fast-agent-mcp 0.0.9__py3-none-any.whl → 0.0.11__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of fast-agent-mcp might be problematic. Click here for more details.

@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.4
2
2
  Name: fast-agent-mcp
3
- Version: 0.0.9
3
+ Version: 0.0.11
4
4
  Summary: Define, Prompt and Test MCP enabled Agents and Workflows
5
5
  Author-email: Shaun Smith <fastagent@llmindset.co.uk>, Sarmad Qadri <sarmad@lastmileai.dev>
6
6
  License: Apache License
@@ -246,23 +246,27 @@ Description-Content-Type: text/markdown
246
246
 
247
247
  ## Overview
248
248
 
249
- **`fast-agent`** lets you define, test and compose agents and tools in minutes.
249
+ **`fast-agent`** lets you define, test and interact with agents, tools and workflows in minutes.
250
250
 
251
- ### Get started:
252
-
253
- Install the [uv package manager](https://docs.astral.sh/uv/).
251
+ The simple declarative syntax lets you concentrate on the prompts, MCP Servers and compositions to build effective agents.
254
252
 
255
- `uv pip install fast-agent-mcp` - download and install fast-agent
253
+ Quickly compare how different models perform at Agent and MCP Server calling tasks, and build mixed multi-model workflows using the best provider for each task.
256
254
 
257
- `fast-agent setup` - setup an agent and configuration files.
255
+ ### Get started:
258
256
 
259
- `uv run agent.py` - run and interact with your first agent.
257
+ Start by installing the [uv package manager](https://docs.astral.sh/uv/) for Python. Then:
260
258
 
261
- `fast-agent bootstrap workflow` - generate example agents and workflows demonstrating each of the patterns from Anthropic's "[Building Effective Agents](https://www.anthropic.com/research/building-effective-agents)" paper.
259
+ ```bash
260
+ uv pip install fast-agent-mcp # install fast-agent
261
+ fast-agent setup # create an example agent and config files
262
+ uv run agent.py # run your first agent
263
+ uv run agent.py --model=o3-mini.low # specify a model
264
+ fast-agent bootstrap workflow # create "building effective agents" examples
265
+ ```
262
266
 
263
- `fast-agent bootstrap` -
267
+ Other bootstrap examples include a Researcher (with Evaluator-Optimizer workflow) and Data Analysis (similar to ChatGPT experience), demonstrating MCP Roots support.
264
268
 
265
- It's built on top of [mcp-agent](todo).
269
+ > Windows Users - there are a couple of configuration changes needed for the Filesystem and Docker MCP Servers - necessary changes are detailed within the configuration files.
266
270
 
267
271
  ### llmindset.co.uk fork:
268
272
 
@@ -1,10 +1,10 @@
1
1
  mcp_agent/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
2
- mcp_agent/app.py,sha256=LJ8-9_hTnDOjX0KxRYRu9OPqDcj-fAQSSfS4Oo2m0D8,10550
2
+ mcp_agent/app.py,sha256=0_C1xmNZlk9qZoewnNI_mC7sSfO9oJgkOyiKkQ62MHU,10606
3
3
  mcp_agent/config.py,sha256=mShpoyIAGeyQKMH9gUCAXBZ2HNF3SM2KoMjSMpPQnmg,10210
4
4
  mcp_agent/console.py,sha256=Gjf2QLFumwG1Lav__c07X_kZxxEUSkzV-1_-YbAwcwo,813
5
5
  mcp_agent/context.py,sha256=qzwUrexZXVBzFiNkYI4xjztdGxuuiDWZbWrQgVhA-vE,8126
6
6
  mcp_agent/context_dependent.py,sha256=TGqRLzYCOnsWGoaD1HtrliYtWo8MeaWCQk6ePUmyYCw,1446
7
- mcp_agent/event_progress.py,sha256=uolrsdEuXQ8_8iAspb_w3HHp_yY22QfVyysuQaAhnOg,2641
7
+ mcp_agent/event_progress.py,sha256=25iz0yyg-O4glMmtijcYpDdUmtUIKsCmR_8A52GgeC4,2716
8
8
  mcp_agent/mcp_server_registry.py,sha256=5x30L1IlmC18JASl7NQbZYHMqPWS3ay0f_3U3uleaMM,9884
9
9
  mcp_agent/progress_display.py,sha256=GeJU9VUt6qKsFVymG688hCMVCsAygG9ifiiEb5IcbN4,361
10
10
  mcp_agent/agents/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
@@ -13,12 +13,12 @@ mcp_agent/cli/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
13
13
  mcp_agent/cli/__main__.py,sha256=bhxe66GYqy0q78OQhi7dkuubY1Tn0bQL6hU5Nn47E34,73
14
14
  mcp_agent/cli/main.py,sha256=wyOvUg0BihD1NpoiFcIaOruevgaHxs1-Xy_bnwb1Ik4,2449
15
15
  mcp_agent/cli/terminal.py,sha256=5fqrKlJvIpKEuvpvZ653OueQSYFFktBEbosjr2ucMUc,1026
16
- mcp_agent/cli/commands/bootstrap.py,sha256=5OAxs1IsWarFNX1IoTRbVyjMqktxJ3pweM3LwGOVAhk,10768
16
+ mcp_agent/cli/commands/bootstrap.py,sha256=lVWMAt3Uzd6HHvEJ3X28bbKdX6o1_F-Vs6682fdol20,10798
17
17
  mcp_agent/cli/commands/config.py,sha256=32YTS5jmsYAs9QzAhjkG70_daAHqOemf4XbZBBSMz6g,204
18
- mcp_agent/cli/commands/setup.py,sha256=Km4-EFJljjMU5XjsSa-srg_7lbPuH5e40sx4lQDkia4,6198
18
+ mcp_agent/cli/commands/setup.py,sha256=dI_01B5nye707Rcd15gvZZCYlZGSiKajlnuLf6hJf2A,6197
19
19
  mcp_agent/core/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
20
20
  mcp_agent/core/exceptions.py,sha256=xDdhYh83ni3t0NiXQTEL0_Yyx0qQxBPQL1gSwRToeaw,1469
21
- mcp_agent/core/fastagent.py,sha256=THy6lDg3CjgF_nMKq8GtWkFT03r6-8VKFFhjjECx6aE,42699
21
+ mcp_agent/core/fastagent.py,sha256=obVbZ8AwqxpeHg-LQvlwukswDxvk3sMPzkvPYk1QJSk,47127
22
22
  mcp_agent/core/server_validation.py,sha256=_59cn16nNT4HGPwg19HgxMtHK4MsdWYDUw_CuL-5xek,1696
23
23
  mcp_agent/eval/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
24
24
  mcp_agent/executor/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
@@ -29,14 +29,14 @@ mcp_agent/executor/temporal.py,sha256=U-wyltgWlVmzJoyivT6rR0Z1U3S6TbMXpeCxyuXako
29
29
  mcp_agent/executor/workflow.py,sha256=lA6r7PNEvxCVFHp4XkEJkaR0QCTf-J6iw9JwNx-tzNY,6727
30
30
  mcp_agent/executor/workflow_signal.py,sha256=3PWwSgXhz3PhkA8SRX3u0BDVoSlQqRGqC9d1qLC25vE,11210
31
31
  mcp_agent/human_input/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
32
- mcp_agent/human_input/handler.py,sha256=__DtS3LDGMwrDHOFnE8a0d2EnEupN0fQNSrovAAkn_U,1688
32
+ mcp_agent/human_input/handler.py,sha256=_gVIyvjDo53Aj8NFoKCiM8nBdQIuCxiStvgEtRBwYv8,1812
33
33
  mcp_agent/human_input/types.py,sha256=ZvuDHvI0-wO2tFoS0bzrv8U5B83zYdxAG7g9G9jCxug,1489
34
34
  mcp_agent/logging/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
35
35
  mcp_agent/logging/events.py,sha256=qfYJnrqgXdujV-nl-iOwBEBh6HMraowBI4zeAWPPU4A,3461
36
36
  mcp_agent/logging/json_serializer.py,sha256=pa_mf0i0YKpLsGq3THuITFUdAbmae-dv1OPOLbcS0to,5782
37
37
  mcp_agent/logging/listeners.py,sha256=lx2Pq_SE0rsG3nF3TwDSxkmsWzdXxIUjuaWct-KOtJ8,6631
38
38
  mcp_agent/logging/logger.py,sha256=Tr009BnfGUKuZcdinnSin0Z_zIsfDNGdcnamw2rDHRQ,10604
39
- mcp_agent/logging/rich_progress.py,sha256=ExVCEPfk01BaspOy60o5rnsfnr1aT6UKO0OWGDXYT5s,4560
39
+ mcp_agent/logging/rich_progress.py,sha256=IEVFdFGA0nwg6pSt9Ydni5LCNYZZPKYMe-6DCi9pO4Y,4851
40
40
  mcp_agent/logging/tracing.py,sha256=jQivxKYl870oXakmyUk7TXuTQSvsIzpHwZlSQfy4b0c,5203
41
41
  mcp_agent/logging/transport.py,sha256=Oo7Rx5t7REZTnH-uVljK0JlehnBj-wInc_fx0zhd_zY,16139
42
42
  mcp_agent/mcp/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
@@ -44,19 +44,20 @@ mcp_agent/mcp/gen_client.py,sha256=u0HwdJiw9YCerS5JC7JDuGgBh9oTcLd7vv9vPjwibXc,3
44
44
  mcp_agent/mcp/mcp_activity.py,sha256=CajXCFWZ2cKEX9s4-HfNVAj471ePTVs4NOkvmIh65tE,592
45
45
  mcp_agent/mcp/mcp_agent_client_session.py,sha256=NtWcQhjmnnaR3yYcYj2d2lh-m563NexZUa57K1tAjeM,9477
46
46
  mcp_agent/mcp/mcp_agent_server.py,sha256=xP09HZTeguJi4Fq0p3fjLBP55uSYe5AdqM90xCgn9Ho,1639
47
- mcp_agent/mcp/mcp_aggregator.py,sha256=SQNErk20jTT_5cHTQ9zQBYEsAedd6QEweQj-YSzkdOo,14602
48
- mcp_agent/mcp/mcp_connection_manager.py,sha256=tdz2B2BxmO2gBDPe4r6eEnUp4QpwD0p0-ag5J_hle-w,11750
47
+ mcp_agent/mcp/mcp_aggregator.py,sha256=RVsgNnSJ1IPBkqKgF_Gp-Cpv97FVBIdppPey6FRoHB0,14751
48
+ mcp_agent/mcp/mcp_connection_manager.py,sha256=LH9ZmK-fXC-_7exAFclzWEjfFjwwdPqO_ZERqoHI_JM,13166
49
49
  mcp_agent/mcp/stdio.py,sha256=tW075R5rQ-UlflXWFKIFDgCbWbuhKqxhiYolWvyEkFs,3985
50
50
  mcp_agent/resources/examples/data-analysis/analysis.py,sha256=Sp-umPPfwVjG3yNrHdQA6blGtG6jc5of1e_0oS4njYc,1379
51
51
  mcp_agent/resources/examples/data-analysis/fastagent.config.yaml,sha256=eTKGbjnTHhDTeNRPQvG_fr9OQpEZ5Y9v7X2NyCj0V70,530
52
52
  mcp_agent/resources/examples/data-analysis/mount-point/WA_Fn-UseC_-HR-Employee-Attrition.csv,sha256=pcMeOL1_r8m8MziE6xgbBrQbjl5Ijo98yycZn7O-dlk,227977
53
+ mcp_agent/resources/examples/internal/job.py,sha256=uqIqc1i5PfWynobwNaWWcQ6FP_BRifINd4ncmPvzwm0,4093
53
54
  mcp_agent/resources/examples/mcp_researcher/researcher-eval.py,sha256=NI1vujVuLeTrcF8dM_ipZZ3Tg-1AL35CaltmuzxWrU4,1807
54
55
  mcp_agent/resources/examples/mcp_researcher/researcher.py,sha256=jPRafm7jbpHKkX_dQiYGG3Sw-e1Dm86q-JZT-WZDhM0,1425
55
- mcp_agent/resources/examples/workflows/chaining.py,sha256=o9vf45BtJP6PT7kCYfIyNTcJrVGnMeKCUD37vI0cepw,770
56
+ mcp_agent/resources/examples/workflows/agent_build.py,sha256=vdjS02rZR88RU53WYzXxPscfFNEFFe_niHYE_i49I8Q,2396
57
+ mcp_agent/resources/examples/workflows/chaining.py,sha256=QD_r_PKIoDedWqOTzg7IBnTY8OVoDSMot5WnArJubnc,751
56
58
  mcp_agent/resources/examples/workflows/evaluator.py,sha256=ByILFY7PsA8UXtmNa4YtLIGSsnVfZVjKlHGH9G0ie2I,3069
57
- mcp_agent/resources/examples/workflows/fastagent.config.yaml,sha256=s8USBUpEymJbOLVp-NiFuo86h4sCxL9TB5H-Ub8i0hQ,234
58
59
  mcp_agent/resources/examples/workflows/human_input.py,sha256=c8cBdLEPbaMXddFwsfN3Z7RFs5PZXsdrjANfvq1VTPM,605
59
- mcp_agent/resources/examples/workflows/orchestrator.py,sha256=LaV5rzBy6NvnlFd91f96bKFrle6voxDA1TFa8hVxQ9Y,2550
60
+ mcp_agent/resources/examples/workflows/orchestrator.py,sha256=kHUDDALqjA8TRjkbsDP2MwspEj1a5DdSUOPAiI17izQ,2545
60
61
  mcp_agent/resources/examples/workflows/parallel.py,sha256=cNYcIcsdo0-KK-S7KEPCc11aWELeVlQJdJ2LIC9xgDs,3090
61
62
  mcp_agent/resources/examples/workflows/router.py,sha256=XT_ewCrxPxdUTMCYQGw34qZQ3GGu8TYY_v5Lige8By4,1707
62
63
  mcp_agent/telemetry/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
@@ -67,7 +68,7 @@ mcp_agent/workflows/embedding/embedding_base.py,sha256=-c20ggQ8s7XhMxRX-WEhOgHE7
67
68
  mcp_agent/workflows/embedding/embedding_cohere.py,sha256=OKTJvKD_uEafd4c2uhR5tBjprea1nyvlJOO-3FDqOnk,1540
68
69
  mcp_agent/workflows/embedding/embedding_openai.py,sha256=dntjJ5P-FSMGYuyPZC8MuCU_ehwjXw9wDfzZZuSQN1E,1480
69
70
  mcp_agent/workflows/evaluator_optimizer/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
70
- mcp_agent/workflows/evaluator_optimizer/evaluator_optimizer.py,sha256=njAJiLK-0zQ79Kdc39Rh548n9pbfA_52s-XVpC0FZK8,13399
71
+ mcp_agent/workflows/evaluator_optimizer/evaluator_optimizer.py,sha256=ddAfHu8jFGwdVGbHwm7CZQnmtMeDnIl1gIB_lfkXx_E,13628
71
72
  mcp_agent/workflows/intent_classifier/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
72
73
  mcp_agent/workflows/intent_classifier/intent_classifier_base.py,sha256=zTbOmq6EY_abOlme4zl28HM4RWNNS6bbHl3tF7SshJ0,4004
73
74
  mcp_agent/workflows/intent_classifier/intent_classifier_embedding.py,sha256=_bWZGukc_q9LdA_Q18UoAMSzhN8tt4K_bRHNUhy7Crw,3997
@@ -77,15 +78,15 @@ mcp_agent/workflows/intent_classifier/intent_classifier_llm.py,sha256=WSLUv2Casb
77
78
  mcp_agent/workflows/intent_classifier/intent_classifier_llm_anthropic.py,sha256=Hp4454IniWFxV4ml50Ml8ip9rS1La5FBn5pd7vm1FHA,1964
78
79
  mcp_agent/workflows/intent_classifier/intent_classifier_llm_openai.py,sha256=zj76WlTYnSCYjBQ_IDi5vFBQGmNwYaoUq1rT730sY98,1940
79
80
  mcp_agent/workflows/llm/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
80
- mcp_agent/workflows/llm/augmented_llm.py,sha256=o5Vdn1sAgVBhmetilbiYJuVz5BAtEhNcwGMEBGNzU_A,22960
81
- mcp_agent/workflows/llm/augmented_llm_anthropic.py,sha256=rcaFn4ZhxJgBuTsRCKCcCx4U8UYqAhJNh3EK5M5hgew,21118
81
+ mcp_agent/workflows/llm/augmented_llm.py,sha256=BQ7xhYVzloE7_VeuJvvjABYs7sNxJjfS14QdvHUUvjY,23209
82
+ mcp_agent/workflows/llm/augmented_llm_anthropic.py,sha256=_Td5UTNfnaFtqN3XNV5bX1w7ituRjzoWMOyaobz9vO4,21127
82
83
  mcp_agent/workflows/llm/augmented_llm_openai.py,sha256=RqsbX0Fc5By1AvQ2N85hxzz0d84mVwuPggslxwqSJVM,24190
83
84
  mcp_agent/workflows/llm/llm_selector.py,sha256=G7pIybuBDwtmyxUDov_QrNYH2FoI0qFRu2JfoxWUF5Y,11045
84
- mcp_agent/workflows/llm/model_factory.py,sha256=cAjG8UxzUC_wcB6mPaMfEhwnGnVS4-IOmOXDabO1_0g,6119
85
+ mcp_agent/workflows/llm/model_factory.py,sha256=5JrMXZ5jbE8isiteF2A912gGuCyomGpjtC_BCVSAM9s,6806
85
86
  mcp_agent/workflows/orchestrator/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
86
- mcp_agent/workflows/orchestrator/orchestrator.py,sha256=BMGToWE-C2WiL74U5s0oT5wKoHWWxhWZ_lRfHm-8ryg,12494
87
+ mcp_agent/workflows/orchestrator/orchestrator.py,sha256=Fn5r0uUGNAiUq5NLFDjaJ04t19MnGEgr9iknbUj0DSA,14733
87
88
  mcp_agent/workflows/orchestrator/orchestrator_models.py,sha256=UWn7_HFLcqFGlcjZ1Rn2SYQfm5k9seS6QJN_FRST5Kc,4513
88
- mcp_agent/workflows/orchestrator/orchestrator_prompts.py,sha256=AQ9-1WyMIl6l36yAMh1dtJ6Vhi1jPrvGXF2CNNAtlpA,3946
89
+ mcp_agent/workflows/orchestrator/orchestrator_prompts.py,sha256=-ogkjDoCXBDOyYE9yk3qhjqq0LofsSpRvRZfWVzrVTE,4396
89
90
  mcp_agent/workflows/parallel/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
90
91
  mcp_agent/workflows/parallel/fan_in.py,sha256=EivpUL5-qftctws-tlfwmYS1QeSwr07POIbBUbwvwOk,13184
91
92
  mcp_agent/workflows/parallel/fan_out.py,sha256=J-yezgjzAWxfueW_Qcgwoet4PFDRIh0h4m48lIbFA4c,7023
@@ -95,13 +96,13 @@ mcp_agent/workflows/router/router_base.py,sha256=1Qr3Fx9_KxpotMV-eaNT79etayAxWuQ
95
96
  mcp_agent/workflows/router/router_embedding.py,sha256=wEU49li9OqTX-Xucm0HDUFLZjlND1WuewOcQVAo0s2E,7944
96
97
  mcp_agent/workflows/router/router_embedding_cohere.py,sha256=aKZVzzQfBuz0by9k0zWLAA0Db_unDIMYL4ynVzzx8C4,1975
97
98
  mcp_agent/workflows/router/router_embedding_openai.py,sha256=KqW2IFLdQoAJ2lIz1X18WQJFjXF-YSFSTtsqVnp1JeI,1975
98
- mcp_agent/workflows/router/router_llm.py,sha256=ySyYvpsMOgDpWmbBG7l0z0vxbKFo4kVi9Bw54Vvz9KM,10099
99
+ mcp_agent/workflows/router/router_llm.py,sha256=xRLzFt8UvJT9PZNHIVDr8DguWqHFi-MJ-uGALL5Ahzw,10639
99
100
  mcp_agent/workflows/swarm/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
100
101
  mcp_agent/workflows/swarm/swarm.py,sha256=-lAIeSWDqbGHGRPTvjiP9nIKWvxxy9DAojl9yQzO1Pw,11050
101
102
  mcp_agent/workflows/swarm/swarm_anthropic.py,sha256=pW8zFx5baUWGd5Vw3nIDF2oVOOGNorij4qvGJKdYPcs,1624
102
103
  mcp_agent/workflows/swarm/swarm_openai.py,sha256=wfteywvAGkT5bLmIxX_StHJq8144whYmCRnJASAjOes,1596
103
- fast_agent_mcp-0.0.9.dist-info/METADATA,sha256=KBbUbJ7Sx0c9ZvVd9j2zJCdgr1BIDUwvfqN6nAzMjew,15966
104
- fast_agent_mcp-0.0.9.dist-info/WHEEL,sha256=qtCwoSJWgHk21S1Kb4ihdzI2rlJ1ZKaIurTj_ngOhyQ,87
105
- fast_agent_mcp-0.0.9.dist-info/entry_points.txt,sha256=2IXtSmDK9XjWN__RWuRIJTgWyW17wJnJ_h-pb0pZAxo,174
106
- fast_agent_mcp-0.0.9.dist-info/licenses/LICENSE,sha256=cN3FxDURL9XuzE5mhK9L2paZo82LTfjwCYVT7e3j0e4,10939
107
- fast_agent_mcp-0.0.9.dist-info/RECORD,,
104
+ fast_agent_mcp-0.0.11.dist-info/METADATA,sha256=p3Q0Gcx-dzK-vJA6F2s2iaw6NNm2RoWrB5VakfLIp00,16504
105
+ fast_agent_mcp-0.0.11.dist-info/WHEEL,sha256=qtCwoSJWgHk21S1Kb4ihdzI2rlJ1ZKaIurTj_ngOhyQ,87
106
+ fast_agent_mcp-0.0.11.dist-info/entry_points.txt,sha256=2IXtSmDK9XjWN__RWuRIJTgWyW17wJnJ_h-pb0pZAxo,174
107
+ fast_agent_mcp-0.0.11.dist-info/licenses/LICENSE,sha256=cN3FxDURL9XuzE5mhK9L2paZo82LTfjwCYVT7e3j0e4,10939
108
+ fast_agent_mcp-0.0.11.dist-info/RECORD,,
mcp_agent/app.py CHANGED
@@ -135,8 +135,8 @@ class MCPApp:
135
135
  "MCPAgent initialized",
136
136
  data={
137
137
  "progress_action": "Running",
138
- "target": self.name,
139
- "agent_name": "mcp_application_loop",
138
+ "target": self.name or "mcp_application",
139
+ "agent_name": self.name or "fastagent loop",
140
140
  },
141
141
  )
142
142
 
@@ -150,8 +150,8 @@ class MCPApp:
150
150
  "MCPAgent cleanup",
151
151
  data={
152
152
  "progress_action": ProgressAction.FINISHED,
153
- "target": self.name,
154
- "agent_name": "mcp_application_loop",
153
+ "target": self.name or "mcp_application",
154
+ "agent_name": self.name or "fastagent loop",
155
155
  },
156
156
  )
157
157
  try:
@@ -19,6 +19,7 @@ EXAMPLE_TYPES = {
19
19
  "'Building Effective Agents' paper. Some agents use the 'fetch'\n"
20
20
  "and filesystem MCP Servers.",
21
21
  "files": [
22
+ "agent_build.py",
22
23
  "chaining.py",
23
24
  "evaluator.py",
24
25
  "human_input.py",
@@ -19,7 +19,7 @@ FASTAGENT_CONFIG_TEMPLATE = """
19
19
  # If not specified, defaults to "haiku".
20
20
  # Can be overriden with a command line switch --model=<model>, or within the Agent constructor.
21
21
 
22
- default_model: sonnet
22
+ default_model: haiku
23
23
 
24
24
  # Logging and Console Configuration:
25
25
  logger: