fast-agent-mcp 0.1.10__py3-none-any.whl → 0.1.11__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- {fast_agent_mcp-0.1.10.dist-info → fast_agent_mcp-0.1.11.dist-info}/METADATA +36 -38
- {fast_agent_mcp-0.1.10.dist-info → fast_agent_mcp-0.1.11.dist-info}/RECORD +17 -15
- mcp_agent/config.py +9 -0
- mcp_agent/core/agent_app.py +29 -0
- mcp_agent/core/proxies.py +3 -0
- mcp_agent/mcp/gen_client.py +4 -4
- mcp_agent/mcp/interfaces.py +152 -0
- mcp_agent/mcp/mcp_agent_client_session.py +11 -3
- mcp_agent/mcp/mcp_aggregator.py +13 -3
- mcp_agent/mcp/sampling.py +133 -0
- mcp_agent/mcp/stdio.py +1 -2
- mcp_agent/resources/examples/internal/agent.py +1 -1
- mcp_agent/resources/examples/internal/fastagent.config.yaml +3 -0
- mcp_agent/workflows/llm/augmented_llm_passthrough.py +86 -33
- {fast_agent_mcp-0.1.10.dist-info → fast_agent_mcp-0.1.11.dist-info}/WHEEL +0 -0
- {fast_agent_mcp-0.1.10.dist-info → fast_agent_mcp-0.1.11.dist-info}/entry_points.txt +0 -0
- {fast_agent_mcp-0.1.10.dist-info → fast_agent_mcp-0.1.11.dist-info}/licenses/LICENSE +0 -0
@@ -1,6 +1,6 @@
|
|
1
1
|
Metadata-Version: 2.4
|
2
2
|
Name: fast-agent-mcp
|
3
|
-
Version: 0.1.
|
3
|
+
Version: 0.1.11
|
4
4
|
Summary: Define, Prompt and Test MCP enabled Agents and Workflows
|
5
5
|
Author-email: Shaun Smith <fastagent@llmindset.co.uk>, Sarmad Qadri <sarmad@lastmileai.dev>
|
6
6
|
License: Apache License
|
@@ -212,7 +212,7 @@ Requires-Python: >=3.10
|
|
212
212
|
Requires-Dist: aiohttp>=3.11.13
|
213
213
|
Requires-Dist: anthropic>=0.49.0
|
214
214
|
Requires-Dist: fastapi>=0.115.6
|
215
|
-
Requires-Dist: mcp>=1.
|
215
|
+
Requires-Dist: mcp>=1.5.0
|
216
216
|
Requires-Dist: numpy>=2.2.1
|
217
217
|
Requires-Dist: openai>=1.63.2
|
218
218
|
Requires-Dist: opentelemetry-distro>=0.50b0
|
@@ -241,10 +241,9 @@ Provides-Extra: temporal
|
|
241
241
|
Requires-Dist: temporalio>=1.8.0; extra == 'temporal'
|
242
242
|
Description-Content-Type: text/markdown
|
243
243
|
|
244
|
-
## fast-agent
|
245
|
-
|
246
244
|
<p align="center">
|
247
245
|
<a href="https://pypi.org/project/fast-agent-mcp/"><img src="https://img.shields.io/pypi/v/fast-agent-mcp?color=%2334D058&label=pypi" /></a>
|
246
|
+
<a href="#"><img src="https://github.com/evalstate/fast-agent/actions/workflows/main-checks.yml/badge.svg" /></a>
|
248
247
|
<a href="https://github.com/evalstate/fast-agent/issues"><img src="https://img.shields.io/github/issues-raw/evalstate/fast-agent" /></a>
|
249
248
|
<a href="https://lmai.link/discord/mcp-agent"><img src="https://shields.io/discord/1089284610329952357" alt="discord" /></a>
|
250
249
|
<img alt="Pepy Total Downloads" src="https://img.shields.io/pepy/dt/fast-agent-mcp?label=pypi%20%7C%20downloads"/>
|
@@ -253,16 +252,14 @@ Description-Content-Type: text/markdown
|
|
253
252
|
|
254
253
|
## Overview
|
255
254
|
|
256
|
-
**`fast-agent`** enables you to create and interact with sophisticated Agents and Workflows in minutes.
|
255
|
+
**`fast-agent`** enables you to create and interact with sophisticated Agents and Workflows in minutes. It is the first framework with complete, end-to-end tested MCP Feature support including Sampling. Both Anthropic (Haiku, Sonnet, Opus) and OpenAI models (gpt-4o family, o1/o3 family) are supported.
|
257
256
|
|
258
257
|
The simple declarative syntax lets you concentrate on composing your Prompts and MCP Servers to [build effective agents](https://www.anthropic.com/research/building-effective-agents).
|
259
258
|
|
260
|
-
|
261
|
-
|
262
|
-
`fast-agent` is now multi-modal, supporting Images and PDFs for both Anthropic and OpenAI endpoints (for supported models), via Prompts, Resources and MCP Tool Call results.
|
259
|
+
`fast-agent` is multi-modal, supporting Images and PDFs for both Anthropic and OpenAI endpoints via Prompts, Resources and MCP Tool Call results. The inclusion of passthrough and playback LLMs enable rapid development and test of Python glue-code for your applications.
|
263
260
|
|
264
261
|
> [!TIP]
|
265
|
-
> `fast-agent` is now MCP Native! Coming Soon - Full Documentation Site.
|
262
|
+
> `fast-agent` is now MCP Native! Coming Soon - Full Documentation Site and Further MCP Examples.
|
266
263
|
|
267
264
|
### Agent Application Development
|
268
265
|
|
@@ -272,7 +269,7 @@ Chat with individual Agents and Components before, during and after workflow exe
|
|
272
269
|
|
273
270
|
Simple model selection makes testing Model <-> MCP Server interaction painless. You can read more about the motivation behind this project [here](https://llmindset.co.uk/resources/fast-agent/)
|
274
271
|
|
275
|
-

|
276
273
|
|
277
274
|
## Get started:
|
278
275
|
|
@@ -597,6 +594,14 @@ agent["greeter"].send("Good Evening!") # Dictionary access is supported
|
|
597
594
|
|
598
595
|
Add Resources to prompts using either the inbuilt `prompt-server` or MCP Types directly. Convenience class are made available to do so simply, for example:
|
599
596
|
|
597
|
+
```python
|
598
|
+
summary: str = await agent.with_resource(
|
599
|
+
"Summarise this PDF please",
|
600
|
+
"mcp_server",
|
601
|
+
"resource://fast-agent/sample.pdf",
|
602
|
+
)
|
603
|
+
```
|
604
|
+
|
600
605
|
#### MCP Tool Result Conversion
|
601
606
|
|
602
607
|
LLM APIs have restrictions on the content types that can be returned as Tool Calls/Function results via their Chat Completions API's:
|
@@ -612,40 +617,33 @@ MCP Prompts are supported with `apply_prompt(name,arguments)`, which always retu
|
|
612
617
|
|
613
618
|
Prompts can also be applied interactively through the interactive interface by using the `/prompt` command.
|
614
619
|
|
620
|
+
### Sampling
|
621
|
+
|
622
|
+
Sampling LLMs are configured per Client/Server pair. Specify the model name in fastagent.config.yaml as follows:
|
623
|
+
|
624
|
+
```yaml
|
625
|
+
mcp:
|
626
|
+
servers:
|
627
|
+
sampling_resource:
|
628
|
+
command: "uv"
|
629
|
+
args: ["run", "sampling_resource_server.py"]
|
630
|
+
sampling:
|
631
|
+
model: "haiku"
|
632
|
+
```
|
633
|
+
|
615
634
|
### Secrets File
|
616
635
|
|
617
636
|
> [!TIP]
|
618
637
|
> fast-agent will look recursively for a fastagent.secrets.yaml file, so you only need to manage this at the root folder of your agent definitions.
|
619
638
|
|
639
|
+
### Interactive Shell
|
640
|
+
|
641
|
+

|
642
|
+
|
620
643
|
## Project Notes
|
621
644
|
|
622
645
|
`fast-agent` builds on the [`mcp-agent`](https://github.com/lastmile-ai/mcp-agent) project by Sarmad Qadri.
|
623
646
|
|
624
|
-
###
|
625
|
-
|
626
|
-
-
|
627
|
-
- Overhaul of Eval/Opt for Conversation Management
|
628
|
-
- Removed instructor/double-llm calling - native structured outputs for OAI.
|
629
|
-
- Improved handling of Parallel/Fan-In and respose option
|
630
|
-
- XML based generated prompts
|
631
|
-
- "FastAgent" style prototyping, with per-agent models
|
632
|
-
- API keys through Environment Variables
|
633
|
-
- Warm-up / Post-Workflow Agent Interactions
|
634
|
-
- Quick Setup
|
635
|
-
- Interactive Prompt Mode
|
636
|
-
- Simple Model Selection with aliases
|
637
|
-
- User/Assistant and Tool Call message display
|
638
|
-
- MCP Sever Environment Variable support
|
639
|
-
- MCP Roots support
|
640
|
-
- Comprehensive Progress display
|
641
|
-
- JSONL file logging with secret revokation
|
642
|
-
- OpenAI o1/o3-mini support with reasoning level
|
643
|
-
- Enhanced Human Input Messaging and Handling
|
644
|
-
- Declarative workflows
|
645
|
-
- Numerous defect fixes
|
646
|
-
|
647
|
-
### Features to add (Commmitted)
|
648
|
-
|
649
|
-
- Run Agent as MCP Server, with interop
|
650
|
-
- Multi-part content types supporing Vision, PDF and multi-part Text.
|
651
|
-
- Improved test automation (supported by prompt_server.py and augmented_llm_playback.py)
|
647
|
+
### Contributing
|
648
|
+
|
649
|
+
Contributions and PRs are welcome - feel free to raise issues to discuss. Full guidelines for contributing and roadmap coming very soon. Get in touch!
|
@@ -1,6 +1,6 @@
|
|
1
1
|
mcp_agent/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
2
2
|
mcp_agent/app.py,sha256=0_C1xmNZlk9qZoewnNI_mC7sSfO9oJgkOyiKkQ62MHU,10606
|
3
|
-
mcp_agent/config.py,sha256=
|
3
|
+
mcp_agent/config.py,sha256=cEiY_J5MqKj23KkHtzP1h04yalaGgO2OiXErduiVf2M,10890
|
4
4
|
mcp_agent/console.py,sha256=Gjf2QLFumwG1Lav__c07X_kZxxEUSkzV-1_-YbAwcwo,813
|
5
5
|
mcp_agent/context.py,sha256=m1S5M9a2Kdxy5rEGG6Uwwmi19bDEpU6u-e5ZgPmVXfY,8031
|
6
6
|
mcp_agent/context_dependent.py,sha256=TGqRLzYCOnsWGoaD1HtrliYtWo8MeaWCQk6ePUmyYCw,1446
|
@@ -17,7 +17,7 @@ mcp_agent/cli/commands/bootstrap.py,sha256=Rmwbuwl52eHfnya7fnwKk2J7nCsHpSh6irka4
|
|
17
17
|
mcp_agent/cli/commands/config.py,sha256=32YTS5jmsYAs9QzAhjkG70_daAHqOemf4XbZBBSMz6g,204
|
18
18
|
mcp_agent/cli/commands/setup.py,sha256=_SCpd6_PrixqbSaE72JQ7erIRkZnJGmh_3TvvwSzEiE,6392
|
19
19
|
mcp_agent/core/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
20
|
-
mcp_agent/core/agent_app.py,sha256=
|
20
|
+
mcp_agent/core/agent_app.py,sha256=coAbhzGT34SV_S0AsLbHuOkxyovOZFlpk_HUphRNU78,30807
|
21
21
|
mcp_agent/core/agent_types.py,sha256=yKiMbv9QO2dduq4zXmoMZlOZpXJZhM4oNwIq1-134FE,318
|
22
22
|
mcp_agent/core/agent_utils.py,sha256=QMvwmxZyCqYhBzSyL9xARsxTuwdmlyjQvrPpsH36HnQ,1888
|
23
23
|
mcp_agent/core/decorators.py,sha256=dkAah1eIuYsEfQISDryG0u2GrzNnsO_jyN7lhpQfNlM,16191
|
@@ -28,7 +28,7 @@ mcp_agent/core/factory.py,sha256=MhlYS0G0IyFy_j46HVJdjEznJzfCFjx_NRhUPcbQIJI,190
|
|
28
28
|
mcp_agent/core/fastagent.py,sha256=jJmO0DryFGwSkse_3q5Ll-5XONDvj7k_Oeb-ETBKFkA,19620
|
29
29
|
mcp_agent/core/mcp_content.py,sha256=rXT2C5gP9qgC-TI5F362ZLJi_erzcEOnlP9D2ZKK0i0,6860
|
30
30
|
mcp_agent/core/prompt.py,sha256=R-X3kptu3ehV_SQeiGnP6F9HMN-92I8e73gnkQ1tDVs,4317
|
31
|
-
mcp_agent/core/proxies.py,sha256=
|
31
|
+
mcp_agent/core/proxies.py,sha256=qsIqyJgiIh-b9ehHiZrM39YutQFJPHaHO14GOMFE1KI,10289
|
32
32
|
mcp_agent/core/types.py,sha256=Zhi9iW7uiOfdpSt9NC0FCtGRFtJPg4mpZPK2aYi7a7M,817
|
33
33
|
mcp_agent/core/validation.py,sha256=x0fsx5eLTawASFm9MDtEukwGOj_RTdY1OW064UihMR8,8309
|
34
34
|
mcp_agent/eval/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
@@ -51,17 +51,19 @@ mcp_agent/logging/rich_progress.py,sha256=IEVFdFGA0nwg6pSt9Ydni5LCNYZZPKYMe-6DCi
|
|
51
51
|
mcp_agent/logging/tracing.py,sha256=jQivxKYl870oXakmyUk7TXuTQSvsIzpHwZlSQfy4b0c,5203
|
52
52
|
mcp_agent/logging/transport.py,sha256=MFgiCQ-YFP0tSMhDMpZCj585vflWcMydM4oyCFduVf0,17203
|
53
53
|
mcp_agent/mcp/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
54
|
-
mcp_agent/mcp/gen_client.py,sha256=
|
54
|
+
mcp_agent/mcp/gen_client.py,sha256=D92Yo088CAeuWG6M82Vlkq0H8igUTw9SwwOQinZZCkg,3052
|
55
|
+
mcp_agent/mcp/interfaces.py,sha256=hUA9R7RA1tF1td9RCfzWHBUVCLXF6FC1a4I1EZ5Fnh4,4629
|
55
56
|
mcp_agent/mcp/mcp_activity.py,sha256=CajXCFWZ2cKEX9s4-HfNVAj471ePTVs4NOkvmIh65tE,592
|
56
|
-
mcp_agent/mcp/mcp_agent_client_session.py,sha256=
|
57
|
+
mcp_agent/mcp/mcp_agent_client_session.py,sha256=3xZbhr48YV5SkBTQGMdNrT_KIGWOBSFPqCZLCSOK2HA,4156
|
57
58
|
mcp_agent/mcp/mcp_agent_server.py,sha256=xP09HZTeguJi4Fq0p3fjLBP55uSYe5AdqM90xCgn9Ho,1639
|
58
|
-
mcp_agent/mcp/mcp_aggregator.py,sha256=
|
59
|
+
mcp_agent/mcp/mcp_aggregator.py,sha256=1DYZpmq1IJZo7cYKfahH6LeyVKuNkosGhSq6k59lrlM,37941
|
59
60
|
mcp_agent/mcp/mcp_connection_manager.py,sha256=PdLia-rxbhUdAdEnW7TQbkf1qeI9RR3xhQw1j11Bi6o,13612
|
60
61
|
mcp_agent/mcp/mime_utils.py,sha256=difepNR_gpb4MpMLkBRAoyhDk-AjXUHTiqKvT_VwS1o,1805
|
61
62
|
mcp_agent/mcp/prompt_message_multipart.py,sha256=U7IN0JStmy26akTXcqE4x90oWzm8xs1qa0VeKIyPKmE,1962
|
62
63
|
mcp_agent/mcp/prompt_serialization.py,sha256=StcXV7V4fqqtCmOCXGCyYXx5vpwNhL2xr3RG_awwdqI,16056
|
63
64
|
mcp_agent/mcp/resource_utils.py,sha256=G9IBWyasxKKcbq3T_fSpM6mHE8PjBargEdfQnBPrkZY,6650
|
64
|
-
mcp_agent/mcp/
|
65
|
+
mcp_agent/mcp/sampling.py,sha256=iHjjI5ViCe2CYm_7EtJiHr-WPYug6MQyAuBtru0AnkI,4601
|
66
|
+
mcp_agent/mcp/stdio.py,sha256=fZr9yVqPvmPC8pkaf95rZtw0uD8BGND0UI_cUYyuSsE,4478
|
65
67
|
mcp_agent/mcp/prompts/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
66
68
|
mcp_agent/mcp/prompts/__main__.py,sha256=gr1Tdz9fcK0EXjEuZg_BOnKUmvhYq5AH2lFZicVyNb0,237
|
67
69
|
mcp_agent/mcp/prompts/prompt_server.py,sha256=6K4FeKNW_JApWUNB055gl8UnWyC1mvtl_kPEvgUnPjk,17348
|
@@ -72,8 +74,8 @@ mcp_agent/resources/examples/data-analysis/analysis-campaign.py,sha256=EG-HhaDHl
|
|
72
74
|
mcp_agent/resources/examples/data-analysis/analysis.py,sha256=5zLoioZQNKUfXt1EXLrGX3TU06-0N06-L9Gtp9BIr6k,2611
|
73
75
|
mcp_agent/resources/examples/data-analysis/fastagent.config.yaml,sha256=ini94PHyJCfgpjcjHKMMbGuHs6LIj46F1NwY0ll5HVk,1609
|
74
76
|
mcp_agent/resources/examples/data-analysis/mount-point/WA_Fn-UseC_-HR-Employee-Attrition.csv,sha256=pcMeOL1_r8m8MziE6xgbBrQbjl5Ijo98yycZn7O-dlk,227977
|
75
|
-
mcp_agent/resources/examples/internal/agent.py,sha256=
|
76
|
-
mcp_agent/resources/examples/internal/fastagent.config.yaml,sha256=
|
77
|
+
mcp_agent/resources/examples/internal/agent.py,sha256=orShmYKkrjMc7qa3ZtfzoO80uOClZaPaw2Wvc4_FIH8,406
|
78
|
+
mcp_agent/resources/examples/internal/fastagent.config.yaml,sha256=U2s0Asc06wC04FstKnBMeB3J5gIa3xa-Rao-1-74XTk,1935
|
77
79
|
mcp_agent/resources/examples/internal/job.py,sha256=WEKIAANMEAuKr13__rYf3PqJeTAsNB_kqYqbqVYQlUM,4093
|
78
80
|
mcp_agent/resources/examples/internal/prompt_category.py,sha256=b3tjkfrVIW1EPoDjr4mG87wlZ7D0Uju9eg6asXAYYpI,551
|
79
81
|
mcp_agent/resources/examples/internal/prompt_sizing.py,sha256=UtQ_jvwS4yMh80PHhUQXJ9WXk-fqNYlqUMNTNkZosKM,2003
|
@@ -120,7 +122,7 @@ mcp_agent/workflows/llm/anthropic_utils.py,sha256=OFmsVmDQ22880duDWQrEeQEB47xtvu
|
|
120
122
|
mcp_agent/workflows/llm/augmented_llm.py,sha256=9cWy-4yNG13w4oQgXmisgWTcm6aoJIRCYTX85Bkf-MI,30554
|
121
123
|
mcp_agent/workflows/llm/augmented_llm_anthropic.py,sha256=opV4PTai2eoYUzJS0gCPGEy4pe-lT2Eo1Sao6Y_EIiY,20140
|
122
124
|
mcp_agent/workflows/llm/augmented_llm_openai.py,sha256=OUSmvY2m6HU1JOK5nEzKDHpHReT0ffjoHDFHk6aYhoc,21002
|
123
|
-
mcp_agent/workflows/llm/augmented_llm_passthrough.py,sha256=
|
125
|
+
mcp_agent/workflows/llm/augmented_llm_passthrough.py,sha256=aeQ2WWNIzdzgYWHijE-RWgzFzSUcRJNRv5zq0ug3B2U,7891
|
124
126
|
mcp_agent/workflows/llm/augmented_llm_playback.py,sha256=5ypv3owJU6pscktqg9tkLQVKNgaA50e8OWmC1hAhrtE,4328
|
125
127
|
mcp_agent/workflows/llm/llm_selector.py,sha256=G7pIybuBDwtmyxUDov_QrNYH2FoI0qFRu2JfoxWUF5Y,11045
|
126
128
|
mcp_agent/workflows/llm/model_factory.py,sha256=UHePE5Ow03kpE44kjYtFGEhVFSYp0AY2yGri58yCBKU,7688
|
@@ -151,8 +153,8 @@ mcp_agent/workflows/swarm/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJW
|
|
151
153
|
mcp_agent/workflows/swarm/swarm.py,sha256=-lAIeSWDqbGHGRPTvjiP9nIKWvxxy9DAojl9yQzO1Pw,11050
|
152
154
|
mcp_agent/workflows/swarm/swarm_anthropic.py,sha256=pW8zFx5baUWGd5Vw3nIDF2oVOOGNorij4qvGJKdYPcs,1624
|
153
155
|
mcp_agent/workflows/swarm/swarm_openai.py,sha256=wfteywvAGkT5bLmIxX_StHJq8144whYmCRnJASAjOes,1596
|
154
|
-
fast_agent_mcp-0.1.
|
155
|
-
fast_agent_mcp-0.1.
|
156
|
-
fast_agent_mcp-0.1.
|
157
|
-
fast_agent_mcp-0.1.
|
158
|
-
fast_agent_mcp-0.1.
|
156
|
+
fast_agent_mcp-0.1.11.dist-info/METADATA,sha256=ff0dlOdPoM72tfefKvN6bdVwszZIKE-5wIkSAI3qJTU,29678
|
157
|
+
fast_agent_mcp-0.1.11.dist-info/WHEEL,sha256=qtCwoSJWgHk21S1Kb4ihdzI2rlJ1ZKaIurTj_ngOhyQ,87
|
158
|
+
fast_agent_mcp-0.1.11.dist-info/entry_points.txt,sha256=qPM7vwtN1_KmP3dXehxgiCxUBHtqP7yfenZigztvY-w,226
|
159
|
+
fast_agent_mcp-0.1.11.dist-info/licenses/LICENSE,sha256=cN3FxDURL9XuzE5mhK9L2paZo82LTfjwCYVT7e3j0e4,10939
|
160
|
+
fast_agent_mcp-0.1.11.dist-info/RECORD,,
|
mcp_agent/config.py
CHANGED
@@ -18,6 +18,12 @@ class MCPServerAuthSettings(BaseModel):
|
|
18
18
|
model_config = ConfigDict(extra="allow", arbitrary_types_allowed=True)
|
19
19
|
|
20
20
|
|
21
|
+
class MCPSamplingSettings(BaseModel):
|
22
|
+
model: str = "haiku"
|
23
|
+
|
24
|
+
model_config = ConfigDict(extra="allow", arbitrary_types_allowed=True)
|
25
|
+
|
26
|
+
|
21
27
|
class MCPRootSettings(BaseModel):
|
22
28
|
"""Represents a root directory configuration for an MCP server."""
|
23
29
|
|
@@ -81,6 +87,9 @@ class MCPServerSettings(BaseModel):
|
|
81
87
|
env: Dict[str, str] | None = None
|
82
88
|
"""Environment variables to pass to the server process."""
|
83
89
|
|
90
|
+
sampling: MCPSamplingSettings | None = None
|
91
|
+
"""Sampling settings for this Client/Server pair"""
|
92
|
+
|
84
93
|
|
85
94
|
class MCPSettings(BaseModel):
|
86
95
|
"""Configuration for all MCP servers."""
|
mcp_agent/core/agent_app.py
CHANGED
@@ -112,6 +112,35 @@ class AgentApp:
|
|
112
112
|
|
113
113
|
proxy = self._agents[target]
|
114
114
|
return await proxy.apply_prompt(prompt_name, arguments)
|
115
|
+
|
116
|
+
async def with_resource(
|
117
|
+
self,
|
118
|
+
prompt_content: Union[str, PromptMessageMultipart],
|
119
|
+
server_name: str,
|
120
|
+
resource_name: str,
|
121
|
+
agent_name: Optional[str] = None,
|
122
|
+
) -> str:
|
123
|
+
"""
|
124
|
+
Create a prompt with the given content and resource, then send it to the agent.
|
125
|
+
|
126
|
+
Args:
|
127
|
+
prompt_content: Either a string message or an existing PromptMessageMultipart
|
128
|
+
server_name: Name of the MCP server to retrieve the resource from
|
129
|
+
resource_name: Name or URI of the resource to retrieve
|
130
|
+
agent_name: The name of the agent to use (uses default if None)
|
131
|
+
|
132
|
+
Returns:
|
133
|
+
The agent's response as a string
|
134
|
+
"""
|
135
|
+
target = agent_name or self._default
|
136
|
+
if not target:
|
137
|
+
raise ValueError("No default agent available")
|
138
|
+
|
139
|
+
if target not in self._agents:
|
140
|
+
raise ValueError(f"No agent named '{target}'")
|
141
|
+
|
142
|
+
proxy = self._agents[target]
|
143
|
+
return await proxy.with_resource(prompt_content, server_name, resource_name)
|
115
144
|
|
116
145
|
async def prompt(self, agent_name: Optional[str] = None, default: str = "") -> str:
|
117
146
|
"""
|
mcp_agent/core/proxies.py
CHANGED
mcp_agent/mcp/gen_client.py
CHANGED
@@ -6,7 +6,7 @@ from anyio.streams.memory import MemoryObjectReceiveStream, MemoryObjectSendStre
|
|
6
6
|
from mcp import ClientSession
|
7
7
|
|
8
8
|
from mcp_agent.logging.logger import get_logger
|
9
|
-
from mcp_agent.
|
9
|
+
from mcp_agent.mcp.interfaces import ServerRegistryProtocol
|
10
10
|
from mcp_agent.mcp.mcp_agent_client_session import MCPAgentClientSession
|
11
11
|
|
12
12
|
logger = get_logger(__name__)
|
@@ -15,7 +15,7 @@ logger = get_logger(__name__)
|
|
15
15
|
@asynccontextmanager
|
16
16
|
async def gen_client(
|
17
17
|
server_name: str,
|
18
|
-
server_registry:
|
18
|
+
server_registry: ServerRegistryProtocol,
|
19
19
|
client_session_factory: Callable[
|
20
20
|
[MemoryObjectReceiveStream, MemoryObjectSendStream, timedelta | None],
|
21
21
|
ClientSession,
|
@@ -41,7 +41,7 @@ async def gen_client(
|
|
41
41
|
|
42
42
|
async def connect(
|
43
43
|
server_name: str,
|
44
|
-
server_registry:
|
44
|
+
server_registry: ServerRegistryProtocol,
|
45
45
|
client_session_factory: Callable[
|
46
46
|
[MemoryObjectReceiveStream, MemoryObjectSendStream, timedelta | None],
|
47
47
|
ClientSession,
|
@@ -67,7 +67,7 @@ async def connect(
|
|
67
67
|
|
68
68
|
async def disconnect(
|
69
69
|
server_name: str | None,
|
70
|
-
server_registry:
|
70
|
+
server_registry: ServerRegistryProtocol,
|
71
71
|
) -> None:
|
72
72
|
"""
|
73
73
|
Disconnect from the specified server. If server_name is None, disconnect from all servers.
|
@@ -0,0 +1,152 @@
|
|
1
|
+
"""
|
2
|
+
Interface definitions to prevent circular imports.
|
3
|
+
This module defines protocols (interfaces) that can be used to break circular dependencies.
|
4
|
+
"""
|
5
|
+
|
6
|
+
from contextlib import asynccontextmanager
|
7
|
+
from typing import Any, AsyncGenerator, Callable, Generic, List, Optional, Protocol, Type, TypeVar
|
8
|
+
|
9
|
+
from mcp import ClientSession
|
10
|
+
from mcp.types import CreateMessageRequestParams
|
11
|
+
from pydantic import Field
|
12
|
+
|
13
|
+
|
14
|
+
class ServerRegistryProtocol(Protocol):
|
15
|
+
"""
|
16
|
+
Protocol defining the minimal interface of ServerRegistry needed by gen_client.
|
17
|
+
This allows gen_client to depend on this protocol rather than the full ServerRegistry class.
|
18
|
+
"""
|
19
|
+
|
20
|
+
@asynccontextmanager
|
21
|
+
async def initialize_server(
|
22
|
+
self,
|
23
|
+
server_name: str,
|
24
|
+
client_session_factory=None,
|
25
|
+
init_hook=None,
|
26
|
+
) -> AsyncGenerator[ClientSession, None]:
|
27
|
+
"""Initialize a server and yield a client session."""
|
28
|
+
...
|
29
|
+
|
30
|
+
@property
|
31
|
+
def connection_manager(self) -> "ConnectionManagerProtocol":
|
32
|
+
"""Get the connection manager."""
|
33
|
+
...
|
34
|
+
|
35
|
+
|
36
|
+
class ConnectionManagerProtocol(Protocol):
|
37
|
+
"""
|
38
|
+
Protocol defining the minimal interface of ConnectionManager needed.
|
39
|
+
"""
|
40
|
+
|
41
|
+
async def get_server(
|
42
|
+
self,
|
43
|
+
server_name: str,
|
44
|
+
client_session_factory=None,
|
45
|
+
):
|
46
|
+
"""Get a server connection."""
|
47
|
+
...
|
48
|
+
|
49
|
+
async def disconnect_server(self, server_name: str) -> None:
|
50
|
+
"""Disconnect from a server."""
|
51
|
+
...
|
52
|
+
|
53
|
+
async def disconnect_all_servers(self) -> None:
|
54
|
+
"""Disconnect from all servers."""
|
55
|
+
...
|
56
|
+
|
57
|
+
|
58
|
+
# Type variables for generic protocols
|
59
|
+
MessageParamT = TypeVar("MessageParamT")
|
60
|
+
"""A type representing an input message to an LLM."""
|
61
|
+
|
62
|
+
MessageT = TypeVar("MessageT")
|
63
|
+
"""A type representing an output message from an LLM."""
|
64
|
+
|
65
|
+
ModelT = TypeVar("ModelT")
|
66
|
+
"""A type representing a structured output message from an LLM."""
|
67
|
+
|
68
|
+
|
69
|
+
class RequestParams(CreateMessageRequestParams):
|
70
|
+
"""
|
71
|
+
Parameters to configure the AugmentedLLM 'generate' requests.
|
72
|
+
"""
|
73
|
+
|
74
|
+
messages: None = Field(exclude=True, default=None)
|
75
|
+
"""
|
76
|
+
Ignored. 'messages' are removed from CreateMessageRequestParams
|
77
|
+
to avoid confusion with the 'message' parameter on 'generate' method.
|
78
|
+
"""
|
79
|
+
|
80
|
+
maxTokens: int = 2048
|
81
|
+
"""The maximum number of tokens to sample, as requested by the server."""
|
82
|
+
|
83
|
+
model: str | None = None
|
84
|
+
"""
|
85
|
+
The model to use for the LLM generation.
|
86
|
+
If specified, this overrides the 'modelPreferences' selection criteria.
|
87
|
+
"""
|
88
|
+
|
89
|
+
use_history: bool = True
|
90
|
+
"""
|
91
|
+
Include the message history in the generate request.
|
92
|
+
"""
|
93
|
+
|
94
|
+
max_iterations: int = 10
|
95
|
+
"""
|
96
|
+
The maximum number of iterations to run the LLM for.
|
97
|
+
"""
|
98
|
+
|
99
|
+
parallel_tool_calls: bool = True
|
100
|
+
"""
|
101
|
+
Whether to allow multiple tool calls per iteration.
|
102
|
+
Also known as multi-step tool use.
|
103
|
+
"""
|
104
|
+
|
105
|
+
|
106
|
+
class AugmentedLLMProtocol(Protocol, Generic[MessageParamT, MessageT]):
|
107
|
+
"""Protocol defining the interface for augmented LLMs"""
|
108
|
+
|
109
|
+
async def generate(
|
110
|
+
self,
|
111
|
+
message: str | MessageParamT | List[MessageParamT],
|
112
|
+
request_params: RequestParams | None = None,
|
113
|
+
) -> List[MessageT]:
|
114
|
+
"""Request an LLM generation, which may run multiple iterations, and return the result"""
|
115
|
+
|
116
|
+
async def generate_str(
|
117
|
+
self,
|
118
|
+
message: str | MessageParamT | List[MessageParamT],
|
119
|
+
request_params: RequestParams | None = None,
|
120
|
+
) -> str:
|
121
|
+
"""Request an LLM generation and return the string representation of the result"""
|
122
|
+
|
123
|
+
async def generate_structured(
|
124
|
+
self,
|
125
|
+
message: str | MessageParamT | List[MessageParamT],
|
126
|
+
response_model: Type[ModelT],
|
127
|
+
request_params: RequestParams | None = None,
|
128
|
+
) -> ModelT:
|
129
|
+
"""Request a structured LLM generation and return the result as a Pydantic model."""
|
130
|
+
|
131
|
+
|
132
|
+
class ModelFactoryClassProtocol(Protocol):
|
133
|
+
"""
|
134
|
+
Protocol defining the minimal interface of the ModelFactory class needed by sampling.
|
135
|
+
This allows sampling.py to depend on this protocol rather than the concrete ModelFactory class.
|
136
|
+
"""
|
137
|
+
|
138
|
+
@classmethod
|
139
|
+
def create_factory(
|
140
|
+
cls, model_string: str, request_params: Optional[RequestParams] = None
|
141
|
+
) -> Callable[..., AugmentedLLMProtocol[Any, Any]]:
|
142
|
+
"""
|
143
|
+
Creates a factory function that can be used to construct an LLM instance.
|
144
|
+
|
145
|
+
Args:
|
146
|
+
model_string: The model specification string
|
147
|
+
request_params: Optional parameters to configure LLM behavior
|
148
|
+
|
149
|
+
Returns:
|
150
|
+
A factory function that can create an LLM instance
|
151
|
+
"""
|
152
|
+
...
|
@@ -24,6 +24,7 @@ from pydantic import AnyUrl
|
|
24
24
|
from mcp_agent.config import MCPServerSettings
|
25
25
|
from mcp_agent.context_dependent import ContextDependent
|
26
26
|
from mcp_agent.logging.logger import get_logger
|
27
|
+
from mcp_agent.mcp.sampling import sample
|
27
28
|
|
28
29
|
logger = get_logger(__name__)
|
29
30
|
|
@@ -40,7 +41,12 @@ async def list_roots(ctx: ClientSession) -> ListRootsResult:
|
|
40
41
|
and ctx.session.server_config.roots
|
41
42
|
):
|
42
43
|
roots = [
|
43
|
-
Root(
|
44
|
+
Root(
|
45
|
+
uri=AnyUrl(
|
46
|
+
root.server_uri_alias or root.uri,
|
47
|
+
),
|
48
|
+
name=root.name,
|
49
|
+
)
|
44
50
|
for root in ctx.session.server_config.roots
|
45
51
|
]
|
46
52
|
return ListRootsResult(roots=roots or [])
|
@@ -58,7 +64,9 @@ class MCPAgentClientSession(ClientSession, ContextDependent):
|
|
58
64
|
"""
|
59
65
|
|
60
66
|
def __init__(self, *args, **kwargs):
|
61
|
-
super().__init__(
|
67
|
+
super().__init__(
|
68
|
+
*args, **kwargs, list_roots_callback=list_roots, sampling_callback=sample
|
69
|
+
)
|
62
70
|
self.server_config: Optional[MCPServerSettings] = None
|
63
71
|
|
64
72
|
async def send_request(
|
@@ -115,4 +123,4 @@ class MCPAgentClientSession(ClientSession, ContextDependent):
|
|
115
123
|
)
|
116
124
|
return await super().send_progress_notification(
|
117
125
|
progress_token=progress_token, progress=progress, total=total
|
118
|
-
)
|
126
|
+
)
|
mcp_agent/mcp/mcp_aggregator.py
CHANGED
@@ -16,6 +16,7 @@ from mcp.server.stdio import stdio_server
|
|
16
16
|
from mcp.types import (
|
17
17
|
CallToolResult,
|
18
18
|
ListToolsResult,
|
19
|
+
TextContent,
|
19
20
|
Tool,
|
20
21
|
Prompt,
|
21
22
|
)
|
@@ -459,7 +460,10 @@ class MCPAggregator(ContextDependent):
|
|
459
460
|
|
460
461
|
if server_name is None or local_tool_name is None:
|
461
462
|
logger.error(f"Error: Tool '{name}' not found")
|
462
|
-
return CallToolResult(
|
463
|
+
return CallToolResult(
|
464
|
+
isError=True,
|
465
|
+
content=[TextContent(type="text", text=f"Tool '{name}' not found")]
|
466
|
+
)
|
463
467
|
|
464
468
|
logger.info(
|
465
469
|
"Requesting tool call",
|
@@ -477,7 +481,10 @@ class MCPAggregator(ContextDependent):
|
|
477
481
|
operation_name=local_tool_name,
|
478
482
|
method_name="call_tool",
|
479
483
|
method_args={"name": local_tool_name, "arguments": arguments},
|
480
|
-
error_factory=lambda msg: CallToolResult(
|
484
|
+
error_factory=lambda msg: CallToolResult(
|
485
|
+
isError=True,
|
486
|
+
content=[TextContent(type="text", text=msg)]
|
487
|
+
),
|
481
488
|
)
|
482
489
|
|
483
490
|
async def get_prompt(
|
@@ -898,7 +905,10 @@ class MCPCompoundServer(Server):
|
|
898
905
|
result = await self.aggregator.call_tool(name=name, arguments=arguments)
|
899
906
|
return result.content
|
900
907
|
except Exception as e:
|
901
|
-
return CallToolResult(
|
908
|
+
return CallToolResult(
|
909
|
+
isError=True,
|
910
|
+
content=[TextContent(type="text", text=f"Error calling tool: {e}")]
|
911
|
+
)
|
902
912
|
|
903
913
|
async def _get_prompt(
|
904
914
|
self, name: str = None, arguments: dict[str, str] = None
|
@@ -0,0 +1,133 @@
|
|
1
|
+
"""
|
2
|
+
Module for handling MCP Sampling functionality without causing circular imports.
|
3
|
+
This module is carefully designed to avoid circular imports in the agent system.
|
4
|
+
"""
|
5
|
+
|
6
|
+
from mcp import ClientSession
|
7
|
+
from mcp.types import (
|
8
|
+
CreateMessageRequestParams,
|
9
|
+
CreateMessageResult,
|
10
|
+
TextContent,
|
11
|
+
)
|
12
|
+
|
13
|
+
from mcp_agent.logging.logger import get_logger
|
14
|
+
from mcp_agent.mcp.interfaces import AugmentedLLMProtocol
|
15
|
+
from mcp_agent.mcp.prompt_message_multipart import PromptMessageMultipart
|
16
|
+
|
17
|
+
# Protocol is sufficient to describe the interface - no need for TYPE_CHECKING imports
|
18
|
+
|
19
|
+
logger = get_logger(__name__)
|
20
|
+
|
21
|
+
|
22
|
+
def create_sampling_llm(
|
23
|
+
mcp_ctx: ClientSession, model_string: str
|
24
|
+
) -> AugmentedLLMProtocol:
|
25
|
+
"""
|
26
|
+
Create an LLM instance for sampling without tools support.
|
27
|
+
This utility function creates a minimal LLM instance based on the model string.
|
28
|
+
|
29
|
+
Args:
|
30
|
+
mcp_ctx: The MCP ClientSession
|
31
|
+
model_string: The model to use (e.g. "passthrough", "claude-3-5-sonnet-latest")
|
32
|
+
|
33
|
+
Returns:
|
34
|
+
An initialized LLM instance ready to use
|
35
|
+
"""
|
36
|
+
from mcp_agent.workflows.llm.model_factory import ModelFactory
|
37
|
+
from mcp_agent.agents.agent import Agent, AgentConfig
|
38
|
+
|
39
|
+
# Get application context from global state if available
|
40
|
+
# We don't try to extract it from mcp_ctx as they're different contexts
|
41
|
+
app_context = None
|
42
|
+
try:
|
43
|
+
from mcp_agent.context import get_current_context
|
44
|
+
|
45
|
+
app_context = get_current_context()
|
46
|
+
except Exception:
|
47
|
+
logger.warning("App context not available for sampling call")
|
48
|
+
|
49
|
+
# Create a minimal agent configuration
|
50
|
+
agent_config = AgentConfig(
|
51
|
+
name="sampling_agent",
|
52
|
+
instruction="You are a sampling agent.",
|
53
|
+
servers=[], # No servers needed
|
54
|
+
)
|
55
|
+
|
56
|
+
# Create agent with our application context (not the MCP context)
|
57
|
+
# Set connection_persistence=False to avoid server connections
|
58
|
+
agent = Agent(
|
59
|
+
config=agent_config,
|
60
|
+
context=app_context,
|
61
|
+
server_names=[], # Make sure no server connections are attempted
|
62
|
+
connection_persistence=False, # Avoid server connection management
|
63
|
+
)
|
64
|
+
|
65
|
+
# Create the LLM using the factory
|
66
|
+
factory = ModelFactory.create_factory(model_string)
|
67
|
+
llm = factory(agent=agent)
|
68
|
+
|
69
|
+
# Attach the LLM to the agent
|
70
|
+
agent._llm = llm
|
71
|
+
|
72
|
+
return llm
|
73
|
+
|
74
|
+
|
75
|
+
async def sample(
|
76
|
+
mcp_ctx: ClientSession, params: CreateMessageRequestParams
|
77
|
+
) -> CreateMessageResult:
|
78
|
+
"""
|
79
|
+
Handle sampling requests from the MCP protocol.
|
80
|
+
This function extracts the model from the server config and
|
81
|
+
returns a simple response using the specified model.
|
82
|
+
"""
|
83
|
+
model = None
|
84
|
+
try:
|
85
|
+
# Extract model from server config
|
86
|
+
if (
|
87
|
+
hasattr(mcp_ctx, "session")
|
88
|
+
and hasattr(mcp_ctx.session, "server_config")
|
89
|
+
and mcp_ctx.session.server_config
|
90
|
+
and hasattr(mcp_ctx.session.server_config, "sampling")
|
91
|
+
and mcp_ctx.session.server_config.sampling.model
|
92
|
+
):
|
93
|
+
model = mcp_ctx.session.server_config.sampling.model
|
94
|
+
|
95
|
+
if model is None:
|
96
|
+
raise ValueError("No model configured")
|
97
|
+
|
98
|
+
# Create an LLM instance using our utility function
|
99
|
+
llm = create_sampling_llm(mcp_ctx, model)
|
100
|
+
|
101
|
+
# Get user message from the request params
|
102
|
+
user_message = params.messages[0].content.text
|
103
|
+
|
104
|
+
# Create a multipart prompt message with the user's input
|
105
|
+
prompt = PromptMessageMultipart(
|
106
|
+
role="user", content=[TextContent(type="text", text=user_message)]
|
107
|
+
)
|
108
|
+
|
109
|
+
try:
|
110
|
+
# Use the LLM to generate a response
|
111
|
+
logger.info(f"Processing input: {user_message[:50]}...")
|
112
|
+
llm_response = await llm.generate_prompt(prompt, None)
|
113
|
+
logger.info(f"Generated response: {llm_response[:50]}...")
|
114
|
+
except Exception as e:
|
115
|
+
# If there's an error in LLM processing, fall back to echo
|
116
|
+
logger.error(f"Error generating response: {str(e)}")
|
117
|
+
llm_response = f"Echo response: {user_message}"
|
118
|
+
|
119
|
+
# Return the LLM-generated response
|
120
|
+
return CreateMessageResult(
|
121
|
+
role="assistant",
|
122
|
+
content=TextContent(type="text", text=llm_response),
|
123
|
+
model=model,
|
124
|
+
stopReason="endTurn",
|
125
|
+
)
|
126
|
+
except Exception as e:
|
127
|
+
logger.error(f"Error in sampling: {str(e)}")
|
128
|
+
return CreateMessageResult(
|
129
|
+
role="assistant",
|
130
|
+
content=TextContent(type="text", text=f"Error in sampling: {str(e)}"),
|
131
|
+
model=model or "unknown",
|
132
|
+
stopReason="error",
|
133
|
+
)
|
mcp_agent/mcp/stdio.py
CHANGED
@@ -14,7 +14,7 @@ from anyio.streams.memory import MemoryObjectReceiveStream, MemoryObjectSendStre
|
|
14
14
|
logger = get_logger(__name__)
|
15
15
|
|
16
16
|
|
17
|
-
# TODO this will be removed when client library
|
17
|
+
# TODO this will be removed when client library with https://github.com/modelcontextprotocol/python-sdk/pull/343 is released
|
18
18
|
@asynccontextmanager
|
19
19
|
async def stdio_client_with_rich_stderr(server: StdioServerParameters):
|
20
20
|
"""
|
@@ -95,7 +95,6 @@ async def stdio_client_with_rich_stderr(server: StdioServerParameters):
|
|
95
95
|
async with write_stream_reader:
|
96
96
|
async for message in write_stream_reader:
|
97
97
|
json = message.model_dump_json(by_alias=True, exclude_none=True)
|
98
|
-
print(f"**********{id(process.stdin)}")
|
99
98
|
await process.stdin.send(
|
100
99
|
(json + "\n").encode(
|
101
100
|
encoding=server.encoding,
|
@@ -6,7 +6,7 @@ fast = FastAgent("FastAgent Example")
|
|
6
6
|
|
7
7
|
|
8
8
|
# Define the agent
|
9
|
-
@fast.agent(servers=["fetch"])
|
9
|
+
@fast.agent(servers=["fetch", "mcp_hfspace"])
|
10
10
|
async def main():
|
11
11
|
# use the --model command line switch or agent arguments to change model
|
12
12
|
async with fast.run() as agent:
|
@@ -1,5 +1,5 @@
|
|
1
1
|
from typing import Any, List, Optional, Type, Union
|
2
|
-
import json
|
2
|
+
import json # Import at the module level
|
3
3
|
from mcp import GetPromptResult
|
4
4
|
from mcp.types import PromptMessage
|
5
5
|
from pydantic_core import from_json
|
@@ -52,6 +52,13 @@ class PassthroughLLM(AugmentedLLM):
|
|
52
52
|
self.show_user_message(message, model="fastagent-passthrough", chat_turn=0)
|
53
53
|
await self.show_assistant_message(message, title="ASSISTANT/PASSTHROUGH")
|
54
54
|
|
55
|
+
# Handle PromptMessage by concatenating all parts
|
56
|
+
if isinstance(message, PromptMessage):
|
57
|
+
parts_text = []
|
58
|
+
for part in message.content:
|
59
|
+
parts_text.append(str(part))
|
60
|
+
return "\n".join(parts_text)
|
61
|
+
|
55
62
|
return str(message)
|
56
63
|
|
57
64
|
async def _call_tool_and_return_result(self, command: str) -> str:
|
@@ -65,42 +72,73 @@ class PassthroughLLM(AugmentedLLM):
|
|
65
72
|
Tool result as a string
|
66
73
|
"""
|
67
74
|
try:
|
68
|
-
|
69
|
-
parts = command.split(" ", 2)
|
70
|
-
if len(parts) < 2:
|
71
|
-
return "Error: Invalid format. Expected '***CALL_TOOL <tool_name> [arguments_json]'"
|
72
|
-
|
73
|
-
tool_name = parts[1].strip()
|
74
|
-
arguments = None
|
75
|
-
|
76
|
-
# Parse optional JSON arguments if provided
|
77
|
-
if len(parts) > 2:
|
78
|
-
try:
|
79
|
-
arguments = json.loads(parts[2])
|
80
|
-
except json.JSONDecodeError:
|
81
|
-
return f"Error: Invalid JSON arguments: {parts[2]}"
|
82
|
-
|
83
|
-
# Call the tool and get the result
|
84
|
-
self.logger.info(f"Calling tool {tool_name} with arguments {arguments}")
|
75
|
+
tool_name, arguments = self._parse_tool_command(command)
|
85
76
|
result = await self.aggregator.call_tool(tool_name, arguments)
|
77
|
+
return self._format_tool_result(tool_name, result)
|
78
|
+
except Exception as e:
|
79
|
+
self.logger.error(f"Error calling tool: {str(e)}")
|
80
|
+
return f"Error calling tool: {str(e)}"
|
81
|
+
|
82
|
+
def _parse_tool_command(self, command: str) -> tuple[str, Optional[dict]]:
|
83
|
+
"""
|
84
|
+
Parse a tool command string into tool name and arguments.
|
85
|
+
|
86
|
+
Args:
|
87
|
+
command: The command string in format "***CALL_TOOL <tool_name> [arguments_json]"
|
88
|
+
|
89
|
+
Returns:
|
90
|
+
Tuple of (tool_name, arguments_dict)
|
91
|
+
|
92
|
+
Raises:
|
93
|
+
ValueError: If command format is invalid
|
94
|
+
"""
|
95
|
+
parts = command.split(" ", 2)
|
96
|
+
if len(parts) < 2:
|
97
|
+
raise ValueError(
|
98
|
+
"Invalid format. Expected '***CALL_TOOL <tool_name> [arguments_json]'"
|
99
|
+
)
|
100
|
+
|
101
|
+
tool_name = parts[1].strip()
|
102
|
+
arguments = None
|
86
103
|
|
87
|
-
|
88
|
-
|
89
|
-
|
104
|
+
if len(parts) > 2:
|
105
|
+
try:
|
106
|
+
arguments = json.loads(parts[2])
|
107
|
+
except json.JSONDecodeError:
|
108
|
+
raise ValueError(f"Invalid JSON arguments: {parts[2]}")
|
90
109
|
|
91
|
-
|
92
|
-
|
110
|
+
self.logger.info(f"Calling tool {tool_name} with arguments {arguments}")
|
111
|
+
return tool_name, arguments
|
112
|
+
|
113
|
+
def _format_tool_result(self, tool_name: str, result) -> str:
|
114
|
+
"""
|
115
|
+
Format tool execution result as a string.
|
116
|
+
|
117
|
+
Args:
|
118
|
+
tool_name: The name of the tool that was called
|
119
|
+
result: The result returned from the tool
|
120
|
+
|
121
|
+
Returns:
|
122
|
+
Formatted result as a string
|
123
|
+
"""
|
124
|
+
if result.isError:
|
125
|
+
error_text = []
|
93
126
|
for content_item in result.content:
|
94
127
|
if hasattr(content_item, "text"):
|
95
|
-
|
128
|
+
error_text.append(content_item.text)
|
96
129
|
else:
|
97
|
-
|
130
|
+
error_text.append(str(content_item))
|
131
|
+
error_message = "\n".join(error_text) if error_text else "Unknown error"
|
132
|
+
return f"Error calling tool '{tool_name}': {error_message}"
|
98
133
|
|
99
|
-
|
134
|
+
result_text = []
|
135
|
+
for content_item in result.content:
|
136
|
+
if hasattr(content_item, "text"):
|
137
|
+
result_text.append(content_item.text)
|
138
|
+
else:
|
139
|
+
result_text.append(str(content_item))
|
100
140
|
|
101
|
-
|
102
|
-
self.logger.error(f"Error calling tool: {str(e)}")
|
103
|
-
return f"Error calling tool: {str(e)}"
|
141
|
+
return "\n".join(result_text)
|
104
142
|
|
105
143
|
async def generate_structured(
|
106
144
|
self,
|
@@ -123,10 +161,25 @@ class PassthroughLLM(AugmentedLLM):
|
|
123
161
|
async def generate_prompt(
|
124
162
|
self, prompt: "PromptMessageMultipart", request_params: RequestParams | None
|
125
163
|
) -> str:
|
126
|
-
|
127
|
-
if
|
128
|
-
|
129
|
-
|
164
|
+
# Check if this prompt contains a tool call command
|
165
|
+
if (
|
166
|
+
prompt.content
|
167
|
+
and prompt.content[0].text
|
168
|
+
and prompt.content[0].text.startswith("***CALL_TOOL ")
|
169
|
+
):
|
170
|
+
return await self._call_tool_and_return_result(prompt.content[0].text)
|
171
|
+
|
172
|
+
# Process all parts of the PromptMessageMultipart
|
173
|
+
parts_text = []
|
174
|
+
for part in prompt.content:
|
175
|
+
parts_text.append(str(part))
|
176
|
+
|
177
|
+
# If no parts found, return empty string
|
178
|
+
if not parts_text:
|
179
|
+
return ""
|
180
|
+
|
181
|
+
# Join all parts and process with generate_str
|
182
|
+
return await self.generate_str("\n".join(parts_text), request_params)
|
130
183
|
|
131
184
|
async def apply_prompt_template(
|
132
185
|
self, prompt_result: GetPromptResult, prompt_name: str
|
File without changes
|
File without changes
|
File without changes
|