
59
  "confidence": "<high, medium or low>",
@@ -87,6 +87,11 @@ class RouterAgent(BaseAgent):
87
87
  A simplified router that uses an LLM to determine the best agent for a request,
88
88
  then dispatches the request to that agent and returns the response.
89
89
  """
90
+
91
+ @property
92
+ def agent_type(self) -> str:
93
+ """Return the type of this agent."""
94
+ return AgentType.ROUTER.value
90
95
 
91
96
  def __init__(
92
97
  self,
@@ -73,7 +73,7 @@ mcp:
73
73
 
74
74
  GITIGNORE_TEMPLATE = """
75
75
  # FastAgent secrets file
76
- fastagent-secrets.yaml
76
+ fastagent.secrets.yaml
77
77
 
78
78
  # Python
79
79
  __pycache__/
@@ -215,7 +215,7 @@ def init(
215
215
  if "fastagent.secrets.yaml" in created:
216
216
  console.print("\n[yellow]Important:[/yellow] Remember to:")
217
217
  console.print(
218
- "1. Add your API keys to fastagent-secrets.yaml or set OPENAI_API_KEY and ANTHROPIC_API_KEY environment variables"
218
+ "1. Add your API keys to fastagent.secrets.yaml or set OPENAI_API_KEY and ANTHROPIC_API_KEY environment variables"
219
219
  )
220
220
  console.print(
221
221
  "2. Keep fastagent.secrets.yaml secure and never commit it to version control"
@@ -69,7 +69,7 @@ class AgentApp:
69
69
  if message:
70
70
  return await self._agent(agent_name).send(message)
71
71
 
72
- return await self.interactive(agent_name=agent_name, default_prompt=default_prompt)
72
+ return await self.interactive(agent=agent_name, default_prompt=default_prompt)
73
73
 
74
74
  async def send(
75
75
  self,
@@ -220,9 +220,9 @@ class AgentApp:
220
220
  """
221
221
  Deprecated - use interactive() instead.
222
222
  """
223
- return await self.interactive(agent_name=agent_name, default_prompt=default_prompt)
223
+ return await self.interactive(agent=agent_name, default_prompt=default_prompt)
224
224
 
225
- async def interactive(self, agent_name: str | None = None, default_prompt: str = "") -> str:
225
+ async def interactive(self, agent: str | None = None, default_prompt: str = "") -> str:
226
226
  """
227
227
  Interactive prompt for sending messages with advanced features.
228
228
 
@@ -235,11 +235,11 @@ class AgentApp:
235
235
  """
236
236
 
237
237
  # Get the default agent name if none specified
238
- if agent_name:
238
+ if agent:
239
239
  # Validate that this agent exists
240
- if agent_name not in self._agents:
241
- raise ValueError(f"Agent '{agent_name}' not found")
242
- target_name = agent_name
240
+ if agent not in self._agents:
241
+ raise ValueError(f"Agent '{agent}' not found")
242
+ target_name = agent
243
243
  else:
244
244
  # Use the first agent's name as default
245
245
  target_name = next(iter(self._agents.keys()))
@@ -248,18 +248,7 @@ class AgentApp:
248
248
  # The agent's prompt method doesn't fully support switching between agents
249
249
 
250
250
  # Create agent_types dictionary mapping agent names to their types
251
- agent_types = {}
252
- for name, agent in self._agents.items():
253
- # Determine agent type if possible
254
- agent_type = "Agent" # Default type
255
-
256
- # Try to get the type from the agent directly
257
- if hasattr(agent, "agent_type"):
258
- agent_type = agent.agent_type
259
- elif hasattr(agent, "config") and hasattr(agent.config, "agent_type"):
260
- agent_type = agent.config.agent_type
261
-
262
- agent_types[name] = agent_type
251
+ agent_types = {name: agent.agent_type for name, agent in self._agents.items()}
263
252
 
264
253
  # Create the interactive prompt
265
254
  prompt = InteractivePrompt(agent_types=agent_types)
@@ -33,6 +33,7 @@ class AgentConfig:
33
33
  use_history: bool = True
34
34
  default_request_params: RequestParams | None = None
35
35
  human_input: bool = False
36
+ agent_type: str = AgentType.BASIC.value
36
37
 
37
38
  def __post_init__(self) -> None:
38
39
  """Ensure default_request_params exists with proper history setting"""
@@ -269,6 +269,7 @@ def router(
269
269
  *,
270
270
  agents: List[str],
271
271
  instruction: Optional[str] = None,
272
+ servers: List[str] = [],
272
273
  model: Optional[str] = None,
273
274
  use_history: bool = False,
274
275
  request_params: RequestParams | None = None,
@@ -301,7 +302,7 @@ def router(
301
302
  AgentType.ROUTER,
302
303
  name=name,
303
304
  instruction=instruction or default_instruction,
304
- servers=[], # Routers don't connect to servers directly
305
+ servers=servers,
305
306
  model=model,
306
307
  use_history=use_history,
307
308
  request_params=request_params,
@@ -236,7 +236,7 @@ async def create_agents_by_type(
236
236
  config=config,
237
237
  context=app_instance.context,
238
238
  agents=router_agents,
239
- routing_instruction=agent_data.get("routing_instruction"),
239
+ routing_instruction=agent_data.get("instruction"),
240
240
  )
241
241
  await router.initialize()
242
242
 
@@ -77,7 +77,7 @@ class InteractivePrompt:
77
77
  if agent not in available_agents:
78
78
  raise ValueError(f"No agent named '{agent}'")
79
79
 
80
- # Create agent_types dictionary if not provided
80
+ # Ensure we track available agents in a set for fast lookup
81
81
  available_agents_set = set(available_agents)
82
82
 
83
83
  result = ""
@@ -147,7 +147,7 @@ class AugmentedLLM(ContextDependent, AugmentedLLMProtocol, Generic[MessageParamT
147
147
  """Apply the prompt and return the result as a Pydantic model, or None if coercion fails"""
148
148
  try:
149
149
  result: PromptMessageMultipart = await self.generate(prompt, request_params)
150
- json_data = from_json(result.first_text(), allow_partial=True)
150
+ json_data = from_json(result.first_text().strip(), allow_partial=True)
151
151
  validated_model = model.model_validate(json_data)
152
152
  return cast("ModelT", validated_model), Prompt.assistant(json_data)
153
153
  except Exception as e:
@@ -136,6 +136,11 @@ class AgentProtocol(AugmentedLLMProtocol, Protocol):
136
136
 
137
137
  name: str
138
138
 
139
+ @property
140
+ def agent_type(self) -> str:
141
+ """Return the type of this agent"""
142
+ ...
143
+
139
144
  async def __call__(self, message: Union[str, PromptMessage, PromptMessageMultipart]) -> str:
140
145
  """Make the agent callable for sending messages directly."""
141
146
  ...
@@ -38,7 +38,7 @@ class AgentMCPServer:
38
38
 
39
39
  # Basic send message tool
40
40
  @self.mcp_server.tool(
41
- name=f"{agent_name}.send",
41
+ name=f"{agent_name}_send",
42
42
  description=f"Send a message to the {agent_name} agent",
43
43
  )
44
44
  async def send_message(message: str, ctx: MCPContext) -> str:
@@ -58,23 +58,23 @@ class AgentMCPServer:
58
58
  return await execute_send()
59
59
 
60
60
  # Register a history prompt for this agent
61
- @self.mcp_server.prompt(name=f"{agent_name}.history", description=f"Conversation history for the {agent_name} agent")
61
+ @self.mcp_server.prompt(
62
+ name=f"{agent_name}_history",
63
+ description=f"Conversation history for the {agent_name} agent",
64
+ )
62
65
  async def get_history_prompt() -> list:
63
66
  """Return the conversation history as MCP messages."""
64
67
  # Get the conversation history from the agent's LLM
65
68
  if not hasattr(agent, "_llm") or agent._llm is None:
66
69
  return []
67
-
70
+
68
71
  # Convert the multipart message history to standard PromptMessages
69
72
  multipart_history = agent._llm.message_history
70
73
  prompt_messages = mcp_agent.core.prompt.Prompt.from_multipart(multipart_history)
71
-
74
+
72
75
  # In FastMCP, we need to return the raw list of messages
73
76
  # that matches the structure that FastMCP expects (list of dicts with role/content)
74
- return [
75
- {"role": msg.role, "content": msg.content}
76
- for msg in prompt_messages
77
- ]
77
+ return [{"role": msg.role, "content": msg.content} for msg in prompt_messages]
78
78
 
79
79
  def run(self, transport: str = "sse", host: str = "0.0.0.0", port: int = 8000) -> None:
80
80
  """Run the MCP server."""