fast-agent-mcp 0.1.7__py3-none-any.whl → 0.1.9__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (56) hide show
  1. {fast_agent_mcp-0.1.7.dist-info → fast_agent_mcp-0.1.9.dist-info}/METADATA +37 -9
  2. {fast_agent_mcp-0.1.7.dist-info → fast_agent_mcp-0.1.9.dist-info}/RECORD +53 -31
  3. {fast_agent_mcp-0.1.7.dist-info → fast_agent_mcp-0.1.9.dist-info}/entry_points.txt +1 -0
  4. mcp_agent/agents/agent.py +5 -11
  5. mcp_agent/core/agent_app.py +125 -44
  6. mcp_agent/core/decorators.py +3 -2
  7. mcp_agent/core/enhanced_prompt.py +106 -20
  8. mcp_agent/core/factory.py +28 -66
  9. mcp_agent/core/fastagent.py +13 -3
  10. mcp_agent/core/mcp_content.py +222 -0
  11. mcp_agent/core/prompt.py +132 -0
  12. mcp_agent/core/proxies.py +41 -36
  13. mcp_agent/human_input/handler.py +4 -1
  14. mcp_agent/logging/transport.py +30 -3
  15. mcp_agent/mcp/mcp_aggregator.py +27 -22
  16. mcp_agent/mcp/mime_utils.py +69 -0
  17. mcp_agent/mcp/prompt_message_multipart.py +64 -0
  18. mcp_agent/mcp/prompt_serialization.py +447 -0
  19. mcp_agent/mcp/prompts/__init__.py +0 -0
  20. mcp_agent/mcp/prompts/__main__.py +10 -0
  21. mcp_agent/mcp/prompts/prompt_server.py +508 -0
  22. mcp_agent/mcp/prompts/prompt_template.py +469 -0
  23. mcp_agent/mcp/resource_utils.py +203 -0
  24. mcp_agent/resources/examples/internal/agent.py +1 -1
  25. mcp_agent/resources/examples/internal/fastagent.config.yaml +2 -2
  26. mcp_agent/resources/examples/internal/sizer.py +0 -5
  27. mcp_agent/resources/examples/prompting/__init__.py +3 -0
  28. mcp_agent/resources/examples/prompting/agent.py +23 -0
  29. mcp_agent/resources/examples/prompting/fastagent.config.yaml +44 -0
  30. mcp_agent/resources/examples/prompting/image_server.py +56 -0
  31. mcp_agent/resources/examples/researcher/researcher-eval.py +1 -1
  32. mcp_agent/resources/examples/workflows/orchestrator.py +5 -4
  33. mcp_agent/resources/examples/workflows/router.py +0 -2
  34. mcp_agent/workflows/evaluator_optimizer/evaluator_optimizer.py +57 -87
  35. mcp_agent/workflows/llm/anthropic_utils.py +101 -0
  36. mcp_agent/workflows/llm/augmented_llm.py +155 -141
  37. mcp_agent/workflows/llm/augmented_llm_anthropic.py +135 -281
  38. mcp_agent/workflows/llm/augmented_llm_openai.py +175 -337
  39. mcp_agent/workflows/llm/augmented_llm_passthrough.py +104 -0
  40. mcp_agent/workflows/llm/augmented_llm_playback.py +109 -0
  41. mcp_agent/workflows/llm/model_factory.py +25 -6
  42. mcp_agent/workflows/llm/openai_utils.py +65 -0
  43. mcp_agent/workflows/llm/providers/__init__.py +8 -0
  44. mcp_agent/workflows/llm/providers/multipart_converter_anthropic.py +348 -0
  45. mcp_agent/workflows/llm/providers/multipart_converter_openai.py +426 -0
  46. mcp_agent/workflows/llm/providers/openai_multipart.py +197 -0
  47. mcp_agent/workflows/llm/providers/sampling_converter_anthropic.py +258 -0
  48. mcp_agent/workflows/llm/providers/sampling_converter_openai.py +229 -0
  49. mcp_agent/workflows/llm/sampling_format_converter.py +39 -0
  50. mcp_agent/workflows/orchestrator/orchestrator.py +62 -153
  51. mcp_agent/workflows/router/router_llm.py +18 -24
  52. mcp_agent/core/server_validation.py +0 -44
  53. mcp_agent/core/simulator_registry.py +0 -22
  54. mcp_agent/workflows/llm/enhanced_passthrough.py +0 -70
  55. {fast_agent_mcp-0.1.7.dist-info → fast_agent_mcp-0.1.9.dist-info}/WHEEL +0 -0
  56. {fast_agent_mcp-0.1.7.dist-info → fast_agent_mcp-0.1.9.dist-info}/licenses/LICENSE +0 -0
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.4
2
2
  Name: fast-agent-mcp
3
- Version: 0.1.7
3
+ Version: 0.1.9
4
4
  Summary: Define, Prompt and Test MCP enabled Agents and Workflows
5
5
  Author-email: Shaun Smith <fastagent@llmindset.co.uk>, Sarmad Qadri <sarmad@lastmileai.dev>
6
6
  License: Apache License
@@ -209,10 +209,10 @@ Classifier: License :: OSI Approved :: Apache Software License
209
209
  Classifier: Operating System :: OS Independent
210
210
  Classifier: Programming Language :: Python :: 3
211
211
  Requires-Python: >=3.10
212
- Requires-Dist: anthropic>=0.42.0
212
+ Requires-Dist: aiohttp>=3.11.13
213
+ Requires-Dist: anthropic>=0.49.0
213
214
  Requires-Dist: fastapi>=0.115.6
214
- Requires-Dist: instructor>=1.7.2
215
- Requires-Dist: mcp==1.2.1
215
+ Requires-Dist: mcp>=1.4.1
216
216
  Requires-Dist: numpy>=2.2.1
217
217
  Requires-Dist: openai>=1.63.2
218
218
  Requires-Dist: opentelemetry-distro>=0.50b0
@@ -224,11 +224,17 @@ Requires-Dist: pyyaml>=6.0.2
224
224
  Requires-Dist: rich>=13.9.4
225
225
  Requires-Dist: scikit-learn>=1.6.0
226
226
  Requires-Dist: typer>=0.15.1
227
- Provides-Extra: anthropic
228
- Requires-Dist: anthropic>=0.42.0; extra == 'anthropic'
229
- Requires-Dist: instructor[anthropic]>=1.7.2; extra == 'anthropic'
230
227
  Provides-Extra: cohere
231
228
  Requires-Dist: cohere>=5.13.4; extra == 'cohere'
229
+ Provides-Extra: dev
230
+ Requires-Dist: anthropic>=0.42.0; extra == 'dev'
231
+ Requires-Dist: pre-commit>=4.0.1; extra == 'dev'
232
+ Requires-Dist: pydantic>=2.10.4; extra == 'dev'
233
+ Requires-Dist: pytest-asyncio>=0.21.1; extra == 'dev'
234
+ Requires-Dist: pytest>=7.4.0; extra == 'dev'
235
+ Requires-Dist: pyyaml>=6.0.2; extra == 'dev'
236
+ Requires-Dist: ruff>=0.8.4; extra == 'dev'
237
+ Requires-Dist: tomli>=2.2.1; extra == 'dev'
232
238
  Provides-Extra: openai
233
239
  Requires-Dist: openai>=1.58.1; extra == 'openai'
234
240
  Provides-Extra: temporal
@@ -253,6 +259,10 @@ The simple declarative syntax lets you concentrate on composing your Prompts and
253
259
 
254
260
  Evaluate how different models handle Agent and MCP Server calling tasks, then build multi-model workflows using the best provider for each task.
255
261
 
262
+ `fast-agent` is now multi-modal, supporting Images and PDFs for both Anthropic and OpenAI endpoints (for supported models), via Prompts and MCP Tool Call results.
263
+
264
+ > [!TIP] > `fast-agent` is now MCP Native! Coming Soon - Full Documentation Site.
265
+
256
266
  ### Agent Application Development
257
267
 
258
268
  Prompts and configurations that define your Agent Applications are stored in simple files, with minimal boilerplate, enabling simple management and version control.
@@ -582,6 +592,19 @@ agent["greeter"].send("Good Evening!") # Dictionary access is supported
582
592
  )
583
593
  ```
584
594
 
595
+ ### Multimodal Support
596
+
597
+ Add Resources to prompts using either the inbuilt `prompt-server` or MCP Types directly. Convenience class are made available to do so simply, for example:
598
+
599
+ #### MCP Tool Result Conversion
600
+
601
+ LLM APIs have restrictions on the content types that can be returned as Tool Calls/Function results via their Chat Completions API's:
602
+
603
+ - OpenAI supports Text
604
+ - Anthropic supports Text and Image
605
+
606
+ For MCP Tool Results, `ImageResources` and `EmbeddedResources` are converted to User Messages and added to the conversation.
607
+
585
608
  ### Prompts
586
609
 
587
610
  MCP Prompts are supported with `apply_prompt(name,arguments)`, which always returns an Assistant Message. If the last message from the MCP Server is a 'User' message, it is sent to the LLM for processing. Prompts applied to the Agent's Context are retained - meaning that with `use_history=False`, Agents can act as finely tuned responders.
@@ -599,8 +622,9 @@ Prompts can also be applied interactively through the interactive interface by u
599
622
 
600
623
  ### llmindset.co.uk fork:
601
624
 
625
+ - Addition of MCP Prompts including Prompt Server and agent save/replay ability.
602
626
  - Overhaul of Eval/Opt for Conversation Management
603
- - Remove instructor use for Orchestrator
627
+ - Removed instructor/double-llm calling - native structured outputs for OAI.
604
628
  - Improved handling of Parallel/Fan-In and respose option
605
629
  - XML based generated prompts
606
630
  - "FastAgent" style prototyping, with per-agent models
@@ -619,4 +643,8 @@ Prompts can also be applied interactively through the interactive interface by u
619
643
  - Declarative workflows
620
644
  - Numerous defect fixes
621
645
 
622
- ### Features to add.
646
+ ### Features to add (Commmitted)
647
+
648
+ - Run Agent as MCP Server, with interop
649
+ - Multi-part content types supporing Vision, PDF and multi-part Text.
650
+ - Improved test automation (supported by prompt_server.py and augmented_llm_playback.py)
@@ -8,7 +8,7 @@ mcp_agent/event_progress.py,sha256=25iz0yyg-O4glMmtijcYpDdUmtUIKsCmR_8A52GgeC4,2
8
8
  mcp_agent/mcp_server_registry.py,sha256=5x30L1IlmC18JASl7NQbZYHMqPWS3ay0f_3U3uleaMM,9884
9
9
  mcp_agent/progress_display.py,sha256=GeJU9VUt6qKsFVymG688hCMVCsAygG9ifiiEb5IcbN4,361
10
10
  mcp_agent/agents/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
11
- mcp_agent/agents/agent.py,sha256=DpsqvrQYsyHrn5nFnQ7wcB7fDRhV22LSVPWhVGLp93M,13497
11
+ mcp_agent/agents/agent.py,sha256=foxgVBSjpRp697467-girJmAjmEylfDCXbXtI660wHI,13173
12
12
  mcp_agent/cli/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
13
13
  mcp_agent/cli/__main__.py,sha256=AVZ7tQFhU_sDOGuUGJq8ujgKtcxsYJBJwHbVaaiRDlI,166
14
14
  mcp_agent/cli/main.py,sha256=DE6EZzspfzHwPK59x8vL4AIDHRQkVQ1Ja70XRGU1IQs,2753
@@ -17,18 +17,18 @@ mcp_agent/cli/commands/bootstrap.py,sha256=Rmwbuwl52eHfnya7fnwKk2J7nCsHpSh6irka4
17
17
  mcp_agent/cli/commands/config.py,sha256=32YTS5jmsYAs9QzAhjkG70_daAHqOemf4XbZBBSMz6g,204
18
18
  mcp_agent/cli/commands/setup.py,sha256=_SCpd6_PrixqbSaE72JQ7erIRkZnJGmh_3TvvwSzEiE,6392
19
19
  mcp_agent/core/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
20
- mcp_agent/core/agent_app.py,sha256=gnoRibyPTc9cV49Thtxn2ZU-INRLf1lf-yX7Jvra7lM,27443
20
+ mcp_agent/core/agent_app.py,sha256=6fzvExSmVSXyNo-Rq9Xvu0qUKjKHKjOpuhRfzCthV8o,29735
21
21
  mcp_agent/core/agent_types.py,sha256=yKiMbv9QO2dduq4zXmoMZlOZpXJZhM4oNwIq1-134FE,318
22
22
  mcp_agent/core/agent_utils.py,sha256=QMvwmxZyCqYhBzSyL9xARsxTuwdmlyjQvrPpsH36HnQ,1888
23
- mcp_agent/core/decorators.py,sha256=gYqXvwF0pFL-FFU2Vkq5-HsqBWJsXy3YeEdesL8o-jM,16110
24
- mcp_agent/core/enhanced_prompt.py,sha256=QpFRc4QuA2VqI1sFMwg4t427VqkLbvSkiBasyIuSoUk,16382
23
+ mcp_agent/core/decorators.py,sha256=dkAah1eIuYsEfQISDryG0u2GrzNnsO_jyN7lhpQfNlM,16191
24
+ mcp_agent/core/enhanced_prompt.py,sha256=bykUEnnc1CEWODJwXvl4VGfCtrJPtVXU0D4mUglJK7A,18827
25
25
  mcp_agent/core/error_handling.py,sha256=D3HMW5odrbJvaKqcpCGj6eDXrbFcuqYaCZz7fyYiTu4,623
26
26
  mcp_agent/core/exceptions.py,sha256=a2-JGRwFFRoQEPuAq0JC5PhAJ5TO3xVJfdS4-VN29cw,2225
27
- mcp_agent/core/factory.py,sha256=cmsv6qhdxdYoQ2Xjc0bIBKFbg3yQPe2bAjDovx4Wrus,20447
28
- mcp_agent/core/fastagent.py,sha256=v8LN-Oux3X0zSnLeE_vtHYN8JR1nZakhO2CBdYbCGQI,19461
29
- mcp_agent/core/proxies.py,sha256=fUhuB3GoIdDIHg7rXn24O3C_tPiAzkZ9sTGuaQl4gxs,8827
30
- mcp_agent/core/server_validation.py,sha256=_59cn16nNT4HGPwg19HgxMtHK4MsdWYDUw_CuL-5xek,1696
31
- mcp_agent/core/simulator_registry.py,sha256=rcd1cyFGx8MAnN5O0UgwElmVKU_uoIBh9s24pxP33Jc,573
27
+ mcp_agent/core/factory.py,sha256=TYtGtUKEVQi96uXQu3RddrpYGiUGolHMEATS57e4hgw,19074
28
+ mcp_agent/core/fastagent.py,sha256=CYor0u4Vqrn8XmYIaSEtfuLrJgF2YChJUAE_3xjRGmk,19659
29
+ mcp_agent/core/mcp_content.py,sha256=rXT2C5gP9qgC-TI5F362ZLJi_erzcEOnlP9D2ZKK0i0,6860
30
+ mcp_agent/core/prompt.py,sha256=R-X3kptu3ehV_SQeiGnP6F9HMN-92I8e73gnkQ1tDVs,4317
31
+ mcp_agent/core/proxies.py,sha256=lawAc3mcoYlDpX9HwBc8tdh2oAr9YS_CT2LtbqXvuyg,8858
32
32
  mcp_agent/core/types.py,sha256=Zhi9iW7uiOfdpSt9NC0FCtGRFtJPg4mpZPK2aYi7a7M,817
33
33
  mcp_agent/core/validation.py,sha256=x0fsx5eLTawASFm9MDtEukwGOj_RTdY1OW064UihMR8,8309
34
34
  mcp_agent/eval/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
@@ -40,7 +40,7 @@ mcp_agent/executor/temporal.py,sha256=U-wyltgWlVmzJoyivT6rR0Z1U3S6TbMXpeCxyuXako
40
40
  mcp_agent/executor/workflow.py,sha256=lA6r7PNEvxCVFHp4XkEJkaR0QCTf-J6iw9JwNx-tzNY,6727
41
41
  mcp_agent/executor/workflow_signal.py,sha256=3PWwSgXhz3PhkA8SRX3u0BDVoSlQqRGqC9d1qLC25vE,11210
42
42
  mcp_agent/human_input/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
43
- mcp_agent/human_input/handler.py,sha256=fF2qSSG4snIYOodrIuy_t2qOYssOYqAygw3qq9XsmXU,3158
43
+ mcp_agent/human_input/handler.py,sha256=BTZroDkHRvknSfYcTs60NerE4lJY6ROpoIMjAmfSqYY,3197
44
44
  mcp_agent/human_input/types.py,sha256=ZvuDHvI0-wO2tFoS0bzrv8U5B83zYdxAG7g9G9jCxug,1489
45
45
  mcp_agent/logging/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
46
46
  mcp_agent/logging/events.py,sha256=qfYJnrqgXdujV-nl-iOwBEBh6HMraowBI4zeAWPPU4A,3461
@@ -49,31 +49,43 @@ mcp_agent/logging/listeners.py,sha256=lx2Pq_SE0rsG3nF3TwDSxkmsWzdXxIUjuaWct-KOtJ
49
49
  mcp_agent/logging/logger.py,sha256=Tr009BnfGUKuZcdinnSin0Z_zIsfDNGdcnamw2rDHRQ,10604
50
50
  mcp_agent/logging/rich_progress.py,sha256=IEVFdFGA0nwg6pSt9Ydni5LCNYZZPKYMe-6DCi9pO4Y,4851
51
51
  mcp_agent/logging/tracing.py,sha256=jQivxKYl870oXakmyUk7TXuTQSvsIzpHwZlSQfy4b0c,5203
52
- mcp_agent/logging/transport.py,sha256=Oo7Rx5t7REZTnH-uVljK0JlehnBj-wInc_fx0zhd_zY,16139
52
+ mcp_agent/logging/transport.py,sha256=MFgiCQ-YFP0tSMhDMpZCj585vflWcMydM4oyCFduVf0,17203
53
53
  mcp_agent/mcp/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
54
54
  mcp_agent/mcp/gen_client.py,sha256=u0HwdJiw9YCerS5JC7JDuGgBh9oTcLd7vv9vPjwibXc,3025
55
55
  mcp_agent/mcp/mcp_activity.py,sha256=CajXCFWZ2cKEX9s4-HfNVAj471ePTVs4NOkvmIh65tE,592
56
56
  mcp_agent/mcp/mcp_agent_client_session.py,sha256=NtWcQhjmnnaR3yYcYj2d2lh-m563NexZUa57K1tAjeM,9477
57
57
  mcp_agent/mcp/mcp_agent_server.py,sha256=xP09HZTeguJi4Fq0p3fjLBP55uSYe5AdqM90xCgn9Ho,1639
58
- mcp_agent/mcp/mcp_aggregator.py,sha256=qY9rCy14diC4QJbZormqeuOjJnK2ReK-kpY7y_LfIL0,35805
58
+ mcp_agent/mcp/mcp_aggregator.py,sha256=X_SnSX-_CPye87Xst_h0XyO4Cd3EuxBCEvLhU1SlRkU,36045
59
59
  mcp_agent/mcp/mcp_connection_manager.py,sha256=EPJTKiEMKnFYpC37SOXiLriQL2YyhH0s6vvZWQRb_Mo,13663
60
+ mcp_agent/mcp/mime_utils.py,sha256=difepNR_gpb4MpMLkBRAoyhDk-AjXUHTiqKvT_VwS1o,1805
61
+ mcp_agent/mcp/prompt_message_multipart.py,sha256=U7IN0JStmy26akTXcqE4x90oWzm8xs1qa0VeKIyPKmE,1962
62
+ mcp_agent/mcp/prompt_serialization.py,sha256=StcXV7V4fqqtCmOCXGCyYXx5vpwNhL2xr3RG_awwdqI,16056
63
+ mcp_agent/mcp/resource_utils.py,sha256=x-hMxVH7moVY0PLV1LHkpzk8cihL8AJINtzRcaGsiSE,6358
60
64
  mcp_agent/mcp/stdio.py,sha256=tW075R5rQ-UlflXWFKIFDgCbWbuhKqxhiYolWvyEkFs,3985
65
+ mcp_agent/mcp/prompts/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
66
+ mcp_agent/mcp/prompts/__main__.py,sha256=gr1Tdz9fcK0EXjEuZg_BOnKUmvhYq5AH2lFZicVyNb0,237
67
+ mcp_agent/mcp/prompts/prompt_server.py,sha256=lGa-H2rXarVcbwrcjfhdZ0rGwggE9eytUko6soiJVXo,17375
68
+ mcp_agent/mcp/prompts/prompt_template.py,sha256=NDnSVA0W1wayZHCVx27lfuVPoxlAz-FfBwiCEQG9Ixk,16324
61
69
  mcp_agent/mcp_server/__init__.py,sha256=SEWyU7aSFzdSk6iTYnrQu-llji5_P5dp3TaztCt_rzo,154
62
70
  mcp_agent/mcp_server/agent_server.py,sha256=SUBggPyrzWtBRUC5xIMpCxu6ei-6Vah3q9Si12BQ-zY,4444
63
71
  mcp_agent/resources/examples/data-analysis/analysis-campaign.py,sha256=EG-HhaDHltZ4hHAqhgfX_pHM2wem48aYhSIKJxyWHKc,7269
64
72
  mcp_agent/resources/examples/data-analysis/analysis.py,sha256=5zLoioZQNKUfXt1EXLrGX3TU06-0N06-L9Gtp9BIr6k,2611
65
73
  mcp_agent/resources/examples/data-analysis/fastagent.config.yaml,sha256=ini94PHyJCfgpjcjHKMMbGuHs6LIj46F1NwY0ll5HVk,1609
66
74
  mcp_agent/resources/examples/data-analysis/mount-point/WA_Fn-UseC_-HR-Employee-Attrition.csv,sha256=pcMeOL1_r8m8MziE6xgbBrQbjl5Ijo98yycZn7O-dlk,227977
67
- mcp_agent/resources/examples/internal/agent.py,sha256=f-jTgYabV3nWCQm0ZP9NtSEWjx3nQbRngzArRufcELg,384
68
- mcp_agent/resources/examples/internal/fastagent.config.yaml,sha256=98vKDiGLnpshPBqrkbPPaeKrGZ13RWGBxXhJBb9Hv6M,1850
75
+ mcp_agent/resources/examples/internal/agent.py,sha256=4EXhVJcX5mw2LuDqmZL4B4SM0zxMFmMou7NCEeoVeQ0,391
76
+ mcp_agent/resources/examples/internal/fastagent.config.yaml,sha256=NF-plJ2ZMLZL8_YfdwmfsvRyafgsNEEHzsjm_p8vNlY,1858
69
77
  mcp_agent/resources/examples/internal/job.py,sha256=WEKIAANMEAuKr13__rYf3PqJeTAsNB_kqYqbqVYQlUM,4093
70
78
  mcp_agent/resources/examples/internal/prompt_category.py,sha256=b3tjkfrVIW1EPoDjr4mG87wlZ7D0Uju9eg6asXAYYpI,551
71
79
  mcp_agent/resources/examples/internal/prompt_sizing.py,sha256=UtQ_jvwS4yMh80PHhUQXJ9WXk-fqNYlqUMNTNkZosKM,2003
72
- mcp_agent/resources/examples/internal/sizer.py,sha256=FC9zTscPRStlaaeDFVUODnrD5ytGUa3sD0NkfrhiQOc,707
80
+ mcp_agent/resources/examples/internal/sizer.py,sha256=RBq1qhYVKF2_qtRdvpKpRI3XIFpZ4eyBzhVjnlip-P8,356
73
81
  mcp_agent/resources/examples/internal/social.py,sha256=Cot2lg3PLhLm13gPdVFvFEN28-mm6x3-jHu2YsV4N3s,1707
74
82
  mcp_agent/resources/examples/mcp_researcher/researcher-eval.py,sha256=kNPjIU-JwE0oIBQKwhv6lZsUF_SPtYVkiEEbY1ZVZxk,1807
83
+ mcp_agent/resources/examples/prompting/__init__.py,sha256=GG1zksC76L-wmerkjplWHwamelxl5vlY0YkRzgAq_v0,49
84
+ mcp_agent/resources/examples/prompting/agent.py,sha256=gG2jQnRibO8OmljoFQAs9xxhCyHLCkVxJxQkfF7ykfY,607
85
+ mcp_agent/resources/examples/prompting/fastagent.config.yaml,sha256=UR6LtCpeSIzkHsCrHJW1z-wE7AgmgKozS_IYcfcSAkc,1270
86
+ mcp_agent/resources/examples/prompting/image_server.py,sha256=-6YWtzS-K5ofHtdoOk4uC3ZBFUyVELT9Fdck1RptcWg,1711
75
87
  mcp_agent/resources/examples/researcher/fastagent.config.yaml,sha256=bNOnID9OgdSBTUEhdimKB8LjaZLa1B6igmp-nxx8nr4,2271
76
- mcp_agent/resources/examples/researcher/researcher-eval.py,sha256=kNPjIU-JwE0oIBQKwhv6lZsUF_SPtYVkiEEbY1ZVZxk,1807
88
+ mcp_agent/resources/examples/researcher/researcher-eval.py,sha256=0qDjxun7CZ1cZ8JTa6G1v1XcpwGSSL6-qAZ35yI1-K4,1818
77
89
  mcp_agent/resources/examples/researcher/researcher-imp.py,sha256=Xfw2YAyjXd47pQz-uljgG5ii5x77fVuCP2XCivRDI48,7885
78
90
  mcp_agent/resources/examples/researcher/researcher.py,sha256=iE6hlwoJVCgCvJfSPYrBvoXKFqkvXah8NHSHX5EgTxA,1431
79
91
  mcp_agent/resources/examples/workflows/agent_build.py,sha256=ioG4X8IbR8wwja8Zdncsk8YAu0VD2Xt1Vhr7saNJCZQ,2855
@@ -81,9 +93,9 @@ mcp_agent/resources/examples/workflows/chaining.py,sha256=1G_0XBcFkSJCOXb6N_iXWl
81
93
  mcp_agent/resources/examples/workflows/evaluator.py,sha256=3XmW1mjImlaWb0c5FWHYS9yP8nVGTbEdJySAoWXwrDg,3109
82
94
  mcp_agent/resources/examples/workflows/fastagent.config.yaml,sha256=k2AiapOcK42uqG2nWDVvnSLqN4okQIQZK0FTbZufBpY,809
83
95
  mcp_agent/resources/examples/workflows/human_input.py,sha256=c8cBdLEPbaMXddFwsfN3Z7RFs5PZXsdrjANfvq1VTPM,605
84
- mcp_agent/resources/examples/workflows/orchestrator.py,sha256=oyKzmLA1z00wbAwDwBCthJ_qJx4fai6GAJpeOXDR-bE,2569
96
+ mcp_agent/resources/examples/workflows/orchestrator.py,sha256=orsE4S03uk4ylkhERmTwzIyqyL7kFHR7oOzvYV3Id38,2599
85
97
  mcp_agent/resources/examples/workflows/parallel.py,sha256=pLbQrtXfbdYqMVddxtg5dZnBnm5Wo2mXlIa1Vf2F1FQ,3096
86
- mcp_agent/resources/examples/workflows/router.py,sha256=XT_ewCrxPxdUTMCYQGw34qZQ3GGu8TYY_v5Lige8By4,1707
98
+ mcp_agent/resources/examples/workflows/router.py,sha256=J1yTAimFY53jcyd21cq1XAZvtOxnNsmtSjSp13M5EgE,1668
87
99
  mcp_agent/resources/examples/workflows/sse.py,sha256=tdmmh7p87YNfcF_fCq3evAmc1Nek0oY0YOqLRKBLqKg,570
88
100
  mcp_agent/telemetry/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
89
101
  mcp_agent/telemetry/usage_tracking.py,sha256=ePujKMSjPxB7k6X34DGaVlnsV1728mcWZq38OqahiCU,501
@@ -94,7 +106,7 @@ mcp_agent/workflows/embedding/embedding_base.py,sha256=-c20ggQ8s7XhMxRX-WEhOgHE7
94
106
  mcp_agent/workflows/embedding/embedding_cohere.py,sha256=OKTJvKD_uEafd4c2uhR5tBjprea1nyvlJOO-3FDqOnk,1540
95
107
  mcp_agent/workflows/embedding/embedding_openai.py,sha256=dntjJ5P-FSMGYuyPZC8MuCU_ehwjXw9wDfzZZuSQN1E,1480
96
108
  mcp_agent/workflows/evaluator_optimizer/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
97
- mcp_agent/workflows/evaluator_optimizer/evaluator_optimizer.py,sha256=hocvUtTJ5YHiT7utFuzbzY1aqFWCheuB_5dQ_ttOAZ4,20009
109
+ mcp_agent/workflows/evaluator_optimizer/evaluator_optimizer.py,sha256=cJpts0w6jffJCHOjBdAa18E8cw7qteoAbrGvm9Rrh6U,18144
98
110
  mcp_agent/workflows/intent_classifier/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
99
111
  mcp_agent/workflows/intent_classifier/intent_classifier_base.py,sha256=zTbOmq6EY_abOlme4zl28HM4RWNNS6bbHl3tF7SshJ0,4004
100
112
  mcp_agent/workflows/intent_classifier/intent_classifier_embedding.py,sha256=_bWZGukc_q9LdA_Q18UoAMSzhN8tt4K_bRHNUhy7Crw,3997
@@ -104,15 +116,25 @@ mcp_agent/workflows/intent_classifier/intent_classifier_llm.py,sha256=WSLUv2Casb
104
116
  mcp_agent/workflows/intent_classifier/intent_classifier_llm_anthropic.py,sha256=Hp4454IniWFxV4ml50Ml8ip9rS1La5FBn5pd7vm1FHA,1964
105
117
  mcp_agent/workflows/intent_classifier/intent_classifier_llm_openai.py,sha256=zj76WlTYnSCYjBQ_IDi5vFBQGmNwYaoUq1rT730sY98,1940
106
118
  mcp_agent/workflows/llm/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
107
- mcp_agent/workflows/llm/augmented_llm.py,sha256=BF2HupWTdvN7B91HhNfeb1btrcO3lGijvYezIAV2f2M,29407
108
- mcp_agent/workflows/llm/augmented_llm_anthropic.py,sha256=NjOYcDvQZ82hbyehSj4-42mpzqBXLY2qZvWJihd7Afc,25012
109
- mcp_agent/workflows/llm/augmented_llm_openai.py,sha256=yV0FdPTgRsmNiCcssX4en7WW2pkB8LWjIG_qSev_goM,27055
110
- mcp_agent/workflows/llm/enhanced_passthrough.py,sha256=rHNbb6pYllIuVMOhuzUbt63_6WlUnjm57Y7r59N1pnk,2388
119
+ mcp_agent/workflows/llm/anthropic_utils.py,sha256=OFmsVmDQ22880duDWQrEeQEB47xtvujSYJ-fNw1lhi0,3712
120
+ mcp_agent/workflows/llm/augmented_llm.py,sha256=9cWy-4yNG13w4oQgXmisgWTcm6aoJIRCYTX85Bkf-MI,30554
121
+ mcp_agent/workflows/llm/augmented_llm_anthropic.py,sha256=opV4PTai2eoYUzJS0gCPGEy4pe-lT2Eo1Sao6Y_EIiY,20140
122
+ mcp_agent/workflows/llm/augmented_llm_openai.py,sha256=OUSmvY2m6HU1JOK5nEzKDHpHReT0ffjoHDFHk6aYhoc,21002
123
+ mcp_agent/workflows/llm/augmented_llm_passthrough.py,sha256=oZC9K90DdjvCQiQ-2yH1FGTTYsjPl9EMRx4n5_CihIM,3996
124
+ mcp_agent/workflows/llm/augmented_llm_playback.py,sha256=5ypv3owJU6pscktqg9tkLQVKNgaA50e8OWmC1hAhrtE,4328
111
125
  mcp_agent/workflows/llm/llm_selector.py,sha256=G7pIybuBDwtmyxUDov_QrNYH2FoI0qFRu2JfoxWUF5Y,11045
112
- mcp_agent/workflows/llm/model_factory.py,sha256=ZyO3FpiIiM2EiFgE8Y5PhdzLglKENfgknmF9unmKWJ8,7075
126
+ mcp_agent/workflows/llm/model_factory.py,sha256=UHePE5Ow03kpE44kjYtFGEhVFSYp0AY2yGri58yCBKU,7688
127
+ mcp_agent/workflows/llm/openai_utils.py,sha256=GGkJF-nazA4HWrlmMKKLf0qSfl2gbSqo-rbMDoJs5mE,1895
113
128
  mcp_agent/workflows/llm/prompt_utils.py,sha256=EY3eddqnmc_YDUQJFysPnpTH6hr4r2HneeEmX76P8TQ,4948
129
+ mcp_agent/workflows/llm/sampling_format_converter.py,sha256=-vN927eMyo0vYg9GkuWAUzYqQR_kpz4BLmukgNfm2K8,1457
130
+ mcp_agent/workflows/llm/providers/__init__.py,sha256=qirdqAKIbw3BY1NBdGytH9tvpjOu0QNOqKAG2deD_U4,285
131
+ mcp_agent/workflows/llm/providers/multipart_converter_anthropic.py,sha256=TO0zHEnqnOEVfCjM-qp-DGrJoSUPRWChjUPTRo2Gt9U,13463
132
+ mcp_agent/workflows/llm/providers/multipart_converter_openai.py,sha256=IaHgR-bo5PJBd960kDJYnvinLmg0dtajg6ZXFYeLke0,17691
133
+ mcp_agent/workflows/llm/providers/openai_multipart.py,sha256=RKkwssszD6jJpZ-Hj875uu5rbePrwzN7v43Ec69Ziwg,7566
134
+ mcp_agent/workflows/llm/providers/sampling_converter_anthropic.py,sha256=vaM0QWzYP6VFAUwLLxRGpyB0erAQAJAhQed0eFT2jPQ,8916
135
+ mcp_agent/workflows/llm/providers/sampling_converter_openai.py,sha256=yUTSF9fmcy-aNVd-9yGT2kGV7F0VAkYCQK5S8eImeIs,8436
114
136
  mcp_agent/workflows/orchestrator/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
115
- mcp_agent/workflows/orchestrator/orchestrator.py,sha256=Cu8cfDoTpT_FhGJp-T4NnCVvjkyDO1sbEJ7oKamK47k,26021
137
+ mcp_agent/workflows/orchestrator/orchestrator.py,sha256=s8-_4CG4oRnvYAwUqqyevGLpy21IYtcNtsd_SbRZ8Fk,22125
116
138
  mcp_agent/workflows/orchestrator/orchestrator_models.py,sha256=1ldku1fYA_hu2F6K4l2C96mAdds05VibtSzSQrGm3yw,7321
117
139
  mcp_agent/workflows/orchestrator/orchestrator_prompts.py,sha256=EXKEI174sshkZyPPEnWbwwNafzSPuA39MXL7iqG9cWc,9106
118
140
  mcp_agent/workflows/parallel/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
@@ -124,13 +146,13 @@ mcp_agent/workflows/router/router_base.py,sha256=S-UxofpdW9e7ZQXaZcSE8zBY--6W0m5
124
146
  mcp_agent/workflows/router/router_embedding.py,sha256=wEU49li9OqTX-Xucm0HDUFLZjlND1WuewOcQVAo0s2E,7944
125
147
  mcp_agent/workflows/router/router_embedding_cohere.py,sha256=aKZVzzQfBuz0by9k0zWLAA0Db_unDIMYL4ynVzzx8C4,1975
126
148
  mcp_agent/workflows/router/router_embedding_openai.py,sha256=KqW2IFLdQoAJ2lIz1X18WQJFjXF-YSFSTtsqVnp1JeI,1975
127
- mcp_agent/workflows/router/router_llm.py,sha256=jnOK5NHK7zUk-80kJ7HS4p7CGKe3vUA1aZ8-MMflUSA,11030
149
+ mcp_agent/workflows/router/router_llm.py,sha256=msXmp_PPPX-2fZF8F_bYjGId2CmmaBe4DSHKNNggcnU,10942
128
150
  mcp_agent/workflows/swarm/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
129
151
  mcp_agent/workflows/swarm/swarm.py,sha256=-lAIeSWDqbGHGRPTvjiP9nIKWvxxy9DAojl9yQzO1Pw,11050
130
152
  mcp_agent/workflows/swarm/swarm_anthropic.py,sha256=pW8zFx5baUWGd5Vw3nIDF2oVOOGNorij4qvGJKdYPcs,1624
131
153
  mcp_agent/workflows/swarm/swarm_openai.py,sha256=wfteywvAGkT5bLmIxX_StHJq8144whYmCRnJASAjOes,1596
132
- fast_agent_mcp-0.1.7.dist-info/METADATA,sha256=4WESrFqCtAwSRDeSR3nwxGyQMjqGLW5VIiUYIhPk3Ag,28388
133
- fast_agent_mcp-0.1.7.dist-info/WHEEL,sha256=qtCwoSJWgHk21S1Kb4ihdzI2rlJ1ZKaIurTj_ngOhyQ,87
134
- fast_agent_mcp-0.1.7.dist-info/entry_points.txt,sha256=2IXtSmDK9XjWN__RWuRIJTgWyW17wJnJ_h-pb0pZAxo,174
135
- fast_agent_mcp-0.1.7.dist-info/licenses/LICENSE,sha256=cN3FxDURL9XuzE5mhK9L2paZo82LTfjwCYVT7e3j0e4,10939
136
- fast_agent_mcp-0.1.7.dist-info/RECORD,,
154
+ fast_agent_mcp-0.1.9.dist-info/METADATA,sha256=c7JIWUS2bWR5pQQ6cVPwzBOQspzzvB8I25zo3wRUCQg,29748
155
+ fast_agent_mcp-0.1.9.dist-info/WHEEL,sha256=qtCwoSJWgHk21S1Kb4ihdzI2rlJ1ZKaIurTj_ngOhyQ,87
156
+ fast_agent_mcp-0.1.9.dist-info/entry_points.txt,sha256=qPM7vwtN1_KmP3dXehxgiCxUBHtqP7yfenZigztvY-w,226
157
+ fast_agent_mcp-0.1.9.dist-info/licenses/LICENSE,sha256=cN3FxDURL9XuzE5mhK9L2paZo82LTfjwCYVT7e3j0e4,10939
158
+ fast_agent_mcp-0.1.9.dist-info/RECORD,,
@@ -2,4 +2,5 @@
2
2
  fast-agent = mcp_agent.cli.__main__:app
3
3
  fast_agent = mcp_agent.cli.__main__:app
4
4
  fastagent = mcp_agent.cli.__main__:app
5
+ prompt-server = mcp_agent.mcp.prompts.__main__:main
5
6
  silsila = mcp_agent.cli.__main__:app
mcp_agent/agents/agent.py CHANGED
@@ -320,18 +320,20 @@ class Agent(MCPAggregator):
320
320
  ],
321
321
  )
322
322
 
323
- async def apply_prompt(self, prompt_name: str, arguments: dict[str, str] = None) -> str:
323
+ async def apply_prompt(
324
+ self, prompt_name: str, arguments: dict[str, str] = None
325
+ ) -> str:
324
326
  """
325
327
  Apply an MCP Server Prompt by name and return the assistant's response.
326
328
  Will search all available servers for the prompt if not namespaced.
327
-
329
+
328
330
  If the last message in the prompt is from a user, this will automatically
329
331
  generate an assistant response to ensure we always end with an assistant message.
330
332
 
331
333
  Args:
332
334
  prompt_name: The name of the prompt to apply
333
335
  arguments: Optional dictionary of string arguments to pass to the prompt template
334
-
336
+
335
337
  Returns:
336
338
  The assistant's response or error message
337
339
  """
@@ -357,11 +359,3 @@ class Agent(MCPAggregator):
357
359
  # The LLM will automatically generate a response if needed
358
360
  result = await self._llm.apply_prompt_template(prompt_result, display_name)
359
361
  return result
360
-
361
- # For backward compatibility
362
- async def load_prompt(self, prompt_name: str, arguments: dict[str, str] = None) -> str:
363
- """
364
- Legacy method - use apply_prompt instead.
365
- This is maintained for backward compatibility.
366
- """
367
- return await self.apply_prompt(prompt_name, arguments)
@@ -2,9 +2,10 @@
2
2
  Main application wrapper for interacting with agents.
3
3
  """
4
4
 
5
- from typing import Optional, Dict, TYPE_CHECKING
5
+ from typing import Optional, Dict, Union, TYPE_CHECKING
6
6
 
7
7
  from mcp_agent.app import MCPApp
8
+ from mcp_agent.mcp.prompt_message_multipart import PromptMessageMultipart
8
9
  from mcp_agent.progress_display import progress_display
9
10
  from mcp_agent.workflows.orchestrator.orchestrator import Orchestrator
10
11
  from mcp_agent.workflows.parallel.parallel_llm import ParallelLLM
@@ -37,16 +38,80 @@ class AgentApp:
37
38
  # Optional: set default agent for direct calls
38
39
  self._default = next(iter(agents)) if agents else None
39
40
 
40
- async def send(self, agent_name: str, message: Optional[str]) -> str:
41
- """Core message sending"""
42
- if agent_name not in self._agents:
43
- raise ValueError(f"No agent named '{agent_name}'")
41
+ async def send_prompt(
42
+ self, prompt: PromptMessageMultipart, agent_name: Optional[str] = None
43
+ ) -> str:
44
+ """
45
+ Send a PromptMessageMultipart to an agent
46
+
47
+ Args:
48
+ prompt: The PromptMessageMultipart to send
49
+ agent_name: The name of the agent to send to (uses default if None)
50
+
51
+ Returns:
52
+ The agent's response as a string
53
+ """
54
+ target = agent_name or self._default
55
+ if not target:
56
+ raise ValueError("No default agent available")
57
+
58
+ if target not in self._agents:
59
+ raise ValueError(f"No agent named '{target}'")
60
+
61
+ proxy = self._agents[target]
62
+ return await proxy.send_prompt(prompt)
63
+
64
+ async def send(
65
+ self,
66
+ message: Union[str, PromptMessageMultipart] = None,
67
+ agent_name: Optional[str] = None,
68
+ ) -> str:
69
+ """
70
+ Send a message to the default agent or specified agent
71
+
72
+ Args:
73
+ message: Either a string message or a PromptMessageMultipart object
74
+ agent_name: The name of the agent to send to (uses default if None)
44
75
 
45
- if not message or "" == message:
46
- return await self.prompt(agent_name)
76
+ Returns:
77
+ The agent's response as a string
78
+ """
79
+ target = agent_name or self._default
80
+ if not target:
81
+ raise ValueError("No default agent available")
47
82
 
48
- proxy = self._agents[agent_name]
49
- return await proxy.generate_str(message)
83
+ if target not in self._agents:
84
+ raise ValueError(f"No agent named '{target}'")
85
+
86
+ proxy = self._agents[target]
87
+ return await proxy.send(message)
88
+
89
+ async def apply_prompt(
90
+ self,
91
+ prompt_name: str,
92
+ arguments: Optional[dict[str, str]] = None,
93
+ agent_name: Optional[str] = None,
94
+ ) -> str:
95
+ """
96
+ Apply an MCP Server Prompt by name and return the assistant's response
97
+
98
+ Args:
99
+ prompt_name: The name of the prompt to apply
100
+ arguments: Optional dictionary of string arguments to pass to the prompt template
101
+ agent_name: The name of the agent to use (uses default if None)
102
+
103
+ Returns:
104
+ The assistant's response as a string
105
+ """
106
+ target = agent_name or self._default
107
+ if not target:
108
+ raise ValueError("No default agent available")
109
+
110
+ if target not in self._agents:
111
+ raise ValueError(f"No agent named '{target}'")
112
+
113
+ proxy = self._agents[target]
114
+ return await proxy.apply_prompt(prompt_name, arguments)
50
115
 
51
116
  async def prompt(self, agent_name: Optional[str] = None, default: str = "") -> str:
52
117
  """
@@ -177,9 +242,6 @@ class AgentApp:
177
242
  from rich import print as rich_print
178
243
  from rich.table import Table
179
244
  from rich.console import Console
180
- from prompt_toolkit import PromptSession
181
- from prompt_toolkit.formatted_text import HTML
182
- from prompt_toolkit.completion import WordCompleter
183
245
 
184
246
  console = Console()
185
247
 
@@ -325,8 +387,11 @@ class AgentApp:
325
387
  )
326
388
 
327
389
  # Ask user to select one
328
- prompt_session = PromptSession()
329
- selection = await prompt_session.prompt_async(
390
+ from mcp_agent.core.enhanced_prompt import (
391
+ get_selection_input,
392
+ )
393
+
394
+ selection = await get_selection_input(
330
395
  "Enter prompt number to select: ", default="1"
331
396
  )
332
397
 
@@ -381,12 +446,16 @@ class AgentApp:
381
446
  prompt_names = [
382
447
  str(i + 1) for i in range(len(all_prompts))
383
448
  ]
384
- completer = WordCompleter(prompt_names)
385
449
 
386
450
  # Ask user to select a prompt
387
- prompt_session = PromptSession(completer=completer)
388
- selection = await prompt_session.prompt_async(
389
- "Enter prompt number to select (or press Enter to cancel): "
451
+ from mcp_agent.core.enhanced_prompt import (
452
+ get_selection_input,
453
+ )
454
+
455
+ selection = await get_selection_input(
456
+ "Enter prompt number to select (or press Enter to cancel): ",
457
+ options=prompt_names,
458
+ allow_cancel=True,
390
459
  )
391
460
 
392
461
  # Make cancellation easier
@@ -437,37 +506,38 @@ class AgentApp:
437
506
 
438
507
  # Collect required arguments
439
508
  for arg_name in required_args:
440
- # Show description if available
509
+ # Get description if available
441
510
  description = arg_descriptions.get(arg_name, "")
442
- if description:
443
- rich_print(
444
- f" [dim]{arg_name}: {description}[/dim]"
445
- )
446
-
511
+
447
512
  # Collect required argument value
448
- arg_value = await PromptSession().prompt_async(
449
- HTML(
450
- f"Enter value for <ansibrightcyan>{arg_name}</ansibrightcyan> (required): "
451
- )
513
+ from mcp_agent.core.enhanced_prompt import (
514
+ get_argument_input,
515
+ )
516
+
517
+ arg_value = await get_argument_input(
518
+ arg_name=arg_name,
519
+ description=description,
520
+ required=True,
452
521
  )
453
- # Add to arg_values
454
- arg_values[arg_name] = arg_value
522
+ # Add to arg_values if a value was provided
523
+ if arg_value is not None:
524
+ arg_values[arg_name] = arg_value
455
525
 
456
526
  # Only include non-empty values for optional arguments
457
527
  if optional_args:
458
528
  # Collect optional arguments
459
529
  for arg_name in optional_args:
460
- # Show description if available
530
+ # Get description if available
461
531
  description = arg_descriptions.get(arg_name, "")
462
- if description:
463
- rich_print(
464
- f" [dim]{arg_name}: {description}[/dim]"
465
- )
466
-
467
- arg_value = await PromptSession().prompt_async(
468
- HTML(
469
- f"Enter value for <ansibrightcyan>{arg_name}</ansibrightcyan> (optional, press Enter to skip): "
470
- )
532
+
533
+ from mcp_agent.core.enhanced_prompt import (
534
+ get_argument_input,
535
+ )
536
+
537
+ arg_value = await get_argument_input(
538
+ arg_name=arg_name,
539
+ description=description,
540
+ required=False,
471
541
  )
472
542
  # Only include non-empty values for optional arguments
473
543
  if arg_value:
@@ -501,7 +571,7 @@ class AgentApp:
501
571
  if user_input == "":
502
572
  continue
503
573
 
504
- result = await self.send(agent, user_input)
574
+ result = await self.send(user_input, agent)
505
575
 
506
576
  # Check if current agent is a chain that should continue with final agent
507
577
  if agent_types.get(agent) == "Chain":
@@ -527,10 +597,21 @@ class AgentApp:
527
597
  return self._agents[name]
528
598
 
529
599
  async def __call__(
530
- self, message: Optional[str] = "", agent_name: Optional[str] = None
600
+ self,
601
+ message: Optional[Union[str, PromptMessageMultipart]] = None,
602
+ agent_name: Optional[str] = None,
531
603
  ) -> str:
532
- """Support: agent('message')"""
604
+ """
605
+ Support: agent('message') or agent(Prompt.user('message'))
606
+
607
+ Args:
608
+ message: Either a string message or a PromptMessageMultipart object
609
+ agent_name: The name of the agent to use (uses default if None)
610
+
611
+ Returns:
612
+ The agent's response as a string
613
+ """
533
614
  target = agent_name or self._default
534
615
  if not target:
535
616
  raise ValueError("No default agent available")
536
- return await self.send(target, message)
617
+ return await self.send(message, target)
@@ -256,7 +256,8 @@ def parallel(
256
256
  self.agents[passthrough_name] = {
257
257
  "config": AgentConfig(
258
258
  name=passthrough_name,
259
- instruction=f"Passthrough fan-in for {name}",
259
+ model="passthrough",
260
+ instruction=f"This agent combines the results from the fan-out agents verbatim. {name}",
260
261
  servers=[],
261
262
  use_history=use_history,
262
263
  ),
@@ -452,4 +453,4 @@ def passthrough(
452
453
  name=name,
453
454
  use_history=use_history,
454
455
  )
455
- return decorator
456
+ return decorator