fast-agent-mcp 0.2.20__py3-none-any.whl → 0.2.22__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of fast-agent-mcp might be problematic. Click here for more details.
- {fast_agent_mcp-0.2.20.dist-info → fast_agent_mcp-0.2.22.dist-info}/METADATA +9 -7
- {fast_agent_mcp-0.2.20.dist-info → fast_agent_mcp-0.2.22.dist-info}/RECORD +20 -18
- mcp_agent/cli/commands/go.py +49 -11
- mcp_agent/config.py +13 -0
- mcp_agent/core/request_params.py +6 -1
- mcp_agent/event_progress.py +1 -1
- mcp_agent/llm/augmented_llm.py +3 -9
- mcp_agent/llm/model_factory.py +8 -0
- mcp_agent/llm/provider_types.py +1 -0
- mcp_agent/llm/providers/augmented_llm_anthropic.py +1 -0
- mcp_agent/llm/providers/augmented_llm_openai.py +14 -1
- mcp_agent/llm/providers/augmented_llm_tensorzero.py +442 -0
- mcp_agent/llm/providers/multipart_converter_tensorzero.py +200 -0
- mcp_agent/mcp/mcp_agent_client_session.py +5 -1
- mcp_agent/mcp/mcp_aggregator.py +22 -17
- mcp_agent/mcp/mcp_connection_manager.py +46 -4
- mcp_agent/mcp/prompts/prompt_server.py +12 -1
- {fast_agent_mcp-0.2.20.dist-info → fast_agent_mcp-0.2.22.dist-info}/WHEEL +0 -0
- {fast_agent_mcp-0.2.20.dist-info → fast_agent_mcp-0.2.22.dist-info}/entry_points.txt +0 -0
- {fast_agent_mcp-0.2.20.dist-info → fast_agent_mcp-0.2.22.dist-info}/licenses/LICENSE +0 -0
@@ -0,0 +1,442 @@
|
|
1
|
+
import json
|
2
|
+
from typing import Any, Dict, List, Optional, Tuple, Union
|
3
|
+
|
4
|
+
from mcp.types import (
|
5
|
+
CallToolRequest,
|
6
|
+
CallToolRequestParams,
|
7
|
+
CallToolResult,
|
8
|
+
EmbeddedResource,
|
9
|
+
ImageContent,
|
10
|
+
TextContent,
|
11
|
+
)
|
12
|
+
from tensorzero import AsyncTensorZeroGateway
|
13
|
+
from tensorzero.types import (
|
14
|
+
ChatInferenceResponse,
|
15
|
+
JsonInferenceResponse,
|
16
|
+
TensorZeroError,
|
17
|
+
)
|
18
|
+
|
19
|
+
from mcp_agent.agents.agent import Agent
|
20
|
+
from mcp_agent.core.exceptions import ModelConfigError
|
21
|
+
from mcp_agent.core.request_params import RequestParams
|
22
|
+
from mcp_agent.llm.augmented_llm import AugmentedLLM
|
23
|
+
from mcp_agent.llm.memory import Memory, SimpleMemory
|
24
|
+
from mcp_agent.llm.provider_types import Provider
|
25
|
+
from mcp_agent.llm.providers.multipart_converter_tensorzero import TensorZeroConverter
|
26
|
+
from mcp_agent.mcp.prompt_message_multipart import PromptMessageMultipart
|
27
|
+
|
28
|
+
|
29
|
+
class TensorZeroAugmentedLLM(AugmentedLLM[Dict[str, Any], Any]):
|
30
|
+
"""
|
31
|
+
AugmentedLLM implementation for TensorZero using its native API.
|
32
|
+
Uses the Converter pattern for message formatting.
|
33
|
+
Implements multi-turn tool calling logic, storing API dicts in history.
|
34
|
+
"""
|
35
|
+
|
36
|
+
def __init__(
|
37
|
+
self,
|
38
|
+
agent: Agent,
|
39
|
+
model: str,
|
40
|
+
request_params: Optional[RequestParams] = None,
|
41
|
+
**kwargs: Any,
|
42
|
+
):
|
43
|
+
self._t0_gateway: Optional[AsyncTensorZeroGateway] = None
|
44
|
+
self._t0_function_name: str = model
|
45
|
+
self._t0_episode_id: Optional[str] = kwargs.get("episode_id")
|
46
|
+
|
47
|
+
super().__init__(
|
48
|
+
agent=agent,
|
49
|
+
model=model,
|
50
|
+
provider=Provider.TENSORZERO,
|
51
|
+
request_params=request_params,
|
52
|
+
**kwargs,
|
53
|
+
)
|
54
|
+
|
55
|
+
self.history: Memory[Dict[str, Any]] = SimpleMemory[Dict[str, Any]]()
|
56
|
+
|
57
|
+
self.logger.info(
|
58
|
+
f"TensorZero LLM provider initialized for function '{self._t0_function_name}'. History type: {type(self.history)}"
|
59
|
+
)
|
60
|
+
|
61
|
+
@staticmethod
|
62
|
+
def block_to_dict(block: Any) -> Dict[str, Any]:
|
63
|
+
if hasattr(block, "model_dump"):
|
64
|
+
try:
|
65
|
+
dumped = block.model_dump(mode="json")
|
66
|
+
if dumped:
|
67
|
+
return dumped
|
68
|
+
except Exception:
|
69
|
+
pass
|
70
|
+
if hasattr(block, "__dict__"):
|
71
|
+
try:
|
72
|
+
block_vars = vars(block)
|
73
|
+
if block_vars:
|
74
|
+
return block_vars
|
75
|
+
except Exception:
|
76
|
+
pass
|
77
|
+
if isinstance(block, (str, int, float, bool, list, dict, type(None))):
|
78
|
+
return {"type": "raw", "content": block}
|
79
|
+
|
80
|
+
# Basic attribute extraction as fallback
|
81
|
+
d = {"type": getattr(block, "type", "unknown")}
|
82
|
+
for attr in ["id", "name", "text", "arguments"]:
|
83
|
+
if hasattr(block, attr):
|
84
|
+
d[attr] = getattr(block, attr)
|
85
|
+
if len(d) == 1 and d.get("type") == "unknown":
|
86
|
+
d["content"] = str(block)
|
87
|
+
return d
|
88
|
+
|
89
|
+
def _initialize_default_params(self, kwargs: dict) -> RequestParams:
|
90
|
+
func_name = kwargs.get("model", self._t0_function_name or "unknown_t0_function")
|
91
|
+
return RequestParams(
|
92
|
+
model=func_name,
|
93
|
+
systemPrompt=self.instruction,
|
94
|
+
maxTokens=4096,
|
95
|
+
use_history=True,
|
96
|
+
max_iterations=10, # Max iterations for tool use loop
|
97
|
+
parallel_tool_calls=True,
|
98
|
+
)
|
99
|
+
|
100
|
+
async def _initialize_gateway(self) -> AsyncTensorZeroGateway:
|
101
|
+
if self._t0_gateway is None:
|
102
|
+
self.logger.debug("Initializing AsyncTensorZeroGateway client...")
|
103
|
+
try:
|
104
|
+
base_url: Optional[str] = None
|
105
|
+
default_url = "http://localhost:3000"
|
106
|
+
|
107
|
+
if (
|
108
|
+
self.context
|
109
|
+
and self.context.config
|
110
|
+
and hasattr(self.context.config, "tensorzero")
|
111
|
+
and self.context.config.tensorzero
|
112
|
+
):
|
113
|
+
base_url = getattr(self.context.config.tensorzero, "base_url", None)
|
114
|
+
|
115
|
+
if not base_url:
|
116
|
+
if not self.context:
|
117
|
+
# Handle case where context itself is missing, log and use default
|
118
|
+
self.logger.warning(
|
119
|
+
f"LLM context not found. Cannot read TensorZero Gateway base URL configuration. "
|
120
|
+
f"Using default: {default_url}"
|
121
|
+
)
|
122
|
+
else:
|
123
|
+
self.logger.warning(
|
124
|
+
f"TensorZero Gateway base URL not configured in context.config.tensorzero.base_url. "
|
125
|
+
f"Using default: {default_url}"
|
126
|
+
)
|
127
|
+
|
128
|
+
base_url = default_url
|
129
|
+
|
130
|
+
self._t0_gateway = await AsyncTensorZeroGateway.build_http(gateway_url=base_url) # type: ignore
|
131
|
+
self.logger.info(f"TensorZero Gateway client initialized for URL: {base_url}")
|
132
|
+
except Exception as e:
|
133
|
+
self.logger.error(f"Failed to initialize TensorZero Gateway: {e}")
|
134
|
+
raise ModelConfigError(f"Failed to initialize TensorZero Gateway lazily: {e}")
|
135
|
+
|
136
|
+
return self._t0_gateway
|
137
|
+
|
138
|
+
async def _apply_prompt_provider_specific(
|
139
|
+
self,
|
140
|
+
multipart_messages: List[PromptMessageMultipart],
|
141
|
+
request_params: Optional[RequestParams] = None,
|
142
|
+
is_template: bool = False,
|
143
|
+
) -> PromptMessageMultipart:
|
144
|
+
gateway = await self._initialize_gateway()
|
145
|
+
merged_params = self.get_request_params(request_params)
|
146
|
+
|
147
|
+
# [1] Retrieve history
|
148
|
+
current_api_messages: List[Dict[str, Any]] = []
|
149
|
+
if merged_params.use_history:
|
150
|
+
try:
|
151
|
+
current_api_messages = self.history.get() or []
|
152
|
+
self.logger.debug(
|
153
|
+
f"Retrieved {len(current_api_messages)} API dict messages from history."
|
154
|
+
)
|
155
|
+
except Exception as e:
|
156
|
+
self.logger.error(f"Error retrieving history: {e}")
|
157
|
+
|
158
|
+
# [2] Convert *new* incoming PromptMessageMultipart messages to API dicts
|
159
|
+
for msg in multipart_messages:
|
160
|
+
msg_dict = TensorZeroConverter.convert_mcp_to_t0_message(msg)
|
161
|
+
if msg_dict:
|
162
|
+
current_api_messages.append(msg_dict)
|
163
|
+
|
164
|
+
t0_system_vars = self._prepare_t0_system_params(merged_params)
|
165
|
+
if t0_system_vars:
|
166
|
+
t0_api_input_dict = {"system": t0_system_vars}
|
167
|
+
else:
|
168
|
+
t0_api_input_dict = {}
|
169
|
+
available_tools: Optional[List[Dict[str, Any]]] = await self._prepare_t0_tools()
|
170
|
+
|
171
|
+
# [3] Initialize storage arrays for the text content of the assistant message reply and, optionally, tool calls and results, and begin inference loop
|
172
|
+
final_assistant_message: List[Union[TextContent, ImageContent, EmbeddedResource]] = []
|
173
|
+
last_executed_results: Optional[List[CallToolResult]] = None
|
174
|
+
|
175
|
+
for i in range(merged_params.max_iterations):
|
176
|
+
use_parallel_calls = merged_params.parallel_tool_calls if available_tools else False
|
177
|
+
current_t0_episode_id = self._t0_episode_id
|
178
|
+
|
179
|
+
try:
|
180
|
+
self.logger.debug(
|
181
|
+
f"Calling TensorZero inference (Iteration {i + 1}/{merged_params.max_iterations})..."
|
182
|
+
)
|
183
|
+
t0_api_input_dict["messages"] = current_api_messages # type: ignore
|
184
|
+
|
185
|
+
# [4] Call the TensorZero inference API
|
186
|
+
response_iter_or_completion = await gateway.inference(
|
187
|
+
function_name=self._t0_function_name,
|
188
|
+
input=t0_api_input_dict,
|
189
|
+
additional_tools=available_tools,
|
190
|
+
parallel_tool_calls=use_parallel_calls,
|
191
|
+
stream=False,
|
192
|
+
episode_id=current_t0_episode_id,
|
193
|
+
)
|
194
|
+
|
195
|
+
if not isinstance(
|
196
|
+
response_iter_or_completion, (ChatInferenceResponse, JsonInferenceResponse)
|
197
|
+
):
|
198
|
+
self.logger.error(
|
199
|
+
f"Unexpected TensorZero response type: {type(response_iter_or_completion)}"
|
200
|
+
)
|
201
|
+
final_assistant_message = [
|
202
|
+
TextContent(type="text", text="Unexpected response type")
|
203
|
+
]
|
204
|
+
break # Exit loop
|
205
|
+
|
206
|
+
# [5] quick check to confirm that episode_id is present and being used correctly by TensorZero
|
207
|
+
completion = response_iter_or_completion
|
208
|
+
if completion.episode_id: #
|
209
|
+
self._t0_episode_id = str(completion.episode_id)
|
210
|
+
if (
|
211
|
+
self._t0_episode_id != current_t0_episode_id
|
212
|
+
and current_t0_episode_id is not None
|
213
|
+
):
|
214
|
+
raise Exception(
|
215
|
+
f"Episode ID mismatch: {self._t0_episode_id} != {current_t0_episode_id}"
|
216
|
+
)
|
217
|
+
|
218
|
+
# [6] Adapt TensorZero inference response to a format compatible with the broader framework
|
219
|
+
(
|
220
|
+
content_parts_this_turn, # Text/Image content ONLY
|
221
|
+
executed_results_this_iter, # Results from THIS iteration
|
222
|
+
raw_tool_call_blocks,
|
223
|
+
) = await self._adapt_t0_native_completion(completion, available_tools)
|
224
|
+
|
225
|
+
last_executed_results = (
|
226
|
+
executed_results_this_iter # Track results from this iteration
|
227
|
+
)
|
228
|
+
|
229
|
+
# [7] If a text message was returned from the assistant, format that message using the multipart_converter_tensorzero.py helper methods and add this to the current list of API messages
|
230
|
+
assistant_api_content = []
|
231
|
+
for part in content_parts_this_turn:
|
232
|
+
api_part = TensorZeroConverter._convert_content_part(part)
|
233
|
+
if api_part:
|
234
|
+
assistant_api_content.append(api_part)
|
235
|
+
if raw_tool_call_blocks:
|
236
|
+
assistant_api_content.extend(
|
237
|
+
[self.block_to_dict(b) for b in raw_tool_call_blocks]
|
238
|
+
)
|
239
|
+
|
240
|
+
if assistant_api_content:
|
241
|
+
assistant_api_message_dict = {
|
242
|
+
"role": "assistant",
|
243
|
+
"content": assistant_api_content,
|
244
|
+
}
|
245
|
+
current_api_messages.append(assistant_api_message_dict)
|
246
|
+
elif executed_results_this_iter:
|
247
|
+
self.logger.debug(
|
248
|
+
"Assistant turn contained only tool calls, no API message added."
|
249
|
+
)
|
250
|
+
|
251
|
+
final_assistant_message = content_parts_this_turn
|
252
|
+
|
253
|
+
# [8] If there were no tool calls we're done. If not, format the tool results and add them to the current list of API messages
|
254
|
+
if not executed_results_this_iter:
|
255
|
+
self.logger.debug(f"Iteration {i + 1}: No tool calls detected. Finishing loop.")
|
256
|
+
break
|
257
|
+
else:
|
258
|
+
user_message_with_results = (
|
259
|
+
TensorZeroConverter.convert_tool_results_to_t0_user_message(
|
260
|
+
executed_results_this_iter
|
261
|
+
)
|
262
|
+
)
|
263
|
+
if user_message_with_results:
|
264
|
+
current_api_messages.append(user_message_with_results)
|
265
|
+
else:
|
266
|
+
self.logger.error("Converter failed to format tool results, breaking loop.")
|
267
|
+
break
|
268
|
+
|
269
|
+
# Check max iterations: TODO: implement logic in the future to handle this dynamically, checking for the presence of a tool call in the last iteration
|
270
|
+
if i == merged_params.max_iterations - 1:
|
271
|
+
self.logger.warning(f"Max iterations ({merged_params.max_iterations}) reached.")
|
272
|
+
break
|
273
|
+
|
274
|
+
# --- Error Handling for Inference Call ---
|
275
|
+
except TensorZeroError as e:
|
276
|
+
error_details = getattr(e, "detail", str(e.args[0] if e.args else e))
|
277
|
+
self.logger.error(f"TensorZero Error (HTTP {e.status_code}): {error_details}")
|
278
|
+
error_content = TextContent(type="text", text=f"TensorZero Error: {error_details}")
|
279
|
+
return PromptMessageMultipart(role="assistant", content=[error_content])
|
280
|
+
except Exception as e:
|
281
|
+
import traceback
|
282
|
+
|
283
|
+
self.logger.error(f"Unexpected Error: {e}\n{traceback.format_exc()}")
|
284
|
+
error_content = TextContent(type="text", text=f"Unexpected error: {e}")
|
285
|
+
return PromptMessageMultipart(role="assistant", content=[error_content])
|
286
|
+
|
287
|
+
# [9] Construct the final assistant message and update history
|
288
|
+
final_message_to_return = PromptMessageMultipart(
|
289
|
+
role="assistant", content=final_assistant_message
|
290
|
+
)
|
291
|
+
|
292
|
+
if merged_params.use_history:
|
293
|
+
try:
|
294
|
+
# Store the final list of API DICTIONARIES in history
|
295
|
+
self.history.set(current_api_messages)
|
296
|
+
self.logger.debug(
|
297
|
+
f"Updated self.history with {len(current_api_messages)} API message dicts."
|
298
|
+
)
|
299
|
+
except Exception as e:
|
300
|
+
self.logger.error(f"Failed to update self.history after loop: {e}")
|
301
|
+
|
302
|
+
# [10] Post final assistant message to display
|
303
|
+
display_text = final_message_to_return.all_text()
|
304
|
+
if display_text and display_text != "<no text>":
|
305
|
+
title = f"ASSISTANT/{self._t0_function_name}"
|
306
|
+
await self.show_assistant_message(message_text=display_text, title=title)
|
307
|
+
|
308
|
+
elif not final_assistant_message and last_executed_results:
|
309
|
+
self.logger.debug("Final assistant turn involved only tool calls, no text to display.")
|
310
|
+
|
311
|
+
return final_message_to_return
|
312
|
+
|
313
|
+
def _prepare_t0_system_params(self, merged_params: RequestParams) -> Dict[str, Any]:
|
314
|
+
"""Prepares the 'system' dictionary part of the main input."""
|
315
|
+
t0_func_input = merged_params.template_vars.copy()
|
316
|
+
|
317
|
+
metadata_args = None
|
318
|
+
if merged_params.metadata and isinstance(merged_params.metadata, dict):
|
319
|
+
metadata_args = merged_params.metadata.get("tensorzero_arguments")
|
320
|
+
if isinstance(metadata_args, dict):
|
321
|
+
t0_func_input.update(metadata_args)
|
322
|
+
self.logger.debug(f"Merged tensorzero_arguments from metadata: {metadata_args}")
|
323
|
+
return t0_func_input
|
324
|
+
|
325
|
+
async def _prepare_t0_tools(self) -> Optional[List[Dict[str, Any]]]:
|
326
|
+
"""Fetches and formats tools for the additional_tools parameter."""
|
327
|
+
formatted_tools: List[Dict[str, Any]] = []
|
328
|
+
try:
|
329
|
+
tools_response = await self.aggregator.list_tools()
|
330
|
+
if tools_response and hasattr(tools_response, "tools") and tools_response.tools:
|
331
|
+
for mcp_tool in tools_response.tools:
|
332
|
+
if (
|
333
|
+
not isinstance(mcp_tool.inputSchema, dict)
|
334
|
+
or mcp_tool.inputSchema.get("type") != "object"
|
335
|
+
):
|
336
|
+
self.logger.warning(
|
337
|
+
f"Tool '{mcp_tool.name}' has invalid parameters schema. Skipping."
|
338
|
+
)
|
339
|
+
continue
|
340
|
+
t0_tool_dict = {
|
341
|
+
"name": mcp_tool.name,
|
342
|
+
"description": mcp_tool.description if mcp_tool.description else "",
|
343
|
+
"parameters": mcp_tool.inputSchema,
|
344
|
+
}
|
345
|
+
formatted_tools.append(t0_tool_dict)
|
346
|
+
return formatted_tools if formatted_tools else None
|
347
|
+
except Exception as e:
|
348
|
+
self.logger.error(f"Failed to fetch or format tools: {e}")
|
349
|
+
return None
|
350
|
+
|
351
|
+
async def _adapt_t0_native_completion(
|
352
|
+
self,
|
353
|
+
completion: Union[ChatInferenceResponse, JsonInferenceResponse],
|
354
|
+
available_tools_for_display: Optional[List[Dict[str, Any]]] = None,
|
355
|
+
) -> Tuple[
|
356
|
+
List[Union[TextContent, ImageContent, EmbeddedResource]], # Text/Image content ONLY
|
357
|
+
List[CallToolResult], # Executed results
|
358
|
+
List[Any], # Raw tool_call blocks
|
359
|
+
]:
|
360
|
+
content_parts_this_turn: List[Union[TextContent, ImageContent, EmbeddedResource]] = []
|
361
|
+
executed_tool_results: List[CallToolResult] = []
|
362
|
+
raw_tool_call_blocks_from_t0: List[Any] = []
|
363
|
+
|
364
|
+
if isinstance(completion, ChatInferenceResponse) and hasattr(completion, "content"):
|
365
|
+
for block in completion.content:
|
366
|
+
block_type = getattr(block, "type", "UNKNOWN")
|
367
|
+
|
368
|
+
if block_type == "text":
|
369
|
+
text_val = getattr(block, "text", None)
|
370
|
+
if text_val is not None:
|
371
|
+
content_parts_this_turn.append(TextContent(type="text", text=text_val))
|
372
|
+
|
373
|
+
elif block_type == "tool_call":
|
374
|
+
raw_tool_call_blocks_from_t0.append(block)
|
375
|
+
tool_use_id = getattr(block, "id", None)
|
376
|
+
tool_name = getattr(block, "name", None)
|
377
|
+
tool_input_raw = getattr(block, "arguments", None)
|
378
|
+
tool_input = {}
|
379
|
+
if isinstance(tool_input_raw, dict):
|
380
|
+
tool_input = tool_input_raw
|
381
|
+
elif isinstance(tool_input_raw, str):
|
382
|
+
try:
|
383
|
+
tool_input = json.loads(tool_input_raw)
|
384
|
+
except json.JSONDecodeError:
|
385
|
+
tool_input = {}
|
386
|
+
elif tool_input_raw is not None:
|
387
|
+
tool_input = {}
|
388
|
+
|
389
|
+
if tool_use_id and tool_name:
|
390
|
+
self.show_tool_call(
|
391
|
+
available_tools_for_display, tool_name, json.dumps(tool_input)
|
392
|
+
)
|
393
|
+
mcp_tool_request = CallToolRequest(
|
394
|
+
method="tools/call",
|
395
|
+
params=CallToolRequestParams(name=tool_name, arguments=tool_input),
|
396
|
+
)
|
397
|
+
try:
|
398
|
+
result: CallToolResult = await self.call_tool(
|
399
|
+
mcp_tool_request, tool_use_id
|
400
|
+
)
|
401
|
+
setattr(result, "_t0_tool_use_id_temp", tool_use_id)
|
402
|
+
setattr(result, "_t0_tool_name_temp", tool_name)
|
403
|
+
setattr(result, "_t0_is_error_temp", False)
|
404
|
+
executed_tool_results.append(result)
|
405
|
+
self.show_oai_tool_result(str(result))
|
406
|
+
except Exception as e:
|
407
|
+
self.logger.error(
|
408
|
+
f"Error executing tool {tool_name} (id: {tool_use_id}): {e}"
|
409
|
+
)
|
410
|
+
error_text = f"Error executing tool {tool_name}: {str(e)}"
|
411
|
+
error_result = CallToolResult(
|
412
|
+
isError=True, content=[TextContent(type="text", text=error_text)]
|
413
|
+
)
|
414
|
+
setattr(error_result, "_t0_tool_use_id_temp", tool_use_id)
|
415
|
+
setattr(error_result, "_t0_tool_name_temp", tool_name)
|
416
|
+
setattr(error_result, "_t0_is_error_temp", True)
|
417
|
+
executed_tool_results.append(error_result)
|
418
|
+
self.show_oai_tool_result(f"ERROR: {error_text}")
|
419
|
+
|
420
|
+
elif block_type == "thought":
|
421
|
+
thought_text = getattr(block, "text", None)
|
422
|
+
self.logger.debug(f"TensorZero thought: {thought_text}")
|
423
|
+
else:
|
424
|
+
self.logger.warning(
|
425
|
+
f"TensorZero Adapt: Skipping unknown block type: {block_type}"
|
426
|
+
)
|
427
|
+
|
428
|
+
elif isinstance(completion, JsonInferenceResponse):
|
429
|
+
# `completion.output.raw` should always be present unless the LLM provider returns unexpected data
|
430
|
+
if completion.output.raw:
|
431
|
+
content_parts_this_turn.append(TextContent(type="text", text=completion.output.raw))
|
432
|
+
|
433
|
+
return content_parts_this_turn, executed_tool_results, raw_tool_call_blocks_from_t0
|
434
|
+
|
435
|
+
async def shutdown(self):
|
436
|
+
"""Close the TensorZero gateway client if initialized."""
|
437
|
+
if self._t0_gateway:
|
438
|
+
try:
|
439
|
+
await self._t0_gateway.close()
|
440
|
+
self.logger.debug("TensorZero Gateway client closed.")
|
441
|
+
except Exception as e:
|
442
|
+
self.logger.error(f"Error closing TensorZero Gateway client: {e}")
|
@@ -0,0 +1,200 @@
|
|
1
|
+
import json
|
2
|
+
from typing import Any, Dict, List, Optional, Union
|
3
|
+
|
4
|
+
from mcp.types import (
|
5
|
+
CallToolResult,
|
6
|
+
EmbeddedResource,
|
7
|
+
ImageContent,
|
8
|
+
TextContent,
|
9
|
+
)
|
10
|
+
|
11
|
+
from mcp_agent.logging.logger import get_logger
|
12
|
+
from mcp_agent.mcp.helpers.content_helpers import (
|
13
|
+
get_text,
|
14
|
+
)
|
15
|
+
from mcp_agent.mcp.prompt_message_multipart import PromptMessageMultipart
|
16
|
+
|
17
|
+
_logger = get_logger(__name__)
|
18
|
+
|
19
|
+
|
20
|
+
class TensorZeroConverter:
|
21
|
+
"""Converts MCP message types to/from TensorZero API format."""
|
22
|
+
|
23
|
+
@staticmethod
|
24
|
+
def _convert_content_part(
|
25
|
+
part: Union[TextContent, ImageContent, EmbeddedResource],
|
26
|
+
) -> Optional[Dict[str, Any]]:
|
27
|
+
"""Converts a single MCP content part to a T0 content block dictionary."""
|
28
|
+
if isinstance(part, TextContent):
|
29
|
+
text = get_text(part)
|
30
|
+
if text is not None:
|
31
|
+
return {"type": "text", "text": text}
|
32
|
+
elif isinstance(part, ImageContent):
|
33
|
+
# Handle Base64: needs data, mimeType (and mimeType must not be empty)
|
34
|
+
if hasattr(part, "data") and part.data and hasattr(part, "mimeType") and part.mimeType:
|
35
|
+
_logger.debug(
|
36
|
+
f"Converting ImageContent as base64 for T0 native: mime={part.mimeType}, data_len={len(part.data) if isinstance(part.data, str) else 'N/A'}"
|
37
|
+
)
|
38
|
+
supported_mime_types = ["image/jpeg", "image/png", "image/webp"]
|
39
|
+
mime_type = getattr(part, "mimeType", "")
|
40
|
+
|
41
|
+
# Use the provided mime_type if supported, otherwise default to png
|
42
|
+
if mime_type not in supported_mime_types:
|
43
|
+
_logger.warning(
|
44
|
+
f"Unsupported mimeType '{mime_type}' for T0 base64 image, defaulting to image/png."
|
45
|
+
)
|
46
|
+
mime_type = "image/png"
|
47
|
+
|
48
|
+
return {
|
49
|
+
"type": "image",
|
50
|
+
"mime_type": mime_type, # Note: T0 uses mime_type, not media_type
|
51
|
+
"data": getattr(part, "data", ""), # Data is direct property
|
52
|
+
}
|
53
|
+
else:
|
54
|
+
# Log cases where it's an ImageContent but doesn't fit Base64 criteria
|
55
|
+
_logger.warning(
|
56
|
+
f"Skipping ImageContent: Missing required base64 fields (mimeType/data), or mimeType is empty: {part}"
|
57
|
+
)
|
58
|
+
|
59
|
+
elif isinstance(part, EmbeddedResource):
|
60
|
+
_logger.warning(f"Skipping EmbeddedResource, T0 conversion not implemented: {part}")
|
61
|
+
else:
|
62
|
+
_logger.error(
|
63
|
+
f"Unsupported content part type for T0 conversion: {type(part)}"
|
64
|
+
) # Changed to error
|
65
|
+
|
66
|
+
return None # Return None if no block was successfully created
|
67
|
+
|
68
|
+
@staticmethod
|
69
|
+
def _get_text_from_call_tool_result(result: CallToolResult) -> str:
|
70
|
+
"""Helper to extract combined text from a CallToolResult's content list."""
|
71
|
+
texts = []
|
72
|
+
if result.content:
|
73
|
+
for part in result.content:
|
74
|
+
text = get_text(part)
|
75
|
+
if text:
|
76
|
+
texts.append(text)
|
77
|
+
return "\n".join(texts)
|
78
|
+
|
79
|
+
@staticmethod
|
80
|
+
def convert_tool_results_to_t0_user_message(
|
81
|
+
results: List[CallToolResult],
|
82
|
+
) -> Optional[Dict[str, Any]]:
|
83
|
+
"""Formats CallToolResult list into T0's tool_result blocks within a user message dict."""
|
84
|
+
t0_tool_result_blocks = []
|
85
|
+
for result in results:
|
86
|
+
tool_use_id = getattr(result, "_t0_tool_use_id_temp", None)
|
87
|
+
tool_name = getattr(result, "_t0_tool_name_temp", None)
|
88
|
+
|
89
|
+
if tool_use_id and tool_name:
|
90
|
+
result_content_str = TensorZeroConverter._get_text_from_call_tool_result(result)
|
91
|
+
try:
|
92
|
+
# Attempt to treat result as JSON if possible, else use raw string
|
93
|
+
try:
|
94
|
+
json_result = json.loads(result_content_str)
|
95
|
+
except json.JSONDecodeError:
|
96
|
+
json_result = result_content_str # Fallback to string if not valid JSON
|
97
|
+
except Exception as e:
|
98
|
+
_logger.error(f"Unexpected error processing tool result content: {e}")
|
99
|
+
json_result = str(result_content_str) # Safest fallback
|
100
|
+
|
101
|
+
t0_block = {
|
102
|
+
"type": "tool_result",
|
103
|
+
"id": tool_use_id,
|
104
|
+
"name": tool_name,
|
105
|
+
"result": json_result, # T0 expects the result directly
|
106
|
+
}
|
107
|
+
t0_tool_result_blocks.append(t0_block)
|
108
|
+
|
109
|
+
# Clean up temporary attributes
|
110
|
+
try:
|
111
|
+
delattr(result, "_t0_tool_use_id_temp")
|
112
|
+
delattr(result, "_t0_tool_name_temp")
|
113
|
+
if hasattr(result, "_t0_is_error_temp"):
|
114
|
+
delattr(result, "_t0_is_error_temp")
|
115
|
+
except AttributeError:
|
116
|
+
pass
|
117
|
+
else:
|
118
|
+
_logger.warning(
|
119
|
+
f"Could not find id/name temp attributes for CallToolResult: {result}"
|
120
|
+
)
|
121
|
+
|
122
|
+
if not t0_tool_result_blocks:
|
123
|
+
return None
|
124
|
+
|
125
|
+
return {"role": "user", "content": t0_tool_result_blocks}
|
126
|
+
|
127
|
+
@staticmethod
|
128
|
+
def convert_mcp_to_t0_message(msg: PromptMessageMultipart) -> Optional[Dict[str, Any]]:
|
129
|
+
"""
|
130
|
+
Converts a single PromptMessageMultipart to a T0 API message dictionary.
|
131
|
+
Handles Text, Image, and embedded CallToolResult content.
|
132
|
+
Skips system messages.
|
133
|
+
"""
|
134
|
+
if msg.role == "system":
|
135
|
+
return None
|
136
|
+
|
137
|
+
t0_content_blocks = []
|
138
|
+
contains_tool_result = False
|
139
|
+
|
140
|
+
for part in msg.content:
|
141
|
+
# Use the corrected _convert_content_part
|
142
|
+
converted_block = TensorZeroConverter._convert_content_part(part)
|
143
|
+
if converted_block:
|
144
|
+
t0_content_blocks.append(converted_block)
|
145
|
+
elif isinstance(part, CallToolResult):
|
146
|
+
# Existing logic for handling embedded CallToolResult (seems compatible with T0 tool_result spec)
|
147
|
+
contains_tool_result = True
|
148
|
+
tool_use_id = getattr(part, "_t0_tool_use_id_temp", None)
|
149
|
+
tool_name = getattr(part, "_t0_tool_name_temp", None)
|
150
|
+
if tool_use_id and tool_name:
|
151
|
+
result_content_str = TensorZeroConverter._get_text_from_call_tool_result(part)
|
152
|
+
# Try to format result as JSON object/string
|
153
|
+
try:
|
154
|
+
json_result = json.loads(result_content_str)
|
155
|
+
except json.JSONDecodeError:
|
156
|
+
json_result = result_content_str # Fallback
|
157
|
+
except Exception as e:
|
158
|
+
_logger.error(f"Error processing embedded tool result: {e}")
|
159
|
+
json_result = str(result_content_str)
|
160
|
+
|
161
|
+
t0_content_blocks.append(
|
162
|
+
{
|
163
|
+
"type": "tool_result",
|
164
|
+
"id": tool_use_id,
|
165
|
+
"name": tool_name,
|
166
|
+
"result": json_result,
|
167
|
+
}
|
168
|
+
)
|
169
|
+
# Clean up temp attributes
|
170
|
+
try:
|
171
|
+
delattr(part, "_t0_tool_use_id_temp")
|
172
|
+
delattr(part, "_t0_tool_name_temp")
|
173
|
+
except AttributeError:
|
174
|
+
pass
|
175
|
+
else:
|
176
|
+
_logger.warning(
|
177
|
+
f"Found embedded CallToolResult without required temp attributes: {part}"
|
178
|
+
)
|
179
|
+
# Note: The _convert_content_part handles logging for other skipped/unsupported types
|
180
|
+
|
181
|
+
if not t0_content_blocks:
|
182
|
+
return None
|
183
|
+
|
184
|
+
# Determine role - logic remains the same
|
185
|
+
valid_role = msg.role if msg.role in ["user", "assistant"] else "user"
|
186
|
+
if contains_tool_result and all(
|
187
|
+
block.get("type") == "tool_result" for block in t0_content_blocks
|
188
|
+
):
|
189
|
+
final_role = "user"
|
190
|
+
if valid_role != final_role:
|
191
|
+
_logger.debug(f"Overriding role to '{final_role}' for tool result message.")
|
192
|
+
else:
|
193
|
+
final_role = valid_role
|
194
|
+
if valid_role != msg.role:
|
195
|
+
_logger.warning(f"Mapping message role '{msg.role}' to '{valid_role}' for T0.")
|
196
|
+
|
197
|
+
return {"role": final_role, "content": t0_content_blocks}
|
198
|
+
|
199
|
+
# Add methods here if needed to convert *from* T0 format back to MCP types
|
200
|
+
# e.g., adapt_t0_response_to_mcp(...) - this logic stays in the LLM class for now
|
@@ -3,6 +3,7 @@ A derived client session for the MCP Agent framework.
|
|
3
3
|
It adds logging and supports sampling requests.
|
4
4
|
"""
|
5
5
|
|
6
|
+
from datetime import timedelta
|
6
7
|
from typing import TYPE_CHECKING, Optional
|
7
8
|
|
8
9
|
from mcp import ClientSession
|
@@ -73,10 +74,13 @@ class MCPAgentClientSession(ClientSession, ContextDependent):
|
|
73
74
|
self,
|
74
75
|
request: SendRequestT,
|
75
76
|
result_type: type[ReceiveResultT],
|
77
|
+
request_read_timeout_seconds: timedelta | None = None,
|
76
78
|
) -> ReceiveResultT:
|
77
79
|
logger.debug("send_request: request=", data=request.model_dump())
|
78
80
|
try:
|
79
|
-
result = await super().send_request(
|
81
|
+
result = await super().send_request(
|
82
|
+
request, result_type, request_read_timeout_seconds=request_read_timeout_seconds
|
83
|
+
)
|
80
84
|
logger.debug("send_request: response=", data=result.model_dump())
|
81
85
|
return result
|
82
86
|
except Exception as e:
|