fast-agent-mcp 0.1.13__py3-none-any.whl → 0.2.0__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- {fast_agent_mcp-0.1.13.dist-info → fast_agent_mcp-0.2.0.dist-info}/METADATA +3 -4
- fast_agent_mcp-0.2.0.dist-info/RECORD +123 -0
- mcp_agent/__init__.py +75 -0
- mcp_agent/agents/agent.py +59 -371
- mcp_agent/agents/base_agent.py +522 -0
- mcp_agent/agents/workflow/__init__.py +1 -0
- mcp_agent/agents/workflow/chain_agent.py +173 -0
- mcp_agent/agents/workflow/evaluator_optimizer.py +362 -0
- mcp_agent/agents/workflow/orchestrator_agent.py +591 -0
- mcp_agent/{workflows/orchestrator → agents/workflow}/orchestrator_models.py +27 -11
- mcp_agent/agents/workflow/parallel_agent.py +182 -0
- mcp_agent/agents/workflow/router_agent.py +307 -0
- mcp_agent/app.py +3 -1
- mcp_agent/cli/commands/bootstrap.py +18 -7
- mcp_agent/cli/commands/setup.py +12 -4
- mcp_agent/cli/main.py +1 -1
- mcp_agent/cli/terminal.py +1 -1
- mcp_agent/config.py +24 -35
- mcp_agent/context.py +3 -1
- mcp_agent/context_dependent.py +3 -1
- mcp_agent/core/agent_types.py +10 -7
- mcp_agent/core/direct_agent_app.py +179 -0
- mcp_agent/core/direct_decorators.py +443 -0
- mcp_agent/core/direct_factory.py +476 -0
- mcp_agent/core/enhanced_prompt.py +15 -20
- mcp_agent/core/fastagent.py +151 -337
- mcp_agent/core/interactive_prompt.py +424 -0
- mcp_agent/core/mcp_content.py +19 -11
- mcp_agent/core/prompt.py +6 -2
- mcp_agent/core/validation.py +89 -16
- mcp_agent/executor/decorator_registry.py +6 -2
- mcp_agent/executor/temporal.py +35 -11
- mcp_agent/executor/workflow_signal.py +8 -2
- mcp_agent/human_input/handler.py +3 -1
- mcp_agent/llm/__init__.py +2 -0
- mcp_agent/{workflows/llm → llm}/augmented_llm.py +131 -256
- mcp_agent/{workflows/llm → llm}/augmented_llm_passthrough.py +35 -107
- mcp_agent/llm/augmented_llm_playback.py +83 -0
- mcp_agent/{workflows/llm → llm}/model_factory.py +26 -8
- mcp_agent/llm/providers/__init__.py +8 -0
- mcp_agent/{workflows/llm → llm/providers}/anthropic_utils.py +5 -1
- mcp_agent/{workflows/llm → llm/providers}/augmented_llm_anthropic.py +37 -141
- mcp_agent/llm/providers/augmented_llm_deepseek.py +53 -0
- mcp_agent/{workflows/llm → llm/providers}/augmented_llm_openai.py +112 -148
- mcp_agent/{workflows/llm → llm}/providers/multipart_converter_anthropic.py +78 -35
- mcp_agent/{workflows/llm → llm}/providers/multipart_converter_openai.py +73 -44
- mcp_agent/{workflows/llm → llm}/providers/openai_multipart.py +18 -4
- mcp_agent/{workflows/llm → llm/providers}/openai_utils.py +3 -3
- mcp_agent/{workflows/llm → llm}/providers/sampling_converter_anthropic.py +3 -3
- mcp_agent/{workflows/llm → llm}/providers/sampling_converter_openai.py +3 -3
- mcp_agent/{workflows/llm → llm}/sampling_converter.py +0 -21
- mcp_agent/{workflows/llm → llm}/sampling_format_converter.py +16 -1
- mcp_agent/logging/logger.py +2 -2
- mcp_agent/mcp/gen_client.py +9 -3
- mcp_agent/mcp/interfaces.py +67 -45
- mcp_agent/mcp/logger_textio.py +97 -0
- mcp_agent/mcp/mcp_agent_client_session.py +12 -4
- mcp_agent/mcp/mcp_agent_server.py +3 -1
- mcp_agent/mcp/mcp_aggregator.py +124 -93
- mcp_agent/mcp/mcp_connection_manager.py +21 -7
- mcp_agent/mcp/prompt_message_multipart.py +59 -1
- mcp_agent/mcp/prompt_render.py +77 -0
- mcp_agent/mcp/prompt_serialization.py +20 -13
- mcp_agent/mcp/prompts/prompt_constants.py +18 -0
- mcp_agent/mcp/prompts/prompt_helpers.py +327 -0
- mcp_agent/mcp/prompts/prompt_load.py +15 -5
- mcp_agent/mcp/prompts/prompt_server.py +154 -87
- mcp_agent/mcp/prompts/prompt_template.py +26 -35
- mcp_agent/mcp/resource_utils.py +3 -1
- mcp_agent/mcp/sampling.py +24 -15
- mcp_agent/mcp_server/agent_server.py +8 -5
- mcp_agent/mcp_server_registry.py +22 -9
- mcp_agent/resources/examples/{workflows → in_dev}/agent_build.py +1 -1
- mcp_agent/resources/examples/{data-analysis → in_dev}/slides.py +1 -1
- mcp_agent/resources/examples/internal/agent.py +4 -2
- mcp_agent/resources/examples/internal/fastagent.config.yaml +8 -2
- mcp_agent/resources/examples/prompting/image_server.py +3 -1
- mcp_agent/resources/examples/prompting/work_with_image.py +19 -0
- mcp_agent/ui/console_display.py +27 -7
- fast_agent_mcp-0.1.13.dist-info/RECORD +0 -164
- mcp_agent/core/agent_app.py +0 -570
- mcp_agent/core/agent_utils.py +0 -69
- mcp_agent/core/decorators.py +0 -448
- mcp_agent/core/factory.py +0 -422
- mcp_agent/core/proxies.py +0 -278
- mcp_agent/core/types.py +0 -22
- mcp_agent/eval/__init__.py +0 -0
- mcp_agent/mcp/stdio.py +0 -114
- mcp_agent/resources/examples/data-analysis/analysis-campaign.py +0 -188
- mcp_agent/resources/examples/data-analysis/analysis.py +0 -65
- mcp_agent/resources/examples/data-analysis/fastagent.config.yaml +0 -41
- mcp_agent/resources/examples/data-analysis/mount-point/WA_Fn-UseC_-HR-Employee-Attrition.csv +0 -1471
- mcp_agent/resources/examples/mcp_researcher/researcher-eval.py +0 -53
- mcp_agent/resources/examples/researcher/fastagent.config.yaml +0 -66
- mcp_agent/resources/examples/researcher/researcher-eval.py +0 -53
- mcp_agent/resources/examples/researcher/researcher-imp.py +0 -189
- mcp_agent/resources/examples/researcher/researcher.py +0 -39
- mcp_agent/resources/examples/workflows/chaining.py +0 -45
- mcp_agent/resources/examples/workflows/evaluator.py +0 -79
- mcp_agent/resources/examples/workflows/fastagent.config.yaml +0 -24
- mcp_agent/resources/examples/workflows/human_input.py +0 -26
- mcp_agent/resources/examples/workflows/orchestrator.py +0 -74
- mcp_agent/resources/examples/workflows/parallel.py +0 -79
- mcp_agent/resources/examples/workflows/router.py +0 -54
- mcp_agent/resources/examples/workflows/sse.py +0 -23
- mcp_agent/telemetry/__init__.py +0 -0
- mcp_agent/telemetry/usage_tracking.py +0 -19
- mcp_agent/workflows/__init__.py +0 -0
- mcp_agent/workflows/embedding/__init__.py +0 -0
- mcp_agent/workflows/embedding/embedding_base.py +0 -58
- mcp_agent/workflows/embedding/embedding_cohere.py +0 -49
- mcp_agent/workflows/embedding/embedding_openai.py +0 -37
- mcp_agent/workflows/evaluator_optimizer/__init__.py +0 -0
- mcp_agent/workflows/evaluator_optimizer/evaluator_optimizer.py +0 -447
- mcp_agent/workflows/intent_classifier/__init__.py +0 -0
- mcp_agent/workflows/intent_classifier/intent_classifier_base.py +0 -117
- mcp_agent/workflows/intent_classifier/intent_classifier_embedding.py +0 -130
- mcp_agent/workflows/intent_classifier/intent_classifier_embedding_cohere.py +0 -41
- mcp_agent/workflows/intent_classifier/intent_classifier_embedding_openai.py +0 -41
- mcp_agent/workflows/intent_classifier/intent_classifier_llm.py +0 -150
- mcp_agent/workflows/intent_classifier/intent_classifier_llm_anthropic.py +0 -60
- mcp_agent/workflows/intent_classifier/intent_classifier_llm_openai.py +0 -58
- mcp_agent/workflows/llm/__init__.py +0 -0
- mcp_agent/workflows/llm/augmented_llm_playback.py +0 -111
- mcp_agent/workflows/llm/providers/__init__.py +0 -8
- mcp_agent/workflows/orchestrator/__init__.py +0 -0
- mcp_agent/workflows/orchestrator/orchestrator.py +0 -535
- mcp_agent/workflows/parallel/__init__.py +0 -0
- mcp_agent/workflows/parallel/fan_in.py +0 -320
- mcp_agent/workflows/parallel/fan_out.py +0 -181
- mcp_agent/workflows/parallel/parallel_llm.py +0 -149
- mcp_agent/workflows/router/__init__.py +0 -0
- mcp_agent/workflows/router/router_base.py +0 -338
- mcp_agent/workflows/router/router_embedding.py +0 -226
- mcp_agent/workflows/router/router_embedding_cohere.py +0 -59
- mcp_agent/workflows/router/router_embedding_openai.py +0 -59
- mcp_agent/workflows/router/router_llm.py +0 -304
- mcp_agent/workflows/swarm/__init__.py +0 -0
- mcp_agent/workflows/swarm/swarm.py +0 -292
- mcp_agent/workflows/swarm/swarm_anthropic.py +0 -42
- mcp_agent/workflows/swarm/swarm_openai.py +0 -41
- {fast_agent_mcp-0.1.13.dist-info → fast_agent_mcp-0.2.0.dist-info}/WHEEL +0 -0
- {fast_agent_mcp-0.1.13.dist-info → fast_agent_mcp-0.2.0.dist-info}/entry_points.txt +0 -0
- {fast_agent_mcp-0.1.13.dist-info → fast_agent_mcp-0.2.0.dist-info}/licenses/LICENSE +0 -0
- /mcp_agent/{workflows/orchestrator → agents/workflow}/orchestrator_prompts.py +0 -0
- /mcp_agent/{workflows/llm → llm}/memory.py +0 -0
- /mcp_agent/{workflows/llm → llm}/prompt_utils.py +0 -0
@@ -0,0 +1,443 @@
|
|
1
|
+
"""
|
2
|
+
Type-safe decorators for DirectFastAgent applications.
|
3
|
+
These decorators provide type-safe function signatures and IDE support
|
4
|
+
for creating agents in the DirectFastAgent framework.
|
5
|
+
"""
|
6
|
+
|
7
|
+
import inspect
|
8
|
+
from functools import wraps
|
9
|
+
from typing import (
|
10
|
+
Awaitable,
|
11
|
+
Callable,
|
12
|
+
List,
|
13
|
+
Literal,
|
14
|
+
Optional,
|
15
|
+
ParamSpec,
|
16
|
+
Protocol,
|
17
|
+
TypeVar,
|
18
|
+
Union,
|
19
|
+
cast,
|
20
|
+
)
|
21
|
+
|
22
|
+
from mcp_agent.agents.agent import AgentConfig
|
23
|
+
from mcp_agent.core.agent_types import AgentType
|
24
|
+
from mcp_agent.core.request_params import RequestParams
|
25
|
+
|
26
|
+
# Type variables for the decorated function
|
27
|
+
P = ParamSpec("P") # Parameters
|
28
|
+
R = TypeVar("R") # Return type
|
29
|
+
|
30
|
+
# Type for agent functions - can be either async or sync
|
31
|
+
AgentCallable = Callable[P, Union[Awaitable[R], R]]
|
32
|
+
|
33
|
+
|
34
|
+
# Protocol for decorated agent functions
|
35
|
+
class DecoratedAgentProtocol(Protocol[P, R]):
|
36
|
+
"""Protocol defining the interface of a decorated agent function."""
|
37
|
+
|
38
|
+
_agent_type: AgentType
|
39
|
+
_agent_config: AgentConfig
|
40
|
+
|
41
|
+
def __call__(self, *args: P.args, **kwargs: P.kwargs) -> Union[Awaitable[R], R]: ...
|
42
|
+
|
43
|
+
|
44
|
+
# Protocol for orchestrator functions
|
45
|
+
class DecoratedOrchestratorProtocol(DecoratedAgentProtocol[P, R], Protocol):
|
46
|
+
"""Protocol for decorated orchestrator functions with additional metadata."""
|
47
|
+
|
48
|
+
_child_agents: List[str]
|
49
|
+
_plan_type: Literal["full", "iterative"]
|
50
|
+
|
51
|
+
|
52
|
+
# Protocol for router functions
|
53
|
+
class DecoratedRouterProtocol(DecoratedAgentProtocol[P, R], Protocol):
|
54
|
+
"""Protocol for decorated router functions with additional metadata."""
|
55
|
+
|
56
|
+
_router_agents: List[str]
|
57
|
+
|
58
|
+
|
59
|
+
# Protocol for chain functions
|
60
|
+
class DecoratedChainProtocol(DecoratedAgentProtocol[P, R], Protocol):
|
61
|
+
"""Protocol for decorated chain functions with additional metadata."""
|
62
|
+
|
63
|
+
_chain_agents: List[str]
|
64
|
+
|
65
|
+
|
66
|
+
# Protocol for parallel functions
|
67
|
+
class DecoratedParallelProtocol(DecoratedAgentProtocol[P, R], Protocol):
|
68
|
+
"""Protocol for decorated parallel functions with additional metadata."""
|
69
|
+
|
70
|
+
_fan_out: List[str]
|
71
|
+
_fan_in: str
|
72
|
+
|
73
|
+
|
74
|
+
# Protocol for evaluator-optimizer functions
|
75
|
+
class DecoratedEvaluatorOptimizerProtocol(DecoratedAgentProtocol[P, R], Protocol):
|
76
|
+
"""Protocol for decorated evaluator-optimizer functions with additional metadata."""
|
77
|
+
|
78
|
+
_generator: str
|
79
|
+
_evaluator: str
|
80
|
+
|
81
|
+
|
82
|
+
def _decorator_impl(
|
83
|
+
self,
|
84
|
+
agent_type: AgentType,
|
85
|
+
name: str,
|
86
|
+
instruction: str,
|
87
|
+
*,
|
88
|
+
servers: List[str] = [],
|
89
|
+
model: Optional[str] = None,
|
90
|
+
use_history: bool = True,
|
91
|
+
request_params: RequestParams | None = None,
|
92
|
+
human_input: bool = False,
|
93
|
+
**extra_kwargs,
|
94
|
+
) -> Callable[[AgentCallable[P, R]], DecoratedAgentProtocol[P, R]]:
|
95
|
+
"""
|
96
|
+
Core implementation for agent decorators with common behavior and type safety.
|
97
|
+
|
98
|
+
Args:
|
99
|
+
agent_type: Type of agent to create
|
100
|
+
name: Name of the agent
|
101
|
+
instruction: Base instruction for the agent
|
102
|
+
servers: List of server names the agent should connect to
|
103
|
+
model: Model specification string
|
104
|
+
use_history: Whether to maintain conversation history
|
105
|
+
request_params: Additional request parameters for the LLM
|
106
|
+
human_input: Whether to enable human input capabilities
|
107
|
+
**extra_kwargs: Additional agent/workflow-specific parameters
|
108
|
+
"""
|
109
|
+
|
110
|
+
def decorator(func: AgentCallable[P, R]) -> DecoratedAgentProtocol[P, R]:
|
111
|
+
is_async = inspect.iscoroutinefunction(func)
|
112
|
+
|
113
|
+
# Handle both async and sync functions consistently
|
114
|
+
if is_async:
|
115
|
+
|
116
|
+
@wraps(func)
|
117
|
+
async def wrapper(*args: P.args, **kwargs: P.kwargs) -> R:
|
118
|
+
# Call the original function
|
119
|
+
return await func(*args, **kwargs)
|
120
|
+
else:
|
121
|
+
|
122
|
+
@wraps(func)
|
123
|
+
def wrapper(*args: P.args, **kwargs: P.kwargs) -> R:
|
124
|
+
# Call the original function
|
125
|
+
return func(*args, **kwargs)
|
126
|
+
|
127
|
+
# Create agent configuration
|
128
|
+
config = AgentConfig(
|
129
|
+
name=name,
|
130
|
+
instruction=instruction,
|
131
|
+
servers=servers,
|
132
|
+
model=model,
|
133
|
+
use_history=use_history,
|
134
|
+
human_input=human_input,
|
135
|
+
)
|
136
|
+
|
137
|
+
# Update request params if provided
|
138
|
+
if request_params:
|
139
|
+
config.default_request_params = request_params
|
140
|
+
|
141
|
+
# Store metadata on the wrapper function
|
142
|
+
agent_data = {
|
143
|
+
"config": config,
|
144
|
+
"type": agent_type.value,
|
145
|
+
"func": func,
|
146
|
+
}
|
147
|
+
|
148
|
+
# Add extra parameters specific to this agent type
|
149
|
+
for key, value in extra_kwargs.items():
|
150
|
+
agent_data[key] = value
|
151
|
+
|
152
|
+
# Store the configuration in the FastAgent instance
|
153
|
+
self.agents[name] = agent_data
|
154
|
+
|
155
|
+
# Store type information for IDE support
|
156
|
+
setattr(wrapper, "_agent_type", agent_type)
|
157
|
+
setattr(wrapper, "_agent_config", config)
|
158
|
+
for key, value in extra_kwargs.items():
|
159
|
+
setattr(wrapper, f"_{key}", value)
|
160
|
+
|
161
|
+
return cast("DecoratedAgentProtocol[P, R]", wrapper)
|
162
|
+
|
163
|
+
return decorator
|
164
|
+
|
165
|
+
|
166
|
+
def agent(
|
167
|
+
self,
|
168
|
+
name: str = "default",
|
169
|
+
instruction_or_kwarg: Optional[str] = None,
|
170
|
+
*,
|
171
|
+
instruction: str = "You are a helpful agent.",
|
172
|
+
servers: List[str] = [],
|
173
|
+
model: Optional[str] = None,
|
174
|
+
use_history: bool = True,
|
175
|
+
request_params: RequestParams | None = None,
|
176
|
+
human_input: bool = False,
|
177
|
+
) -> Callable[[AgentCallable[P, R]], DecoratedAgentProtocol[P, R]]:
|
178
|
+
"""
|
179
|
+
Decorator to create and register a standard agent with type-safe signature.
|
180
|
+
|
181
|
+
Args:
|
182
|
+
name: Name of the agent
|
183
|
+
instruction_or_kwarg: Optional positional parameter for instruction
|
184
|
+
instruction: Base instruction for the agent (keyword arg)
|
185
|
+
servers: List of server names the agent should connect to
|
186
|
+
model: Model specification string
|
187
|
+
use_history: Whether to maintain conversation history
|
188
|
+
request_params: Additional request parameters for the LLM
|
189
|
+
human_input: Whether to enable human input capabilities
|
190
|
+
|
191
|
+
Returns:
|
192
|
+
A decorator that registers the agent with proper type annotations
|
193
|
+
"""
|
194
|
+
final_instruction = instruction_or_kwarg if instruction_or_kwarg is not None else instruction
|
195
|
+
|
196
|
+
return _decorator_impl(
|
197
|
+
self,
|
198
|
+
AgentType.BASIC,
|
199
|
+
name=name,
|
200
|
+
instruction=final_instruction,
|
201
|
+
servers=servers,
|
202
|
+
model=model,
|
203
|
+
use_history=use_history,
|
204
|
+
request_params=request_params,
|
205
|
+
human_input=human_input,
|
206
|
+
)
|
207
|
+
|
208
|
+
|
209
|
+
def orchestrator(
|
210
|
+
self,
|
211
|
+
name: str,
|
212
|
+
*,
|
213
|
+
agents: List[str],
|
214
|
+
instruction: Optional[str] = None,
|
215
|
+
model: Optional[str] = None,
|
216
|
+
use_history: bool = False,
|
217
|
+
request_params: RequestParams | None = None,
|
218
|
+
human_input: bool = False,
|
219
|
+
plan_type: Literal["full", "iterative"] = "full",
|
220
|
+
max_iterations: int = 30,
|
221
|
+
) -> Callable[[AgentCallable[P, R]], DecoratedOrchestratorProtocol[P, R]]:
|
222
|
+
"""
|
223
|
+
Decorator to create and register an orchestrator agent with type-safe signature.
|
224
|
+
|
225
|
+
Args:
|
226
|
+
name: Name of the orchestrator
|
227
|
+
agents: List of agent names this orchestrator can use
|
228
|
+
instruction: Base instruction for the orchestrator
|
229
|
+
model: Model specification string
|
230
|
+
use_history: Whether to maintain conversation history
|
231
|
+
request_params: Additional request parameters for the LLM
|
232
|
+
human_input: Whether to enable human input capabilities
|
233
|
+
plan_type: Planning approach - "full" or "iterative"
|
234
|
+
max_iterations: Maximum number of planning iterations
|
235
|
+
|
236
|
+
Returns:
|
237
|
+
A decorator that registers the orchestrator with proper type annotations
|
238
|
+
"""
|
239
|
+
default_instruction = """
|
240
|
+
You are an expert planner. Given an objective task and a list of Agents
|
241
|
+
(which are collections of capabilities), your job is to break down the objective
|
242
|
+
into a series of steps, which can be performed by these agents.
|
243
|
+
"""
|
244
|
+
|
245
|
+
# Create final request params with max_iterations
|
246
|
+
|
247
|
+
return cast(
|
248
|
+
"Callable[[AgentCallable[P, R]], DecoratedOrchestratorProtocol[P, R]]",
|
249
|
+
_decorator_impl(
|
250
|
+
self,
|
251
|
+
AgentType.ORCHESTRATOR,
|
252
|
+
name=name,
|
253
|
+
instruction=instruction or default_instruction,
|
254
|
+
servers=[], # Orchestrators don't connect to servers directly
|
255
|
+
model=model,
|
256
|
+
use_history=use_history,
|
257
|
+
request_params=request_params,
|
258
|
+
human_input=human_input,
|
259
|
+
child_agents=agents,
|
260
|
+
plan_type=plan_type,
|
261
|
+
max_iterations=max_iterations,
|
262
|
+
),
|
263
|
+
)
|
264
|
+
|
265
|
+
|
266
|
+
def router(
|
267
|
+
self,
|
268
|
+
name: str,
|
269
|
+
*,
|
270
|
+
agents: List[str],
|
271
|
+
instruction: Optional[str] = None,
|
272
|
+
model: Optional[str] = None,
|
273
|
+
use_history: bool = False,
|
274
|
+
request_params: RequestParams | None = None,
|
275
|
+
human_input: bool = False,
|
276
|
+
) -> Callable[[AgentCallable[P, R]], DecoratedRouterProtocol[P, R]]:
|
277
|
+
"""
|
278
|
+
Decorator to create and register a router agent with type-safe signature.
|
279
|
+
|
280
|
+
Args:
|
281
|
+
name: Name of the router
|
282
|
+
agents: List of agent names this router can route to
|
283
|
+
instruction: Base instruction for the router
|
284
|
+
model: Model specification string
|
285
|
+
use_history: Whether to maintain conversation history
|
286
|
+
request_params: Additional request parameters for the LLM
|
287
|
+
human_input: Whether to enable human input capabilities
|
288
|
+
|
289
|
+
Returns:
|
290
|
+
A decorator that registers the router with proper type annotations
|
291
|
+
"""
|
292
|
+
default_instruction = """
|
293
|
+
You are a router that determines which specialized agent should handle a given query.
|
294
|
+
Analyze the query and select the most appropriate agent to handle it.
|
295
|
+
"""
|
296
|
+
|
297
|
+
return cast(
|
298
|
+
"Callable[[AgentCallable[P, R]], DecoratedRouterProtocol[P, R]]",
|
299
|
+
_decorator_impl(
|
300
|
+
self,
|
301
|
+
AgentType.ROUTER,
|
302
|
+
name=name,
|
303
|
+
instruction=instruction or default_instruction,
|
304
|
+
servers=[], # Routers don't connect to servers directly
|
305
|
+
model=model,
|
306
|
+
use_history=use_history,
|
307
|
+
request_params=request_params,
|
308
|
+
human_input=human_input,
|
309
|
+
router_agents=agents,
|
310
|
+
),
|
311
|
+
)
|
312
|
+
|
313
|
+
|
314
|
+
def chain(
|
315
|
+
self,
|
316
|
+
name: str,
|
317
|
+
*,
|
318
|
+
sequence: List[str],
|
319
|
+
instruction: Optional[str] = None,
|
320
|
+
cumulative: bool = False,
|
321
|
+
) -> Callable[[AgentCallable[P, R]], DecoratedChainProtocol[P, R]]:
|
322
|
+
"""
|
323
|
+
Decorator to create and register a chain agent with type-safe signature.
|
324
|
+
|
325
|
+
Args:
|
326
|
+
name: Name of the chain
|
327
|
+
sequence: List of agent names in the chain, executed in sequence
|
328
|
+
instruction: Base instruction for the chain
|
329
|
+
cumulative: Whether to use cumulative mode (each agent sees all previous responses)
|
330
|
+
|
331
|
+
Returns:
|
332
|
+
A decorator that registers the chain with proper type annotations
|
333
|
+
"""
|
334
|
+
# Validate sequence is not empty
|
335
|
+
if not sequence:
|
336
|
+
from mcp_agent.core.exceptions import AgentConfigError
|
337
|
+
|
338
|
+
raise AgentConfigError(f"Chain '{name}' requires at least one agent in the sequence")
|
339
|
+
|
340
|
+
default_instruction = """
|
341
|
+
You are a chain that processes requests through a series of specialized agents in sequence.
|
342
|
+
Pass the output of each agent to the next agent in the chain.
|
343
|
+
"""
|
344
|
+
|
345
|
+
return cast(
|
346
|
+
"Callable[[AgentCallable[P, R]], DecoratedChainProtocol[P, R]]",
|
347
|
+
_decorator_impl(
|
348
|
+
self,
|
349
|
+
AgentType.CHAIN,
|
350
|
+
name=name,
|
351
|
+
instruction=instruction or default_instruction,
|
352
|
+
sequence=sequence,
|
353
|
+
cumulative=cumulative,
|
354
|
+
),
|
355
|
+
)
|
356
|
+
|
357
|
+
|
358
|
+
def parallel(
|
359
|
+
self,
|
360
|
+
name: str,
|
361
|
+
*,
|
362
|
+
fan_out: List[str],
|
363
|
+
fan_in: str | None = None,
|
364
|
+
instruction: Optional[str] = None,
|
365
|
+
include_request: bool = True,
|
366
|
+
) -> Callable[[AgentCallable[P, R]], DecoratedParallelProtocol[P, R]]:
|
367
|
+
"""
|
368
|
+
Decorator to create and register a parallel agent with type-safe signature.
|
369
|
+
|
370
|
+
Args:
|
371
|
+
name: Name of the parallel agent
|
372
|
+
fan_out: List of agents to execute in parallel
|
373
|
+
fan_in: Agent to aggregate results
|
374
|
+
instruction: Base instruction for the parallel agent
|
375
|
+
include_request: Whether to include the original request when aggregating
|
376
|
+
|
377
|
+
Returns:
|
378
|
+
A decorator that registers the parallel agent with proper type annotations
|
379
|
+
"""
|
380
|
+
default_instruction = """
|
381
|
+
You are a parallel processor that executes multiple agents simultaneously
|
382
|
+
and aggregates their results.
|
383
|
+
"""
|
384
|
+
|
385
|
+
return cast(
|
386
|
+
"Callable[[AgentCallable[P, R]], DecoratedParallelProtocol[P, R]]",
|
387
|
+
_decorator_impl(
|
388
|
+
self,
|
389
|
+
AgentType.PARALLEL,
|
390
|
+
name=name,
|
391
|
+
instruction=instruction or default_instruction,
|
392
|
+
servers=[], # Parallel agents don't connect to servers directly
|
393
|
+
fan_in=fan_in,
|
394
|
+
fan_out=fan_out,
|
395
|
+
include_request=include_request,
|
396
|
+
),
|
397
|
+
)
|
398
|
+
|
399
|
+
|
400
|
+
def evaluator_optimizer(
|
401
|
+
self,
|
402
|
+
name: str,
|
403
|
+
*,
|
404
|
+
generator: str,
|
405
|
+
evaluator: str,
|
406
|
+
instruction: Optional[str] = None,
|
407
|
+
min_rating: str = "GOOD",
|
408
|
+
max_refinements: int = 3,
|
409
|
+
) -> Callable[[AgentCallable[P, R]], DecoratedEvaluatorOptimizerProtocol[P, R]]:
|
410
|
+
"""
|
411
|
+
Decorator to create and register an evaluator-optimizer agent with type-safe signature.
|
412
|
+
|
413
|
+
Args:
|
414
|
+
name: Name of the evaluator-optimizer agent
|
415
|
+
generator: Name of the agent that generates responses
|
416
|
+
evaluator: Name of the agent that evaluates responses
|
417
|
+
instruction: Base instruction for the evaluator-optimizer
|
418
|
+
min_rating: Minimum acceptable quality rating (EXCELLENT, GOOD, FAIR, POOR)
|
419
|
+
max_refinements: Maximum number of refinement iterations
|
420
|
+
|
421
|
+
Returns:
|
422
|
+
A decorator that registers the evaluator-optimizer with proper type annotations
|
423
|
+
"""
|
424
|
+
default_instruction = """
|
425
|
+
You implement an iterative refinement process where content is generated,
|
426
|
+
evaluated for quality, and then refined based on specific feedback until
|
427
|
+
it reaches an acceptable quality standard.
|
428
|
+
"""
|
429
|
+
|
430
|
+
return cast(
|
431
|
+
"Callable[[AgentCallable[P, R]], DecoratedEvaluatorOptimizerProtocol[P, R]]",
|
432
|
+
_decorator_impl(
|
433
|
+
self,
|
434
|
+
AgentType.EVALUATOR_OPTIMIZER,
|
435
|
+
name=name,
|
436
|
+
instruction=instruction or default_instruction,
|
437
|
+
servers=[], # Evaluator-optimizer doesn't connect to servers directly
|
438
|
+
generator=generator,
|
439
|
+
evaluator=evaluator,
|
440
|
+
min_rating=min_rating,
|
441
|
+
max_refinements=max_refinements,
|
442
|
+
),
|
443
|
+
)
|